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Abstract
Resting-state functional connectivity, constructed via functional magnetic resonance imaging, has become an essential 
tool for exploring brain functions. Aside from the methods focusing on the static state, investigating dynamic functional 
connectivity can better uncover the fundamental properties of brain networks. Hilbert-Huang transform (HHT) is a novel 
time–frequency technique that can adapt to both non-linear and non-stationary signals, which may be an effective tool for 
investigating dynamic functional connectivity. To perform the present study, we investigated time–frequency dynamic 
functional connectivity among 11 brain regions of the default mode network by first projecting the coherence into the time 
and frequency domains, and subsequently by identifying clusters in the time–frequency domain using k-means clustering. 
Experiments on 14 temporal lobe epilepsy (TLE) patients and 21 age and sex-matched healthy controls were performed. 
The results show that functional connections in the brain regions of the hippocampal formation, parahippocampal gyrus, 
and retrosplenial cortex (Rsp) were reduced in the TLE group. However, the connections in the brain regions of the posterior 
inferior parietal lobule, ventral medial prefrontal cortex, and the core subsystem could hardly be detected in TLE patients. 
The findings not only demonstrate the feasibility of utilizing HHT in dynamic functional connectivity for epilepsy research, 
but also indicate that TLE may cause damage to memory functions, disorders of processing self-related tasks, and impairment 
of constructing a mental scene.

Keywords Dynamic functional connectivity · Time–frequency domain · Hilbert-Huang Transform · Default mode 
network · Temporal lobe epilepsy

Introduction

Epilepsy is a dysfunction caused by the abnormal discharge 
of brain neurons (Kramer and Cash 2012). At present, 
the understanding of epileptic seizures is still limited 
(Kramer and Cash 2012; Richardson 2012). In recent years, 
epilepsy has been regarded as a disorder of brain functional 
connectivity (Laufs 2012; Engel Jr et al. 2013; Stefan and 
Lopes Da Silva 2013; Caeyenberghs et al. 2015). Resting-
state functional connectivity (rs-FC), constructed via 
functional magnetic resonance imaging (fMRI), has become 
an essential tool for exploring brain functions (Raichle 
et al. 2001; Damoiseaux et al. 2006; De Luca et al. 2006). 
In addition, it has been applied in temporal lobe epilepsy 
(TLE) patients (Liao et al. 2010; Vlooswijk et al. 2010, 
2011; Zhang et al. 2011).

One of the well-applied approaches for constructing rs-FC 
is by using the temporal correlation, which links two brain 
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regions based on the mathematical similarity of regional 
signals (Fox et  al. 2005; Fransson and Marrelec 2008; 
Lowe 2010; van den Heuvel et al. 2010). The independent 
analysis method (ICA) is another popular way of identifying 
spatially distinct regions with synchronized brain activity 
(De Luca et al. 2006; Calhoun et al. 2009). Other approaches 
for building rs-FC include coherence and partial coherence 
analysis (Salvador et al. 2005), phase relationships (Sun 
et al. 2005), clustering (Cordes et al. 2002; Mezer et al. 
2009), and graph theory (Achard et al. 2006; Dosenbach 
et al. 2007).

Aside from the above-mentioned methods, dynamic 
functional connectivity has recently become a popular 
tool for researching brain functions. Previous studies have 
demonstrated that brain functions in a time-variant fashion, 
such as inter-regional correlations, can be affected by 
cognitive processes that occur on time scales of a typical 
scan (Esposito et al. 2006; Fransson 2006). The resting state 
contains different levels of attention, mind-wandering, and 
arousal. Hence, it can be inferred that rs-FC may undergo 
substantial changes across the duration of a scan.

The present study tries to investigate the abnormal 
dynamic rs-FCs of TLE compared with healthy controls 
(HCs). One challenge lies in obtaining the dynamic 
time–frequency characteristics of fMRI signals. In previous 
research, the time–frequency representations of fMRI time 
series were typically measured by implementing short-
time Fourier transform (Mezer et  al. 2009) or wavelet 
transform (Bullmore et  al. 2001; Shimizu et  al. 2004), 
which perform based on the assumption of the existence 
of the linearity or stationarity of input signals (Huang et al. 
1998). Nevertheless, the blood-oxygen-level-dependent 
(BOLD) time series from the brain may not meet these 
expectations (Lange and Zeger 1997). Additionally, because 
of the constraint of the Uncertainty Principle (Robertson 
1929), the majority of the widely-used time–frequency 
methods are restricted to providing high temporal and 
frequency resolution simultaneously. Hilbert-Huang 
transform (HHT) is a novel time–frequency method 
that capable of analyzing non-linear and non-stationary 
signals. Its application to electrophysiological studies 
has exhibited its efficacy in providing fine expressions of 
instantaneous frequency (Huang et al. 1998; Peng et al. 
2005; Donnelly 2006). For instance, HHT has succeeded 
in being applied to electroencephalogram-based (EEG-
based) seizure classification (Oweis and Abdulhay 2011), 
detection of spindles in sleep EEGs (Yang et al. 2007), and 
electrocardiogram de-noising (Tang et al. 2007). Yet, HHT 
has rarely been applied in fMRI studies.

