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Abstract
Previous studies showed that scale-free structures and long-range temporal correlations are ubiquitous in physiological 
signals (e.g., electroencephalography). This is supposed to be associated with optimized information processing in human 
brain. The instantaneous alpha frequency (IAF) (i.e., the instantaneous frequency of alpha band of human EEG signals) may 
dictate the resolution at which information is sampled and/or processed by cortical neurons. To the best of our knowledge, 
no research has examined the scale-free dynamics and potential functional significance of IAF. Here, through three studies 
(Study 1: 25 participants; Study 2: 82 participants; Study 3: 26 participants), we investigated the possibility that time series 
of IAF exhibit scale-free property through maximum likelihood based detrended fluctuation analysis (ML-DFA). This tech-
nique could provide the scaling exponent (i.e., DFA exponent) on the basis of presence of scale-freeness being validated. 
Then the test–retest reliability (Study 1) and potential influencing factors (Study 2 and Study 3) of DFA exponent of IAF 
fluctuations were investigated. Firstly, the scale-free property was found to be inherent in IAF fluctuations with fairly high 
test–retest reliability over the parietal-occipital region. Moreover, the task manipulations could potentially modulate the DFA 
exponent of IAF fluctuations. Specifically, in Study 2, we found that the DFA exponent of IAF fluctuations in eye-closed 
resting-state condition was significantly larger than that in eye-open resting-state condition. In Study 3, we found that the 
DFA exponent of IAF fluctuations in eye-open resting-state condition was significantly larger than that in visual n-back 
tasks. The DFA exponent of IAF fluctuations in the 0-back task was significantly larger than in the 2-back and 3-back tasks. 
The results in studies 2 and 3 indicated that: (1) a smaller DFA exponent of IAF fluctuations should signify more efficient 
online visual information processing; (2) the scaling property of IAF fluctuations could reflect the physiological arousal 
level of participants.
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Introduction

The alpha band is the dominant frequency band, especially 
during the task-free eye-closed (EC) state and over the 
parietal-occipital region, in the human scalp electroen-
cephalography (EEG) of adults (Dickinson et al. 2018). It 
is manifested by a peak around 10 Hz in spectral analysis 
(e.g., Fourier transform) and is an oscillatory component 
(i.e., the so-called “alpha wave” or “Berger’s wave”) of 
the EEG signal which is well recognized since 1930s 
(Adrian and Matthews 1934). Exploring the features of 
alpha oscillations (e.g., individual alpha peak frequency, 
magnitude, and frequency range) has generated consider-
able interest, in particular with regards to the modulation 
effects of demographic, cognitive, emotional, physiologi-
cal, genetic, psychomotor and psychiatric variables (Ahern 
and Schwartz 1985; Dickinson et al. 2018; Gabard-Dur-
nam et al. 2013; Hu et al. 2013; Klimesch 1999; Nieber 
and Schlegel 1992; Zietsch et al. 2007). The magnitude 
and peak frequency of alpha oscillations, along with those 
of other EEG oscillations, vary over time during a sin-
gle EEG recording: they are non-stationary (Berthouze 
et al. 2010; Haegens et al. 2014). In order to probe the 
dynamic characteristics of alpha waves, a number of time-
frequency analysis techniques (e.g., short-time Fourier 
transform, discrete/continuous wavelet transforms, and 
band-pass filtering + Hilbert transform) have been devel-
oped and utilized in empirical research (Berthouze et al. 
2010; Jia et al. 2015). Extensive preceding research in this 
field has been dedicated to understanding the dynamics of 
instantaneous alpha magnitude (IAM) and its relation to 
different factors, such as demographic variables and task 
manipulations (Berthouze et al. 2010; Montez et al. 2009; 
Peng et al. 2012). As far as we know, only a few studies 
have investigated the functional role and determinants of 
instantaneous alpha frequency (IAF) (Nelli et al. 2017; 
Samaha and Postle 2015). There is an increasing amount 
of experimental evidence that suggests that IAF fluctua-
tions are significant even on very short time scales (e.g. 1 
s). IAF fluctuations appear to influence regional cerebral 
blood flow in a brain network consisting of regions associ-
ated with the control of attention and readiness for external 
stimuli (Jann et al. 2010). Theories suggest that the fluctu-
ations of IAF is a coding scheme in which self-regulation 
of IAF during a single EEG recording time may dictate 
the resolution at which information is sampled and/or pro-
cessed by cortical neurons (Cecere et al. 2015; Samaha 
et al. 2015; Samaha and Postle 2015).

Converging research suggests that the human brain 
operates at the cusp of dynamic instability, as signified by 
scale-free temporal auto-correlations (ACs) (also named 
as power-law-form long-range temporal correlations 

[LRTCs]) (Linkenkaer-Hansen et  al. 2001). Suppos-
ing AC(τ) is the AC at time τ and s is the scaling factor, 
the AC(τ) and AC(s × τ) obey the following power law: 
AC(s × τ) = s2H × AC(�) , which suggests that if time τ is 
rescaled to s × τ , then the shape of ACs preserves and only 
rescales by a factor s2H (He 2011). The scaling exponent 
H provides a quantitative measure of temporal depend-
encies in neural oscillations of different time scales and 
could be assessed by the rescaled range (R/S) analysis 
and the more robust detrended fluctuation analysis (DFA) 
(Lei et al. 2013; Smit et al. 2011). This scale-free/scale-
invariant behavior has been detected in biomedical sig-
nals from a wide range of physiological phenomena, which 
suggests that the structure of a given biomedical signal 
repeats itself on subintervals of this signal: they are self-
similar (Ciuciu et al. 2014; Hardstone et al. 2012; Jia et al. 
2018; Jia and Yu 2019). Further, it was shown that the 
scaling property of biomedical signals can be modulated 
by various factors, such as age, genetic inheritance, neu-
rological disorders, personality traits and task manipula-
tions (Berthouze et al. 2010; Hahn et al. 2012; He 2011; 
Jia et al. 2018; Lei et al. 2013; Linkenkaer-Hansen et al. 
2007; Smit et al. 2011). The presence of scale-free dynam-
ics supports the hypothesis that the brain operates in a 
critical state, i.e., its dynamics may be positioned at the 
border between spatiotemporal order and disorder, remi-
niscent of non-equilibrium phase transitions in thermody-
namic systems. This has been suggested to be associated 
with optimized information processing and computation 
(Shew and Plenz 2013). As for the EEG alpha oscilla-
tions, numerous studies have confirmed the presence of 
scale-free phenomenon in instantaneous alpha magnitude 
(IAM) fluctuations (Berthouze et al. 2010; Montez et al. 
2009; Smit et al. 2011). However, there is no knowledge 
on whether the temporal fluctuations of IAF also exhibit 
scale-free behavior. Here, the presence of scale-freeness 
in the fluctuations of IAF was confirmed using three stud-
ies. This indicates that the temporal fluctuations of IAF 
are associated with optimized information processing and 
computation during cognitive activities.

Moreover, we evaluated the test–retest reliability of the 
scaling exponent (i.e., DFA exponent here) of IAF fluctua-
tions, since the test–retest reliability is a critical property 
of any features of neural signals. An EEG feature with 
high test–retest reliability is reliable, and then attempts to 
quantify its changes through experimental manipulations 
are trustworthy as its changes could reflect task-related 
neuronal dynamics. An EEG feature with relatively higher 
test–retest reliability could be used as a stable neurophysi-
ological ‘‘trait” biomarker reflecting anatomical properties 
of the human brain.

Here, using the maximum likelihood based detrended 
fluctuation analysis (ML-DFA), which could provide the 
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scaling exponent (i.e., DFA exponent here) on the basis of 
presence of scale-free behavior being validated (Botcharova 
et al. 2013), the following three questions were investigated: 
(1) Alike the IAM fluctuations, whether scale-free charac-
teristic could be detected in the IAF fluctuations? (2) Does 
the scale-free feature of IAF fluctuations, quantified by DFA 
exponent, exhibit substantial high test–retest reliability? (3) 
Could the scale-free behavior of IAF fluctuations be modu-
lated by task manipulations (e.g., eye status [eye-open (EO) 
or EC], visual working memory loads)? Moreover, are these 
effects immune from the value of other features of alpha 
oscillations, such as alpha magnitude, peak alpha frequency 
(PAF) and DFA exponent of IAM?

Materials and Methods

Study 1 The Presence of Scale‑Free Behavior in IAF 
Fluctuations and Its Test–Retest Reliability

Participants

The EEG data were collected from 25 healthy right-handed 
volunteers (13 females), aged 21 ± 1.9 years (mean ± SD, 
range 16–25 years). All participants gave their written 
informed consent and were paid for their participation. The 
experimental procedure was conducted according to the Hel-
sinki declaration and was approved by the local ethics com-
mittee of Peking University People’s Hospital. The dataset 
and/or MATLAB code of Study 1 are available from the 
corresponding authors upon reasonable request subject to a 
formal data sharing agreement with Prof. Fei Gao.

EEG Recording

To collect resting EEG data, each participant was required to 
sit in a comfortable chair in a silent, temperature-controlled 
room, and was instructed to keep relaxed and their eyes 
closed. Two sessions of EEG datasets, each lasting about 
5 min, were recorded. The first session (session 1) and the 
second session (session 2) were recorded at 9:00 am and 
10:00 am on the same day, respectively.

The EEG data of 20 Ag/AgCl scalp electrodes (i.e., Fp1, 
Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, 
T6, O1, Oz and O2) arranged according to the international 
10–20 system (ASA-Lab, ANT B.V., Netherlands) were 
recorded. The online recording parameters can be summa-
rized as follows: (1) the impedances of all electrodes were 
kept below than 10 KΩ; (2) the average of left and right 
mastoids was used as online reference; (3) the EEG signals 
were amplified and band-pass filtered with 0.1–100 Hz, and 
finally transferred into digital signals with sampling rate 
256 Hz.

EEG Data Preprocessing

The EEG data were preprocessed using the EEGLAB soft-
ware (https://​sccn.​ucsd.​edu/​eeglab/​index.​php) (Delorme and 
Makeig 2004), which is an easily extensible, highly evolved, 
and widely used open source environment for signal pro-
cessing and visualization of electroencephalographic data 
running on MATLAB (The Mathworks, Inc.). The pre-
processing involves the following steps. Firstly, the raw 
continuous EEG data was band-pass filtered between 0.5 
and 80 Hz through a Hamming windowed finite impulse 
response (FIR) filter, whose order was determined as the 
number of sampling points of three cycles of the lower edge 
of the band considered (i.e., 0.5 Hz). A notch filter was used 
to eliminate 50 Hz line noise. These operations were done 
through the EEGLAB function “pop_eegfiltnew”. Secondly, 
electrodes with relatively low signal-to-noise ratio (i.e., 
“bad electrodes”) were identified through visual inspection 
of the filtered EEG data and interpolated using a spheri-
cal spline method in the EEGLAB function “pop_interp”. 
The mean and standard deviation of electrodes interpolated 
across subjects were 3.5 and 1.2, respectively. Thirdly, the 
data portions contaminated by electrooculogram (EOG) and 
electromyography (EMG) were corrected using the Blind 
Source Separation (BSS) algorithm through the function 
“pop_autobsseog” and “pop_autobssemg” respectively 
in the automatic artifact removal (AAR) toolbox (https://​
github.​com/​germa​ngh/​eeglab_​plugin_​aar). Fourthly, EEG 
data were remontaged against the common average refer-
ence, and segmented into epochs with a length of 2000 ms. 
Lastly, EEG epochs still contaminated by any physiologi-
cal or non-physiological artifacts or with amplitude values 
exceeding ± 80 µV at any electrode were rejected.