In this study, we specifically focus on the differences in 
the default mode network (DMN) between TLE patients 
and HCs. So far, DMN has shown its importance in more 
complex brain functions more than a quiescent brain state 

(Gusnard and Raichle 2001; Raichle et al. 2001). DMN is 
particularly useful for assessing internal mentation without 
external interactions (Buckner et al. 2008). For instance, 
some reports have revealed DMN’s adaptive functions 
(Klinger and Cox 1987) while others emphasize the nature of 
DMN is to construct a mental scene (Hassabis and Maguire 
2007). Moreover, DMN has also been found to play a part 
in self-referential or social processes (Schilbach et al. 2008; 
Mitchell 2009).

The specific functions of DMN have been the subjects of 
debates for decades. However, recent studies have shown that 
different anatomical structures account for distinct functions, 
and each component may work separately and together 
to achieve different goals (Andrews-Hanna et al. 2010). 
DMN consists of two distinct subsystems that converge on 
a midline core subsystem. The core subsystem (posterior 
cingulate [PCC] and anterior medial prefrontal cortex 
[aMPFC]) is active when people make self-related, affective 
decisions. In contrast, the medial temporal lobe subsystem 
(ventral MPFC [vMPFC], posterior inferior parietal lobule 
[pIPL], retrosplenial cortex [Rsp], parahippocampal cortex 
[PHC], and hippocampal formation [HF]) becomes engaged 
when decisions involve constructing a mental scene based 
on memory, while the dorsal subsystem (dorsal medial 
prefrontal cortex [dMPFC], temporoparietal junction [TPJ], 
lateral temporal cortex [LTC], and temporal pole [TempP]) 
is active when participants consider their present mental 
states.

To perform dynamic rs-FC analyses of DMN, a novel 
data-driven pipeline based on HHT was proposed. Firstly, 
the BOLD signal of 11 regions of DMN was extracted. 
Subsequently, each time series was processed by HHT to 
generate time–frequency representation. Afterwards, the 
coherence was performed across regions based on both time 
and frequency decomposed signals. Finally, the k-means 
clustering algorithm was used to extract the recurred 
rs-FCs among all the rs-FCs constructed at every time and 
frequency point for each subject. The differences between 
TLE patients and HCs were detected.

Materials and Methods

Participants

Thirty-five subjects were recruited for the rs-fMRI scanning, 
including 21 healthy volunteers recruited from Beijing 
University of Technology and 14 TLE patients recruited 
from Beijing Tiantan Hospital. Informed and written consent 
was obtained from each participant. All the participants 
are right-handed and age ranged from 18 to 40, with more 
than 6 years of education. MRI exclusion criteria included 
a history of psychiatric or neurological conditions, as 
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well as psychoactive medication use. Besides the criteria 
mentioned above, all patients were checked by MRI scanners 
showing no significant abnormalities of their brains, met the 
diagnostic criteria issued by the International Anti-Epilepsy 
Alliance (ILAE) and were diagnosed with typical TLE. In 
addition, the courses of all the TLE patients are more than 
2 years, with no fewer than two episodes in a month. The 
statistical information of all the participants can be found 
in Table 1.

MRI Acquisition

The fMRI data of all subjects were acquired using a 
3T Siemens Trio scanner equipped with a 12-channel 
radiofrequency coil in the resting state. T∗

2
-weighted 

functional images were acquired using a gradient-echo EPI 
sequence with TE = 30 ms, TR = 2.14 s, flip angle = 75°, 
slice thickness = 3.5 mm and gap = 1 mm, FOV = 220 × 220 
 mm2, matrix size = 64 × 64, time points = 240.

Image Preprocessing

In the present study, functional images were preprocessed 
following a standard pipeline by the data processing 
software DPARSF (Yan et al. 2016). DICOM files were 
first converted to NIFTI files, then the first 10 functional 
volumes of each subject were removed to avoid potential 
disturbance caused by the non-equilibrium effects of 
magnetization. Subsequent processes were implemented 
on the remaining functional images, including slice timing 
correction, motion correction, and spatial normalization 
(Evans 1993). Specifically, data with translational and/
or rotational motions exceeded ± 2  mm or ± 2 degree 
was excluded, and a standard EPI template in Montreal 
Neurological Institute (MNI) space was used for 
normalization. The data had been initially processed 
using the confound repressor derived from the cerebral 
spinal fluid (CSF) and white matter (WM) masks in REST 
(www. restf mri. net), as well as Friston 24 head motion 

parameters. The linear trend was then regressed out on 
each voxel to eliminate signal drifts caused by scanner 
instability or other factors. The signal of each voxel was 
normalized by subtracting the temporal mean and dividing 
by the temporal standard deviation. Bandpass filtering 
(0.01–0.08 Hz) was performed to obtain the low-frequency 
rs-fMRI oscillation signals. Finally, the time series of each 
region of interest (ROI) was extracted as the mean time 
courses of all voxels within the ROI for each subject and 
each of the 11 ROIs defined using the coordinates provided 
by (Andrews-Hanna et al. 2010), as shown in Table 2.