Extracting the IAF

In practical IAF extraction, the IAF is commonly defined 
as the first derivative in time of the phase of the alpha-band 
EEG signal, or the change in phase per unit time as time 
approaches zero. Similarly to the approaches used in pre-
vious studies, for example Nelli et al. (2017) and Cohen  
(2014), the IAF fluctuations of each electrode, each session 
and each participant were estimated via the following steps 
(Cohen 2014; Nelli et al. 2017).

Firstly, the preprocessed EEG signals were band-pass 
filtered between 8 and 13 Hz using a FIR filter with an 
order 96 (i.e., the sampling point number of three cycles of 
8 Hz). The lower and upper limits of this band-pass filter 
were determined by the results of power spectra analysis 
conducted over each electrode, each session, and each par-
ticipant using fast Fourier transformation (FFT). We found 
that alpha peak in power spectra could be clearly seen in the 
occipital regions for all participants. Observing the power 

https://sccn.ucsd.edu/eeglab/index.php
https://github.com/germangh/eeglab_plugin_aar
https://github.com/germangh/eeglab_plugin_aar
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spectra, we found that the peak alpha frequency (PAF) was 
located between 9 and 11 Hz. Thus, the alpha band limit was 
set to be 8–13 Hz.

Secondly, the phase time series was estimated through the 
Hilbert transform, which was then unwrapped to be cumula-
tive so that there were no discontinuities at −pi and pi . The 
IAF was calculated as the first derivative of the unwrapped 
phase angles. To convert to units of hertz (Hz), the IAF 
fluctuations calculated above were multiplied by the data 
sampling rate in hertz and then divided by 2 ∗ pi . To sum 
up, in MATLAB code the IAF of 8–13 Hz band-pass filtered 
signal “data” with sampling rate “fs” can be calculated as 
fs*diff(unwrap(angle(hilbert(data))))/(2*pi).

Lastly, the median filter was applied to attenuate non-
physiological noise spikes in IAF fluctuations. A small noise 
in the phase angle time series may lead to a large spike in the 
IAF fluctuations (e.g., from 10 to 100 Hz, even to -100 Hz 
in just a few milliseconds). In order to deal with these occa-
sional sharp discontinuities and attenuate the influence of 
fluctuations far outside of the band-pass range, a median 
filter which outperformed mean-based or convolution-based 
smoothing filters when the noise spikes are extreme was 
adopted. In the median filter, the sliding window method 
was applied to compute the moving median. As suggested 
by Cohen (2014), the median filter was utilized several times 
with different window widths (i.e., from 10 to 400 ms with 
an order of 10), and then the mean value of these median 
filters was taken (Cohen 2014).

The ML‑DFA

Here, the ML-DFA technique was used to validate the pres-
ence of scale-invariance in IAF fluctuations, and compute 
the DFA exponent introduced by Peng et al. (1995). The 
procedure for the IAF fluctuations of each electrode, each 
session and each participant can be summarized as follows 
(Botcharova et al. 2013; Peng et al. 1995).

Firstly, compute the signal profile of each IAF fluc-
tuations. The signal profile of the IAF fluctuations at 
time point t can be computed via the following formula: 
X(t) =

∑t

k=1
Y(k)− < Y > , where < Y > is the mean value of 

IAF fluctuations Y(t) . It has been shown that this operation 
can eliminate the global trend of the signal and ensure the 
stationarity of the time series being investigated.

Secondly, define a set of window sizes T , which are 
equally spaced on a logarithmic scale between 2 and 15 s, 
and then compute “fluctuation function” for each window 
size. For each window size t ∈ T , the whole signal profile 
was split into windows with a length of t and 50% overlap. 
Then, the standard deviation of each window with length t 
was calculated after its linear trend was removed through a 
least-squares fit. The mean standard deviation of all windows 

with length t was defined as the fluctuation function F < t > 
of window size t.

Thirdly, plot the fluctuation function for all window sizes 
on double logarithmic axes, which was named as the DFA 
fluctuation plot. The presence of scale-invariance or power 
law will result in linear scaling in this DFA fluctuation plot. 
Here, a maximum likelihood-based model selection tech-
nique (i.e., ML-DFA) was used to assess the validity of lin-
earity in DFA fluctuation plot. In this technique, a set of 
alternative models, including linear, quadratic, cubic, quar-
tic, quantic, square root, cube root, fourth root, exponential, 
logarithmic and spline with 2–4 linear sections, were fitted 
to the DFA fluctuation plot. The most appropriate model was 
believed to be the one with the lowest value of the Akaike 
Information Criterion (AIC) and Bayesian Information Cri-
terion (BIC), i.e., the model that provided the best expla-
nation of the data without over-fitting it (Botcharova et al. 
2013; Jia and Yu 2019). The presence of scale-free behavior 
was validated only if the linear model was selected as the 
most appropriate model by both AIC and BIC.

Lastly, the slope of the least-squares line in the DFA 
fluctuation plot was termed as the DFA exponent, which 
was commonly interpreted as an estimation of the Hurst 
exponent. DFA exponents in the 0–0.5 range and 0.5–1.0 
range indicate anti-correlation (i.e., fluctuation functions are 
smaller in larger time windows than expected by chance) and 
positive correlation respectively. Uncorrelated signals (e.g., 
white noise) have a DFA exponent of 0.5. The DFA expo-
nent of non-stationary signals is larger than 1.0 (Hardstone 
et al. 2012; Jia and Yu 2019).

Evaluating the Test–Retest Reliability of Scaling Exponent 
of IAF

In order to estimate the test–retest reliability (i.e., repro-
ducibility) of DFA exponents across sessions, the intra-
class correlation (ICC) which integrated both intra-indi-
vidual variability and inter-individual variability was 
calculated for each electrode (Chen et al. 2015). ICC was 
defined as �2

w
∕(�2

b
+ �

2
w
) , where �2

w
 and �2

b
 was intra-indi-

vidual variability and inter-individual variability respec-
tively. As can be seen from this formula, lower intra-indi-
vidual variability or higher inter-individual variability 
will lead to higher test–retest reliability and vice versa. 
The variance components were estimated in linear mixed 
models (LMMs) with the restricted maximum likelihood 
(ReML) approach. An ICC value approaching 1 indicates 
high reproducibility, while a value close to 0 indicates 
very low reproducibility. According to the classifying cri-
teria of intra-class correlation (ICC) value shown in Sam-
pat et al. (2006), values less than 0.4 indicated low reli-
ability, values 0.4 to 0.6 indicated fair reliability, values 
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0.6 to 0.75 indicated good reliability, and values 0.75 to 
1.0 indicated excellent reliability (Sampat et al. 2006).

Testing the Relationship Between DFA Exponent of IAF 
and that of Instantaneous Alpha Magnitude (IAM)

Here, we statistically tested the relationship between DFA 
exponent of IAF and that of instantaneous alpha magni-
tude (IAM). Firstly, the DFA exponent of IAM of each 
electrode, each session, and each participant was estimated 
using exactly the same DFA settings in IAF analysis. Here, 
IAM fluctuations were evaluated via the Hilbert transform. 
Assuming X(t) and X

H(t) are the band-pass (8–13 Hz) fil-
tered signals and its Hilbert transform at sampling time t 
respectively, we could obtain the analytic signal X

an(t) via 
the following equation: X

an(t) = X(t) + i ⋅ X
H(t) . The IAM 

of X(t) is computed as the modulus of X
an(t) . Secondly, 

the Pearson correlation coefficient between the DFA expo-
nent of IAF fluctuations and that of IAM fluctuations was 
computed for each electrode and each session respectively.

Study 2 The DFA Exponent of IAF Fluctuations in EO 
and EC Resting State

Participants

Here, 82 undergraduate students (34 male with mean age 
20.89 ± 2.04 years; 48 female with mean age 21 ± 1.80 
years) from Nanjing University, Nanjing, China were 
selected as participants. All participants had normal or 
corrected visual acuity, no psychiatric disorders, and gave 
their written informed consent. This study was carried out 
in accordance with the basic principles of the Declaration 
of Helsinki and approved by the local research ethics com-
mittee of Nanjing University. The datasets and/or MAT-
LAB code of Study 2 are available from the corresponding 
authors upon reasonable request subject to a formal data 
sharing agreement with Dr. Hua Wei.

EEG Recording

The EO and EC EEG data (each lasting about 3 min) were 
recorded via a 32-channel SynAmps recording system 
(Neuroscan Labs, Sterling, VA) and a standard EEG cap 
based on the extended 10–20 system, with a pass-band 
of 0.01–100 Hz and a sampling rate of 500 Hz. During 
online recording, the electrode AFz was used as the online 
reference, and the impedances of all the electrodes were 
below 10 KΩ.

EEG Data Analysis

Firstly, same as Study 1, the EEG data were preprocessed 
using EEGLAB with exactly the same pipeline and MAT-
LAB functions. Note that, the mean and standard deviation 
of bad electrodes across subjects were 2.3 and 0.6, respec-
tively. Then, according to the steps illustrated in Study 1, the 
IAF fluctuations were extracted. Since the results of Study 
1 showed that the intra-class correlation (ICC) values of the 
DFA exponent of the occipital electrodes were much higher 
than the electrodes over the other scalp regions (see “Results 
of Study 1” section), only the IAF fluctuations of the occipi-
tal electrode Oz was analyzed here. Lastly, the presence of 
scale-invariance in IAF fluctuations was validated by the 
ML-DFA technique, and DFA exponents of these time series 
were computed.

In the current study, the following hypothesis was 
tested: whether a significant conditional difference could be 
detected between the DFA exponents of the IAF of the EO 
condition and the EC condition? Moreover, could this sta-
tistical effect be modulated by other alpha features, includ-
ing the peak alpha frequency (PAF), magnitude of alpha 
band, and DFA exponent of instantaneous alpha magnitude 
(IAM)? Note that the PAF and alpha magnitude were cal-
culated as the time-averaged value of IAF and IAM fluctua-
tions respectively.

Study 3 The Effect of Visual Working Memory Load 
on the DFA Exponent of IAF Fluctuations

Participants

The current study included EEG and behavioral data from 
26 right-handed healthy participants (9 males, mean age 
26.1 ± 3.5 years). Participants were informed about the pro-
cedure of the experiment and gave written informed consent 
prior to the experiment. This study was conducted according 
to the Helsinki declaration and was approved by the Ethics 
Committee of the Institute of Psychology and Ergonomics 
at the Berlin Institute of Technology (Shin et al. 2018). The 
datasets of Study 3 are available at http://​doc.​ml.​tu-​berlin.​
de/​simul​taneo​us_​EEG_​NIRS/.