Hilbert‑Huang Transform

The time courses of the ROIs were the entry to HHT to 
ultimately obtain the instantaneous frequency. The HHT 
algorithm consists of two main processes. The intrinsic 
mode functions (IMFs) are firstly extracted from the 
input signal based on the empirical mode decomposition 
(EMD). Secondly, the Hilbert transform is used on each 

Table 1  Clinical information 
and IQ scores of TLE patients 
and healthy participants

SD standard deviation, HC healthy control, N number, VIQ verbal intelligence quotient, PIQ performance 
intelligence quotient, FIQ full-scale intelligence quotient

Parameters Mean ± SD T P

TLE group (n = 14) HC group (n = 21)

Age (years) 27.179 ± 5.387 (18–37) 25.071 ± 2.352 (20–31) 1.303 0.164
Sex (males: females) 8:6 13:8 NA 0.613
Age of onset (years) 12.643 ± 7.045 NA NA NA
Course of TLE (years) 14.143 ± 5.153 NA NA NA
VIQ 88.286 ± 11.565 112.762 ± 10.440 −6.510  < 0.001
PIQ 96.643 ± 9.589 112.286 ± 8.362 −5.114  < 0.001
FIQ 91.500 ± 8.742 113.667 ± 7.971 −7.756  < 0.001

Table 2  The name, abbreviation, and partition of the 11 ROIs of 
DMN

VS ventral subsystem, CS core subsystem, DS dorsal subsystem

Name Abbreviation Partition

Hippocampal formation HF VS
Parahippocampal gyrus PHC VS
Retrosplenial cortex Rsp VS
Posterior inferior parietal lobule pIPL VS
Ventral medial prefrontal cortex vMPFC VS
Posterior cingulate cortex PCC CS
Anterior MPFC aMPFC CS
Temporal pole TempP DS
Lateral temporal cortex LTC DS
Temporoparietal junction TPJ DS
Dorsal MPFC dMPFC DS

http://www.restfmri.net
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IMF to acquire the analytic transform to compute the 
instantaneous frequency. The details of each step are 
described as follows:

(1) Empirical Mode Decomposition

The EMD algorithm (Huang et al. 1998) is to decompose an 
input signal into a finite set of generally simple oscillatory 
components, namely, the IMFs. In general, EMD breaks down 
the input signal s(t) into a set of IMFi(t) and a monotonic 
residue signal r(t):

where N is the number of IMFs. There are two requirements 
that each IMF must satisfy:

(I) Throughout the time course of the IMF, the number of 
local extrema and the number of zero-crossings must either be 
equal or differ at most by one;

(II) The mean value of the envelope outlined by the local 
maxima and the envelope outlined by the local minima is 
constantly zero.

To practically extract IMFs, an iterative algorithm known 
as the sifting process was applied:

Step 1: Identify all the local extrema of the input signal s(t);
Step 2: Connect all the local maxima by using a cubic spline 

line as the upper envelope eu(t) , and repeat the procedure for 
all the local minima to generate the lower envelope el(t);

Step 3: Calculate the mean envelope em(t) from eu(t) and 
el(t);

Step 4: Calculate the difference between the input signal 
and the mean envelop: r(t) = s(t) − em(t);

Step 5: If r(t) satisfies the above-mentioned two 
requirements of IMF, set IMFi(t) = r(t) . Otherwise, set r(t) 
becomes the new s(t) and repeats the process from Step 1.

To obtain the remaining IMFs, the same procedure is 
performed repetitively to the residual r(t) = s(t) − IMFi(t) 
until r(t) becomes a monotonic function.

(2) Hilbert Transform

Hilbert Transform was implemented to compute the 
instantaneous frequency of each IMF. For a signal s(t) , its 
Hilbert Transform H[x(t)] is defined as:

where P is the Cauchy principal value (Surhone et al. 2013). 
Hilbert Transform derives the analytic representation of the 
input real-valued signal, which can be used to delineate 
the local properties of s(t) (Peng et al. 2005). The analytic 
transform z(t) of s(t) is defined as:

(1)s(t) = ΣN
i=1

IMFi(t) + r(t)

(2)H[s(t)] =
P

�∫
+∞

−∞

s(�)

t − �
d�

where a(t) is the instantaneous amplitude, and �(t) is the 
instantaneous phase. Therefore, the instantaneous frequency 
is calculated as the time derivative:

Coherence Analysis

One measure of time series dependency in the 
time–frequency domain is the cross wavelet transform 
(XWT) (Grinsted et al. 2004), which is the element-wise 
conjugate multiplication between coefficients of each time 
series in the transformed domain (Eq. (7)).

where Wx and Wy are transformed signals x and y, 
and × represents element-wise conjugate multiplication.