Experimental Procedure

The participants were required to sit on a comfortable chair 
at about 120 cm from a 24’ LCD monitor in a silent, tem-
perature-controlled room. They were instructed to keep their 
eyes fixed on the stimulus presented in the middle of the 
screen throughout the experiment, and to put their index and 
middle fingers on numbers 7 and 8 of the numeric keypad 
buttons respectively.

http://doc.ml.tu-berlin.de/simultaneous_EEG_NIRS/
http://doc.ml.tu-berlin.de/simultaneous_EEG_NIRS/
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The participants were required to complete a visual 
n-back task with three levels: 0-back, 2-back, and 3-back. 
Each level task was repeated three times. Thus, nine series 
of n-back tasks with a counterbalanced order (i.e., 0 →2 → 
3 → 2 → 3 → 0 → 3 → 0 → 2) were performed for each 
participant. In each series, firstly an instruction showing the 
level of the task (i.e., 0-, 2-, or 3-back) was presented on the 
center of screen. Then, the participants should complete 20 
trials (30% targets, 70% non-targets), lasting 40 s (referred 
to as the 0-, 2-, or 3-back task segment in the following data 
analysis). In each trial, a one-digit number was displayed 
for 0.5 s, followed by a fixation cross lasting 1.5 s. In the 
2- or 3-back condition, if the number displayed currently 
matched the 2 or 3 preceding numbers respectively, they 
should press number 7; otherwise, they should press number 
8. In the 0-back condition, the participants were asked to 
press number 7 or number 8 when they saw the number. At 
the end of each series, the participants were asked to relax 
and gaze at the fixation cross in the middle of the screen for 
20 s (referred to as the rest segment in the following data 
analysis) (Shin et al. 2018).

EEG Recording

EEG data was recorded using a BrainAmp EEG amplifier 
(Brain Products GmbH, Gilching, Germany) with sampling 
rate 1000 Hz. Thirty EEG active electrodes were montaged 
according to the international 10−5 system with a standard 
EEG cap. For more information, see Shin et al. (2018) (Shin 
et al. 2018).

EEG Data Analysis

The EEG data were preprocessed using EEGLAB with the 
following steps. Firstly, the raw continuous EEG data was 
band-pass filtered between 1 and 30 Hz through a Ham-
ming windowed FIR filter and downsampled to 250 Hz. 
Secondly, “bad electrodes” were identified through visual 
inspection and interpolated using a spherical spline method 
in EEGLAB. The mean and standard deviation of electrodes 
interpolated across participants were 4.2 and 1.3, respec-
tively. Thirdly, the data portions contaminated by physio-
logical and non-physiological artifacts were corrected using 
independent component analysis (ICA). Fourthly, EEG data 
were remontaged against common average reference. Lastly, 
the 0-back task segments, the 2-back task segments, the 
3-back task segments, and the rest segments were extracted. 
Note that, for each participant, the total length of the 0-, 
2- or 3-back task segments was 120 s (40 s/segment × 3 seg-
ments = 120 s), whereas the total length of the rest segments 
was 180 s (20 s/segment × 9 segments = 180 s).

After the EEG data were preprocessed, the IAF fluctua-
tions of the occipital electrodes O1 and O2 were extracted 

for four kinds of segments (i.e., rest, 0-back, 2-back, and 
3-back) respectively using the procedures illustrated in 
Study 1 and Study 2. The presence of scale-invariance in 
IAF fluctuations was validated by the ML-DFA technique, 
and then DFA exponents of these time series were com-
puted. The DFA exponents of electrodes O1 and O2 were 
calculated respectively, and then averaged across these two 
electrodes.

Here, in order to test the effect of distinct working mem-
ory loads (i.e., rest, 0-back, 2-back and 3-back) on the DFA 
exponent of IAF fluctuations, one-way repeated measure 
ANOVA with working memory load as within-subject factor 
was conducted. Moreover, one-way analysis of covariance 
(ANCOVA) with working memory loads as within-subject 
factor, the PAF, magnitude of alpha band, and DFA exponent 
of instantaneous alpha magnitude (IAM) as covariates was 
also performed. In both the ANOVA and ANCOVA, if the 
main effect was significant (i.e., p < 0.05), post hoc compari-
sons were made to determine the significance of pairwise 
contrasts by using the Bonferroni procedure (α = 0.05).

In order to test the relationship between the DFA expo-
nent of IAF fluctuations and behavioral data in the n-back 
task, the Pearson’s correlation coefficients between the DFA 
exponent of IAF fluctuations and reaction time (RT) in the 
0-back condition, 2-back condition, and 3-back condition 
were computed. The significance of the correlation coef-
ficients was assessed with t-statistic. The threshold for sig-
nificance was p < 0.05.

Results

Results of Study 1

In Study 1, we tested whether scale-free dynamics could be 
detected in the IAF fluctuations. Moreover, if this hypothesis 
is validated, does the scaling exponent of IAF fluctuations 
exhibit relatively high test–retest reliability? In order to vali-
date the presence of scale-invariance in IAF fluctuations, the 
ML-DFA technique was applied. Then, the intra-class cor-
relation (ICC) was used to evaluate the test–retest reliability 
of scaling exponent (i.e., the DFA exponent) across sessions.

The ML-DFA conducted in Study 1 found that the pres-
ence of scale-invariance was validated for the IAF fluctua-
tions of all the participants, except the IAF fluctuations of 
electrode Oz of participant # 17 in session 1 and electrode 
F7 of participant # 11 in session 2. This result was also 
confirmed by a high value of the coefficient of determina-
tion (i.e., R2 > 0.95 for all the IAF fluctuations) of the least-
squares line in the DFA fluctuation plot (Figs. 1 and 2).

The scalp distribution of the grand average DFA exponent 
of IAF fluctuations of session 1 and session 2 are shown in 
panels a and b of Fig. 3, respectively. The ICC values of the 
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DFA exponent of IAF fluctuations for each electrode are 
displayed in Fig. 3. This shows that the ICC values are high-
est over parietal-occipital electrodes. The DFA exponents of 
IAF fluctuations of parietal-occipital electrodes have “good 
reliability” according to the classifying criteria in Sampat 
et al. (2006) (P3: 0.67; Oz: 0.58; O1:0.70; O2: 0.60; P8: 
0.75). These results showed that the scale-free feature of IAF 
fluctuations exhibits substantial high test–retest reliability.