Modified by (Yaesoubi et al. 2015), the above measure 
is firstly normalized by signal spectral power. This step is 
introduced to ensure the estimation of coherence is biased 
toward neither part of the signal with more power. Moreover, 
the normalized measure is smoothed subsequently to avoid 
bias toward unity. This smoothing and normalization 
combined measure is called a wavelet coherence transform 
(WTC), which is defined as follows:

In the present study, we adopt the coherence computation 
into HHT.

Clustering Analysis

To characterize the components of each subject at each 
time–frequency point, we have estimated the rs-FC of each 
subject at every time–frequency point. Furthermore, there 
is an assumption that some of the connectivity patterns 
may recur over time, which leads to the search for rs-FC 
patterns recurred in both time and frequency domains. To 
achieve this, estimated rs-FCs along the subject, time, and 
frequency were firstly concatenated (see Fig. 1), then a 

(3)z(t) = s(t) + iH[s(t)] = a(t)ei�(t)

(4)a(t) =
√
s2(t) + H2[s(t)]

(5)�(t) = arctan(
H[s(t)]

s(t)
)

(6)�(t) =
d�(t)

dt

(7)Wxy = Wx ×Wy

(8)R =
S(Wxy)

√
S�
(
|Wx|2

)√
S�
(
|Wy|2

)
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k-means clustering algorithm was implemented to obtain a 
finite set of ‘k’ recurring rs-FCs.

The selection of an optimal ‘k’ in this study was 
referring to (Yaesoubi et al. 2015), which is based on the 
calculation of the F-ratio for each ‘k’ in the range of two 
to nine. Here, F-ratio is defined as the average ratio of the 
sum of the squared distance between each cluster point 
and the corresponding cluster centroids (inside cluster 
dispersion) to the sum of the square distance of the points 
outside of the cluster to the same estimated centroids 
(outside cluster dispersion).

Additionally, the initial random assignment of the point 
to randomly selected clusters in the clustering may bias the 
final results. Hence, 500 times of k-means were run on the 
same data with a random initial guess of clusters assignment, 
and the selection of the clustering result was based on the 
minimum sum of distances of each point to its corresponding 
cluster centroid.

Fig. 1  General flowchart of constructing the HHT-based dynamic 
rs-FC. The original signals (data size = number of subjects × number 
of ROIs × number of time points) were decomposed by the EMD 
algorithm into six IMFs (data size = number of subjects × number 
of ROIs × number of time points × number of IMFs), the Hilbert 
transform was then applied on the first three IMFs to generate 
the coherence matrices (N depicts the specific pair of ROIs, m 

indicates all the frequencies and time points) including information 
from the time and frequency domains. Finally, k-means clustering 
was performed to identify the most recurrent five states (data 
size = number of ROIs × number of ROIs). HHT Hilbert-Huang 
Transform, EMD empirical mode decomposition, IMF intrinsic mode 
function
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Traditional rs‑FC Construction

To demonstrate the feasibility and validity of the proposed 
pipeline for dynamic FC analysis, traditional FC of HCs and 
TLE patients were also constructed using GRETNA (Wang 
et al. 2015). For each subject, the 11 ROIs within DMN were 
utilized to constructed rs-FCs. Each ROI represents a node, 
the value of each node is replaced by the arithmetic mean of 
the BOLD signal within its corresponding ROIs.

The time series of each ROI were extracted, and an 
11 × 11 coherence matrix was obtained by calculating the 
Pearson correlation coefficients between-nodes to indicate 
the interactions between different ROIs. In addition, the 
coherence matrix of each subject is Fisher-z transformed 
to obtain a z-value matrix close to normal distribution to 
facilitate subsequent statistical analysis (Belliveau et al. 
1991).

Statistical Analysis

The unbalanced sample sizes in this study has a risk to bias 
the coherence analysis. To verify the validity of the present 
fMRI data, age and sex of our recruited subjects were 
analyzed statistically using SPSS 26.0. Shapiro–Wilk tests 
were conducted to examine the normality of age in HCs and 
TLEs. Further independent samples t-test was performed 
because the age in both group can satisfy a normal 
distribution. Meanwhile, chi-square test was performed to 
examine the significance of sex in both groups.

Dynamic rs-FC analysis has realized group-level 
qualitative comparisons. For further quantitative 
comparisons between groups, independent samples t-test 
was conducted based on the rs-FCs to detect the significance 
of the group-level differences (namely the significant 
abnormality of rs-FCs in TLE group) using GRETNA.

Results

The rs-fMRI data of 21 HCs and 14 TLE patients were 
analyzed. Shaprio-Wilk tests were conducted on the age of 
HCs and TLEs and showed no significance in both groups 
(HC: p = 0.063; TLE: p = 0.689), indicating the age of 
both groups satisfy normal distributions. In addition, no 
significant difference was found in the age of HCs and TLEs 
(two-tailed independent samples t test; t(16.342) = -1.379; 
p = 0.187), as well as sex of the two groups (two-sided chi-
square test; p = 0.778). No bias was produced due to the 
unbalanced sample sizes.