We also tested the relationship between the scaling expo-
nents of IAF and those of instantaneous alpha magnitude 
(IAM) using the Pearson correlation coefficient. We found 
that significantly positive correlations could be found on 
nearly all of the electrodes for both sessions except for elec-
trode Cz. For session 1, the mean value and standard devia-
tion of the Pearson correlation coefficients across electrodes 
were 0.47 and 0.12, respectively. For session 2, the mean 
value and standard deviation of the Pearson correlation coef-
ficients across electrodes were 0.56 and 0.10, respectively.

Results of Study 2

In Study 2, we tested whether scale-free dynamics could 
be detected in the IAF fluctuations via EEG datasets from 
another cohort using the ML-DFA technique. Further, we 
investigated whether the scale-free behavior of IAF fluctua-
tions could be modulated by eye status (open vs. closed). We 
also investigated the relationship between the DFA expo-
nent of IAF fluctuations and other features of alpha oscilla-
tions (i.e., alpha magnitude, PAF, and the DFA exponent of 
instantaneous alpha magnitude [IAM]) using Pearson cor-
relation coefficients.

The ML-DFA conducted in Study 2 revealed that the 
presence of scale-invariance was validated for the IAF 
fluctuations of all the participants in both the EC and EO 
condition.

Fig. 1   The scalp distribution of grand average R squared (i.e., R2 ) 
value of the least-squares line of the DFA fluctuation plot when eval-
uating the scaling exponent of instantaneous alpha frequency (IAF) 
fluctuations in Study 1 (a session 1; b session 2)

Fig. 2   The DFA fluctuation plot of instantaneous alpha frequency 
(IAF) fluctuations of electrode Oz of a typical participant in session 
1 of Study 1

Fig. 3   The scalp distribution of the grand average DFA exponent of instantaneous alpha frequency (IAF) fluctuations of session 1 and session 2 
(a and b respectively), and the intra-class correlation (ICC) value of the DFA exponent of IAF fluctuations (c) in Study 1
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The DFA exponents of IAF fluctuations across all the 
electrodes, conditions, and participants were larger than 0.5 
and smaller than 1.0, which suggests that the IAF fluctua-
tions are positively correlated (i.e., fluctuation functions are 
larger in larger time windows than expected by chance).

After the DFA exponents of IAF fluctuations for the 
occipital electrode were computed, a paired t-test with eye 
status (2 levels: EC and EO) as the independent variable 
was conducted. A significant conditional difference was 
detected between the DFA exponents of IAF fluctuations of 
the EC condition and the EO condition (EC: 0.66 ± 0.075, 
EO: 0.62 ± 0.05; t(81) = 4.9, p < 0.001). The DFA exponent 
of IAF fluctuations of occiptial electrodes in the EC condi-
tion was significantly larger than that in the EO condition 

(panel a of Fig. 4). We investigated whether this statistical 
effect could be modulated by the PAF, magnitude of alpha 
oscillations, and DFA exponent of IAM. For the PAF (panel 
b of Fig. 4), we found that: (1) The PAF of EC and EO 
condition was not significantly different, as revealed by a 
paired t-test with eye status (2 levels: EC and EO) as inde-
pendent variable (EC: 10.32 ± 0.43 Hz, EO: 10.37 ± 0.28 Hz; 
t(81) = − 1.28, p > 0.05); (2) the Pearson correlation coef-
ficients between PAF and DFA exponent of IAF fluctua-
tions were not significant both for the EC condition (r = 
− 0.02, p > 0.05) and the EO condition (r = 0.03, p > 0.05). 
For the magnitude of alpha oscillations (panel c of Fig. 4), 
we found that: (1) the alpha magnitude of the EC and EO 
condition was significantly different, as revealed by a paired 

Fig. 4   The DFA exponent of instantaneous alpha frequency (IAF) 
fluctuations (a), the peak alpha frequency (b), the alpha magnitude 
(c), and the DFA exponent of instantaneous alpha magnitude (IAM) 
fluctuations (d) in eye-closed (EC) and eye-open (EO) resting-state 

condition. Compared to the EO condition, the DFA exponent of IAF 
fluctuations and alpha magnitude were significantly larger in the EC 
condition
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t-test with eye status (2 levels: EC and EO) as the inde-
pendent variable (EC: 10.17 ± 4.78 µV, EO: 4.64 ± 1.62 µV; 
t(81) = 12.45, p < 0.001); (2) the Pearson correlation coef-
ficients between alpha magnitude and DFA exponent of 
IAF fluctuations were not significant both for EC condition 
(r = 0.16, p > 0.05) and EO condition (r = 0.14, p > 0.05). For 
the DFA exponent of IAM (panel d of Fig. 4), we found that: 
(1) the DFA exponent of IAM of EC and EO condition was 
not significantly different, as revealed by a paired t-test with 
eye status (2 levels: EC and EO) as the independent variable 
(EC: 0.75 ± 0.12, EO: 0.74 ± 0.12; t(81) = 0.27, p > 0.05); 
(2) the Pearson correlation coefficients between DFA expo-
nent of IAF and that of IAM were significant both for EC 
condition (r = 0.27, p < 0.05) and EO condition (r = 0.25, 
p < 0.05).

Moreover, we found that a significant conditional dif-
ference (i.e., the DFA exponent of the EC condition was 
significantly larger than that of the EO condition) could 
also be observed when the PAF, alpha magnitude, and DFA 
exponent of IAM were included as covariates. These results 
showed that the scale-free behavior of IAF fluctuations could 
be modulated by the eye status (EO vs. EC) of participants, 
which is immune from the value of other features of alpha 
oscillations.