Owing to its intrinsic adaptivity, the EMD procedure 
generates a different number of IMFs for each time 
series. In the HC group, a total of 231 signals (number 
of subjects × number of ROIs) passed through the EMD 
analysis. The HC group in Fig. 2 shows 145 out of 231 
signals decomposed into five IMFs, while four IMFs were 
obtained from 46 signals and six IMFs were extracted from 
40 signals. Similarly, 154 signals passed through the EMD 
analysis in the TLE group, of which 108 signals decomposed 
into five IMFs, while four IMFs were obtained from 25 
signals and six IMFs were extracted from 21 signals.

By additionally calculating the Pearson correlation 
between each IMF and the corresponding original signal, we 
found that the first three IMFs exhibited relative similarity 
to the original signal (Fig. 3). The respective median of 
the first three IMFs in the HC group was 0.778, 0.616, 
and 0.160, whereas the median of the last three IMFs was 
0.0057, 0.0081, 0.0156, respectively. Similar to the results 
of HCs, the results of Pearson correlation in the TLE group 
are 0.779, 0.621, 0.149, 0.0077, 0.0056, -0.0012. Moreover, 
the quantity of IMFs should be equal among ROIs in the 
following computation of coherence matrices. Hence, the 
first three IMFs were selected as the entry point for the 
subsequent processes.

Fig. 2  The distribution of IMF 
numbers after EMD analysis (in 
a range of 0 to 150 with steps 
equal to 50 in the HC group 
and 0 to 120 with steps equal 
to 50 in the TLE group). IMF 
intrinsic mode function, EMD 
empirical mode decomposition
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The number of clusters should be determined before 
performing k-means clustering. Referring to the previous 
research of reference (Yaesoubi et al. 2015), the value from 
2 to 9 for ‘k’ was trialed. From Fig. 4, the larger the ‘k’ 
value, the smaller the F-Ratio. Considering the calculation 
complexity, the value of 5 for ‘k’ is on the elbow of the 

F-ratio curve that meets the expectation of minimum 
inside cluster dispersion while maximum outside cluster 
dispersion. Henceforth, the recurring coherence matrices 
were finally summarized into five representative states.

For each state, the connections across the ROIs exhibited 
relatively strong coherence (Fig.  5). The median of 

Fig. 3  The Pearson correlation 
between each IMF and the 
corresponding original signal 
(in a range of −0.2 to 1 with 
steps equal to 0.2 in both 
groups). IMF, intrinsic mode 
function

Fig. 4  F-ratio of each trial with 
an increased number of clusters 
(in a range of 0 to 1 with steps 
equal to 0.2 in both groups)

Fig. 5  The coherence strength 
in each state (in a range of 0.84–
0.89 with steps equal to 0.005 
in the HC group and 0.835–0.89 
with steps equal to 0.005 in the 
TLE group)
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coherence for each state in the HC group was 0.873, 0.866, 
0.862, 0.857 and 0.866, respectively, which was consistent 
with the selection of the ROIs that all emanate from the 
DMN. Similarly, the median of coherence for each state in 
the TLE group was 0.853, 0.860, 0.875, 0.861, 0.870.

Moreover, the instantaneous frequency of each state is 
similarly distributed (Fig. 6), and they are all centered in the 
low-frequency band (0.02–0.03 Hz), which accords with the 
resting state of scanned functional images.

We present the states as the cluster centroids in Fig. 7 
based on the estimated recurring functional coherence 
matrices. Since the matrices are all complex valued, we 
exploit intensities to illustrate the coherence extent, and 
colors to demonstrate the phase information. We added a 
polar diagram to show the corresponding color of phase-
lagging and used a polar scatter diagram to exhibit the 
distribution of phases lagging across all component pairs. 
Moreover, a positive phase in the upper triangular of each 
coherence matrix in Fig. 7 shows that the time course on 
the horizontal axis is lagging with respect to the one on the 
vertical axis.

Note that the coherence across regions for all the states 
is relatively high and similar (Fig. 5), and the ROIs of 
DMN selected have adjacent anatomical structures, so their 
connection is strong. In Fig. 7, the coherence intensity is 
close to the same phase, that is, the red area in the graph. 
Because the coherence between each ROI is strong and the 
color difference is not obvious, the region segmentation is 
carried out in Fig. 7 later, and the segmented regions are 
numbered to depict the results clearly and readily.

Notably, state-1 in Fig. 7A exhibits three adjacent regions 
of the ventral subsystem (i.e., HF, PHC, and Rsp), as marked 
in area-①. Similarly, the subdivision area of the ventral 
subsystem is also detected in area-① of state-3.

For the state-4 shown in Fig.  7A, both the ventral 
subsystem (area-①) and the core subsystem (area-②) 
show a strong positive correlation (phase-lag ~ 0), and 
state-5 shows three subsystems, including the dorsal and 

ventral-core combined subsystems. For state-3, there is 
a similar regional distribution as in state-1, that is, the 
HF-PHC-Rsp subdivision, while the connections outside 
the areas present the opposite phase-lag. In addition, the 
entire core and dorsal subsystems, plus pIPL and vMPFC 
from the ventral subsystem can also be detected in its area-② 
of state-3. For state-2, the distribution state of the internal 
network is random, which can be regarded as the residual 
error of the other four states.

Similar to the HC group, the subdivision within the 
ventral subsystem including HF, PHC and Rsp is also found 
in both state-3 and state-5 of the TLE group (Fig. 7B). In 
the area-② of state-3 in the TLE group, the coherence of 
the entire core and dorsal subsystem, as well as part of the 
ventral subsystem region is stronger than HCs. In addition, 
from area-② of state-5 (Fig. 7B), the part of the inner dorsal 
subsystem shows an obvious positive correlation. However, 
in the TLE group, the distribution of the internal network 
of other states is relatively ambiguous. Therefore, we can 
conclude that TLE patients retain parts of the functions in 
DMN, but more irregular connections appeared among the 
selected ROIs compared to HCs. In general, the probability 
of occurrence of the five states in both groups is relatively 
average, all around 20%.

As shown in Table 3, significant differences between 
the nodes of HCs and TLEs were detected (two-tailed 
independent samples t test), including HF-PHC, PHC-Rsp, 
Rsp-dMPFC, and pIPL-TempP.

Discussion

Advantages and Limitations

In this work, we investigated the time–frequency dynamics 
of rs-FC among 11 brain regions of DMN by exploiting the 
data of HCs and TLE patients. First, the BOLD signal of 11 
regions of DMN was extracted to the time series signals, 

Fig. 6  The distribution of 
instantaneous frequency in 
each state (in a range of 0–0.11 
with steps equal to 0.01 in the 
HC group and 0–0.1 with steps 
equal to 0.01 in the TLE group)
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which were then decomposed by the EMD algorithm into 
IMFs. Afterwards, the coherence of IMFs was projected into 
the time domain and frequency domain respectively using 
WTC, and subsequently the clusters in which coherence 
forms in the time–frequency domain were identified by the 
k-means clustering algorithm.

In the present study, HHT was introduced to construct 
dynamic rs-FCs of rs-fMRI. The advantage of using HHT 
here is mainly its effectiveness on the characters of the 
fMRI data. Previous research has firstly shown that the 
BOLD-fMRI data may not strictly follow the assumptions 
of linearity and stationarity (Lange and Zeger 1997). 
Owing to the adaptivity of the EMD algorithm, HHT 

Fig. 7  Recurrent states of connectivity estimated as the cluster centroids formed in the time–frequency domain: A HC group B TLE group. For 
each pattern, intensity denotes coherence strength, phase information is presented as the color map and scatter plots

Table 3  The abnormal functional connections (nodes) caused by TLE

ROI Region of Interest, HF hippocampal formation, PHC 
parahippocampal gyrus, Rsp retrosplenial cortex, pIPL posterior 
inferior parietal lobule, dMPFC dorsal medial prefrontal cortex, 
TempP temporal pole

Number ROI 1 ROI 2 p value t value

1 HF PHC 0.048 2.06
2 PHC Rsp 0.016 2.54
3 Rsp dMPFC 0.013 2.64
4 pIPL TempP 0.047 2.06
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can be used to process BOLD (non-linear and non-
stationary) signals directly when compared with previous 
time–frequency analysis methods (such as WTC and 
short-time Fourier transform). Limited by the Uncertainty 
Principle, previous time–frequency-based methods 
cannot achieve high temporal and frequency resolution 
simultaneously (Robertson 1929). While many previous 
studies have reported that HHT does not suffer from the 
above-mentioned trade-off (Huang et al. 1998; Peng et al. 
2005; Donnelly 2006) and thus may be an appropriate 
candidate for characterizing fMRI signals with the 
time–frequency representation. Our results exhibited that 
HHT can be used to describe fMRI signals in both high 
temporal and frequency resolution (as shown in Fig. 7).

Chang and Glover (2010) showed that the nature of 
coherence between the default mode network (DMN) and 
the task-positive network (TPN) is temporally dynamic, but 
not frequency-dependent. Accordingly, we have observed 
the comparable distributions of instantaneous frequency in 
each state, while vastly differing connection patterns were 
revealed in Figs. 6 and 7. Moreover, introducing the complex 
value enabled us to observe lagged coherence between 
input signals over the full range, from complete in-phase 
(0) coherence to complete out-of-phase (± π). Hence, the 
differences in clustering results are reflected in various 
connectivity patterns, and the input signals that change in 
various phases also play an essential role in showing the 
specific strength of coherence. Conventional measures of 
correlation such as the Pearson correlation are unable to 
provide phase-lagged coherence, as demonstrated by the 
comparisons between conventional rs-FC construction 
approach and our proposed HHT-based dynamic rs-FC 
construction approach. Specifically, conventional approaches 
typically generate the coherence matrix by calculating the 
Pearson correlation coefficients between-nodes, while 
the novel dynamic approach can provide lagged phase 
information using a polar diagram and polar scatter diagram 
(Fig. 7).