Results of Study 3

In Study 3, we tested whether scale-free dynamics could 
be detected in the IAF fluctuations via EEG datasets from 
the third cohort using the ML-DFA technique. Further, we 
investigated whether the scale-free behavior of IAF fluctua-
tions could be modulated by visual working memory loads 
(rest, 0-back, 2-back, and 3-back) of participants using 
ANOVA and ANCOVA. We also investigated the potential 
links between the DFA exponent of IAF fluctuations and 
behavioral performance (i.e., the reaction time [RT]).

The ML-DFA conducted in Study 3 revealed that: the 
presence of scale-invariance was validated for all the IAF 
fluctuations of all participants, except for electrode O1 of 
one participant under 0-back and 2-back condition.

Both the ANOVA and ANCOVA conducted on the 
DFA exponents of IAF fluctuations found that the main 
effect of working memory load was significant (Fig. 5): 
F(3,72) = 15.05, p < 0.01 (ANOVA) and F(3,72) = 8.47, 
p < 0.01 (ANCOVA). Post hoc tests of ANOVA/ANCOVA 
revealed that: (1) the DFA exponent of IAF fluctuations in 
the rest condition was significantly larger than that in the 
0-back condition, 2-back condition and 3-back condition; (2) 
the DFA exponent of IAF fluctuations in the 0-back condi-
tion was significantly larger than that in the 2-back condi-
tion and 3-back condition; (3) the DFA exponent of IAF 
fluctuations in the 2-back condition and 3-back condition 

was not significantly different. As shown in Fig. 6, the Pear-
son’s correlation coefficient between DFA exponent of IAF 
fluctuations and RT in 0-back condition was significant 
(r = 0.52, p < 0.01, as shown in panel a of Fig. 6), whereas 
that in 2-back condition and 3-back condition were not 
significant (r = 0.08, p > 0.05 and r = 0.09, p > 0.05 respec-
tively, as shown in panel b and panel c of Fig. 6). Moreover, 
we found that removing the outliers did not significantly 
alter the results (0-back: r = 0.37, p < 0.05; 2-back: r = 0.09, 
p > 0.05; 3-back: r = 0.07, p > 0.05). These results showed 
that the scale-free behavior of IAF fluctuations could be 
modulated by visual working memory loads of participants.

Discussion

In the current study, the scale-free characteristic of IAF 
fluctuations was investigated. Firstly, through ML-DFA 
procedures conducted on the resting-state EEG datasets 
of Study 1 and Study 2 and the event-related EEG datasets 
of Study 3, we found that scale-free behavior was inherent 
in IAF fluctuations. Secondly, the test–retest reliability of 
DFA exponent of IAF fluctuations was fairly high over 
parietal-occipital regions. Thirdly, the eye-status (i.e., EC 
vs. EO resting-state condition) and the working memory 
loads in n-back task could modulate the DFA exponent of 
IAF fluctuations. In Study 2, compared with the EC rest-
ing-state condition, the DFA exponent of IAF fluctuations 

Fig. 5   The DFA exponent of instantaneous alpha frequency (IAF) 
fluctuations of the eye-open (EO) resting-state condition, 0-back con-
dition, 2-back condition and 3-back condition in the visual n-back 
task. The DFA exponent of IAF fluctuations in the EO condition was 
significantly larger than those in the 0-back condition, 2-back condi-
tion, and 3-back condition. The DFA exponent of IAF fluctuations in 
the 0-back condition was significantly larger than those in the 2-back 
condition and the 3-back condition
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was found to be significantly lower in the EO resting-state 
condition. Moreover, this effect is immune from the values 
of other features of alpha oscillations, including the peak 
alpha frequency (PAF), alpha magnitude, and DFA expo-
nent of instantaneous alpha magnitude (IAM). In Study 3, 
we found that, compared with the EO resting-state condi-
tion, the DFA exponent of IAF fluctuations was signifi-
cantly lower when participants were performing n-back 
tasks. Moreover, compared with that in the 2-back and 
3-back conditions, the DFA exponent of IAF fluctuations 
was significantly higher in the 0-back condition, although 

the difference between the 2-back and 3-back conditions 
did not reach a significant level (i.e., p > 0.05).

The Scale‑Free Dynamics and LRTCs in IAF

Scaling laws are ubiquitous in nature, and they pervade 
physiological, cognitive, and behavioral activities, sig-
nifying that no unique characteristic scale dominates the 
behavior of these systems (He 2014; Kello et al. 2010). In 
neuroscience, nearly all related studies have focused on the 
fluctuations of the instantaneous magnitude of neural sig-
nals. Apart from these studies, several other studies found 

Fig. 6   The relationship between the DFA exponent of instantane-
ous alpha frequency (IAF) fluctuations and reaction time (RT) in the 
0-back condition (a), 2-back condition (b) and 3-back condition (c) of 
the visual n-back task. The Pearson’s correlation coefficient between 

the DFA exponent and RT in 0-back condition was significant, 
whereas those in the 2-back condition and the 3-back condition were 
not significant (i.e., p > 0.05)
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that phase synchrony between remote cortical regions was 
also scale-free (Botcharova et al. 2015). As far as we know, 
the current study is the first study that confirms the presence 
of scale-freeness in the fluctuations of instantaneous elec-
trical frequency (i.e., IAF). This signifies the fact that, like 
instantaneous magnitude and phase relationship, the IAF 
also exhibits fluctuations without characteristic scales. This 
can be explained by the critical cortex hypothesis, which 
suggests that criticality is associated with optimized infor-
mation processing and computation (Shew and Plenz 2013).