The dynamic rs-FC in the present study revealed the 
complex connection patterns within DMN. Particularly 
in the HC group (Fig. 7A), the coherence of at least two 
subsystems is relatively strong in state-3, state-4, state-5 
(as shown in Fig. 7A), of which a strong coherence in the 
core subsystem can be detected in terms of the specific 
connection patterns and input signals, compared with 
the other two distinct subsystems. This is consistent with 
the finding that the core subsystem is a link between 
two subsystems, and exhibits high levels of distributed 
functional connectivity throughout the cortex (Hagmann 
et al. 2008; Buckner et al. 2009). Additionally, in state-3 of 
the HC group (Fig. 7A), the core subsystem showed a higher 
correlation with the dorsal subsystem than with the ventral 
one. Previous studies show that the possible neural overlap 

of the dorsal subsystem among affective, self-referential, 
and social cognitive processes suggests a broader role for 
this subsystem (Frith and Frith 2003; Ochsner et al. 2004; 
Olsson and Ochsner 2008; Mitchell 2009), which may 
lead to a stronger correlation between the dorsal and core 
subsystems. Conventional rs-FC analysis approaches can 
only construct the brain network in one time point, while the 
present dynamic rs-FC analysis technique makes it possible 
to investigate the dynamic characteristics of rs-FC over time, 
which is able to capture more detailed abnormal nodes that 
are hard to be detected using conventional approaches. 
Previous research for rs-FC analysis assumed that the 
functional network connectivity is stable, but there are 
growing evidence that rs-FC is dynamic, time-dependent, 
and related to ongoing rhythmic activities (Allen et al. 2014; 
Liu et al. 2018), investigating the dynamic characteristics of 
rs-FC over time may better reveal the fundamental properties 
of brain networks (Calhoun et al. 2014; Gratton et al. 2018), 
which is in line with our results.

When it comes to the interpretability of results, this 
study implicates a certain degree of ambiguity. Although 
we observed five states of DMN, it is difficult to identify the 
relationships of the states to their corresponding behavioral 
functions because the specific procedure of k-means 
clustering is difficult to be figured out. Moreover, it is also 
crucial to determine if there is an order of emerging states, 
and if so, what that might consist of. Another limitation lies 
in terms of our choice of the clustering algorithm. In the 
present study, we selected the k-means clustering algorithm. 
However, it is a well-used method that searches clusters with 
convex boundaries. Recent studies have also taken advantage 
of linear decomposition to explore functional connectivity 
(Schilbach et al. 2008; Leonardi et al. 2013). Meanwhile, 
EMD has its limitations, as evidenced through the end effect 
and model mixing problem (Huang et al. 1998). Improved 
EMD methods have come to light recently, which could 
be employed in further research. We hope to compare the 
existed methods in our future studies, to gain more insights 
on dynamic rs-FC.

In terms of the applications of HHT, we subsequently 
investigated the abnormality of TLE patients against HCs 
by HHT-based dynamic functional connectivity.

Differences in the DMN of TLE Patients Against HCs

In this study, we tried to investigate the differences between 
HCs and TLE patients by comparing the time–frequency 
dynamics of rs-FC among 11 brain regions of DMN 
between the two groups. Based on the previous studies on 
TLE patients, Allone et al. (2017) found that TLE may lead 
to impairment of cognitive functions such as memory and 
attention, and language disorders. Accordingly, the results 
show that compared with HCs, more random functional 
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network connections were found in the TLE group (as shown 
in Fig. 7B). Thus, the active regions in the DMN of TLE 
patients exhibit a significant reduction (i.e., the cognitive 
functions of TLE patients are less than HCs), which depicts 
that TLE may lead to impairment of brain functions.

Notably, this study found that the connections among 
pIPL, vMPFC, and the core subsystem in the TLE group are 
comparatively less. Simultaneously, a significant difference 
in the node of pIPL-TempP (p < 0.05; t = 2.06) was detected 
using two-tailed independent samples t test. Based on 
the previous studies of cognitive science, neuroscience, 
and clinical psychology, Andrews-Hanna et  al. (2014) 
found that pIPL is the intersection of auditory, visual, and 
somatosensory information and attention. When interacting 
with the medial temporal subsystem, vMPFC may affect the 
association and construction of mental simulation (Andrews-
Hanna et al. 2014). Furthermore, studies suggest that the 
core subsystem (i.e., PCC, aMPFC) is active when people 
make self-relevant, affective decisions (Andrews-Hanna 
et al. 2010). Specifically, PCC can be subdivided into ventral 
and dorsal components (Spreng et al. 2009; Andrews-Hanna 
2012; Leech et al. 2012), in which the ventral PCC plays a 
broad role in nearly all self-related tasks, including tasks 
of self-referential processing, episodic memory, future 
thinking, spatial navigation, and conceptual processing 
(Vogt et al. 2006; Binder et al. 2009; Leech et al. 2011; Qin 
and Northoff 2011). The dorsal PCC is highly relevant to 
autonomic arousal and awareness (Baars et al. 2003; Brewer 
et al. 2013) and environmental changes (Leech and Sharp 
2014). Meanwhile, aMPFC is activated when people search 
for personal knowledge, consider their future objectives or 
mental states, simulate future events or social interactions, 
and make decisions associating with the people they 
value (e.g., their friends or relatives) (Benoit et al. 2010; 
Krienen et al. 2010; Pearson et al. 2011; Denny et al. 2012; 
Murray et al. 2012; Moran et al. 2013). With the exception 
of positive emotional material, aMPFC is also linked to 
negative emotional material, particularly for such materials 
regarded with high personal significance (e.g., when one 
predicts physical pain (Ochsner et al. 2006; Atlas et al. 
2010)).

Additionally, in most of the ventral subsystems of HCs 
(Fig. 7A), HF, PHC, and Rsp are closely related to other 
brain regions of DMN and are obviously activated during 
the process of memory. Compared with HCs, the HF-PHC-
Rsp subdivision in the TLE group is more difficult to be 
detected (Fig. 7B). Meanwhile, significant differences were 
found in the nodes of HF-PHC (p < 0.05; t = 2.06), PHC-Rsp 
(p < 0.05; t = 2.54), and Rsp-dMPFC (p < 0.05; t = 2.64). Due 
to the random connections in the DMN of TLE patients, the 
memory functions of TLE patients may be damaged to some 
degree. Furthermore, previous studies have shown that the 
abnormal discharge of TLE can interrupt connections within 

DMN (Coan et al. 2014), which is consistent with the results 
of our study. Moreover, Pittau et al. (2012) found that the 
connection strength between the hippocampus and DMN 
of TLE patients decreased evidently, which may present 
the neural mechanism of cognition deficits in TLE patients. 
Hence, mental disorders are related to the functional 
impairment of DMN.

The epileptic seizures are also related to hippocampal 
sclerosis (HS), in which the changes of rs-FCs are obvious. 
Stretton et  al. (2013) investigated the memory tasks of 
unilateral TLE patients with HS, the results exhibit a 
significant reduction in the strength of patients’ rs-FCs. 
The stronger the abnormal connections are, the worse the 
completion of memory tasks is. In the five states of TLE 
patients (Fig. 7B), the connections between HF and other 
regions are obviously less than HCs, which suggests that the 
changes of rs-FCs may probably predict the corresponding 
clinical symptoms.

Although we detected the abnormal connections in the 
DMN of TLE patients, the experiments are constrained by 
the sample size. In our future work, more data would be 
acquired to determine the specific epilepsy subtypes and 
obtain more pathological mechanisms accurately. In terms of 
the image preprocessing pipeline, our criteria and thresholds 
for translational and/or rotational motions exclusion are 
outdated, future work can optimize the quantification and 
control of subject motions using more advanced methods, 
such as Framewise displacement (FD), derivative variance 
(DVAR), and convolutional neural network guided 
retrospective motion correction approaches (Haskell et al. 
2019).

Furthermore, it may be feasible to apply the pipeline 
of HHT-based dynamic rs-FCs to other mental diseases. 
Meanwhile, our study mainly investigated the 11 regions 
within DMN, future studies can explore other ROIs that are 
essential for cognitive functions. Hence, with the increase 
of research on TLE, it will be more used in diagnosis and 
treatment in the future to perform the diagnosis more 
accurately.

Conclusions

In the present work, we proposed a pipeline to construct 
time–frequency dynamic rs-FCs based on rs-fMRI data by 
a data-driven approach HHT and explored its application in 
TLE. By investigating the subsystems of DMN, 11 regions 
within DMN were selected as ROIs and subsequently 
the dynamic aspect of corresponding subject-specific 
functional network connectivity in both time and frequency 
domains were examined. Finally, the dynamic coherence 
of time courses was summarized with a finite number of 
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recurring patterns of connectivity estimated by k-means 
clustering of the complex-valued rs-FCs. Distinctions 
and connections among three subsystems of DMN were 
observed through recurring connectivity patterns in the 
time–frequency domain. The results of group-level analyses 
depict that TLE may cause damage to memory functions, 
disorders of processing self-related tasks, and impairment 
of constructing a mental scene. Overall, the findings 
demonstrate the feasibility of utilizing HHT in dynamic 
functional connectivity for epilepsy research, which may 
provide a basis for the diagnosis and evaluation of TLE.
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