A critical property of any brain activities is its test–retest 
reliability. Much lower test–retest reliability signifies that the 
feature extracted from cortical activities was unreliable, and 
then attempts to quantify its changes through experimen-
tal manipulations would not be trustworthy as its changes 
might be due to random neuronal dynamics. Here, although 
the test–retest reliability of the DFA exponent of IAF was 
much lower over frontal and central regions, it was fairly 
high over parietal-occipital regions. This may be caused 
by the fact that alpha magnitude was largest over occipital 
regions, which indicates that the occipital alpha wave has 
much higher signal-to-noise ratio (SNR) and is more robust 
against random noise. The results of the test–retest reliability 
analysis suggest that the dynamics of IAF possess LRTCs 
and scale-free behaviors with properties suitable for func-
tional and clinical studies.

State‑Dependent IAF Power‑Law Exponent 
Fluctuations in Human

The results of test–retest reliability analysis showed that the 
DFA exponent of IAF fluctuations may be a stable neurophysi-
ological ‘‘trait” biomarker reflecting anatomical properties of 
the human brain. In Studies 2 and 3, we investigated whether 
this feature was highly volatile at shorter time scales, depend-
ent on the individuals’ “state”. Thus, the effect of task manipu-
lations on the DFA exponent of IAF fluctuations was explored. 
In Study 2, compared with the EC condition, the DFA expo-
nent of IAF fluctuations was attenuated in the EO condition. In 
Study 3, compared with the EO condition, the DFA exponent 
of IAF fluctuations was significantly lower when participants 
were performing n-back tasks. Moreover, compared with that 
in 2-back and 3-back conditions, the DFA exponent of IAF 
fluctuations was significantly higher in the 0-back condition. 
Based on these experimental results, we propose that IAF scal-
ing exponent variability forms the basis of an adaptive mecha-
nism in human brain. Compared with a smaller DFA exponent, 
a larger DFA exponent indicates that autocorrelation attenu-
ates much more slowly, i.e., the system dynamic in the past 
has much stronger influence over that in the future (Smit et al. 
2011). Thus, a smaller DFA exponent signifies less temporal 
redundancy and more efficient in online information process-
ing (He 2011). The results revealed here were consistent with 

previous studies that revealed that, compared with the task-free 
state, the power-law exponent of neural signal fluctuations of 
certain cortical regions and phase synchrony between different 
cortical regions decreased during task activation (Botcharova 
et al. 2015; He 2011). These findings fit well with the need for 
the system to process incoming information in an activated 
state and the need to maintain memory and plan for future 
during the baseline state.

Rhythmic neural activity in the occipital alpha band is 
believed to play a crucial role in the selective processing of 
visual information (Samaha and Postle 2015; Zumer et al. 
2014). Researchers suggested that IAF may reflect the tem-
poral density of periods of maximal perceptual sensitivity 
and the rate at which visual information is sampled and 
processed (Samaha and Postle 2015). Thus, the IAF should 
index the efficiency of information processing on a finer 
temporal scale than the more sustained transitions associ-
ated with alpha magnitude modulations. Compared with the 
EC condition, the neuronal oscillations should possess less 
temporal redundancy with more efficient online information 
processing (i.e., reduced DFA exponent/LRTCs) in the EO 
condition. Similar to this claim, the DFA exponent of IAF 
fluctuations should be broken down when participants were 
performing n-back tasks, compared with that of IAF when 
they were in EO resting-state. These predictions were con-
firmed by the results of Study 2 and Study 3.

A confusing result of Study 3 is that, compared with the 
DFA exponent of IAF fluctuations in the 2-back and 3-back 
conditions, the DFA exponent of IAF fluctuations was sig-
nificantly higher in the 0-back condition, whereas the dif-
ference between the 2-back and 3-back did not reach a sig-
nificant level (i.e., p > 0.05). This result could be explained 
by the following account. In the 0-back condition, the par-
ticipants should respond as quickly as possible when they 
see the stimulus presented on the screen without identifying 
what the stimulus is. In the 2-back or 3-back conditions, the 
participants should identify whether the stimulus currently 
displayed matches the 2 or 3 preceding stimuli respectively, 
which need even less temporal redundancy and enhanced 
efficiency of online visual information processing (i.e., 
reduced DFA exponent/LRTCs). The difference between 
the DFA exponent of IAF fluctuations of 2-back and that 
of 3-back did not reach a significant level may be due to the 
fact that the visual information processing demands between 
these two conditions were very similar. This account was 
further confirmed by the correlation analysis of the DFA 
exponent of IAF fluctuations and RT. The Pearson’s corre-
lation coefficient between the DFA exponent and the DFA 
exponent of IAF fluctuations was significant in the 0-back 
condition, whereas it was not significant in the 2-back 
condition and 3-back condition. In the 0-back condition, 
the RT was mainly determined by the efficiency of online 
visual information processing: the higher visual processing 
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efficiency (i.e., smaller DFA exponent/LRTCs), the shorter 
RT. In the 2-back and 3-back conditions, the RTs of partici-
pants were determined by quite a few cognitive processes 
(such as visual processing, working memory update/mainte-
nance/readout) and scale-free properties of IAF fluctuations 
were not associated with all of these processes.

Limitations and Further Directions

The limitations of this study need to be mentioned. Firstly, 
Studies 1 and Study 3 included the EEG and behavioral data 
of only 25/26 participants. Enlarging the sample size should 
increase the reproducibility of current studies. Secondly, we 
only studied the monofractal structure of IAF fluctuations. 
Here, the scale-free feature of IAF fluctuations was defined 
by a single power law exponent. We assume that the scale 
invariance is independent of time. However, temporal vari-
ation in the scale invariant structure of biomedical signals 
often appears and could be assessed by a multifractal spec-
trum of power law exponents using multifractal detrended 
fluctuation analysis (MFDFA) (Ihlen 2012). In the following 
studies, we should investigate the multifractal structures of 
IAF fluctuations, which may reveal some interesting results. 
Thirdly, in the future, we should test whether the scaling 
properties of IAF fluctuations could be modulated by other 
factors, such as age, genetic inheritance, neurological disor-
ders and personality traits.

Conclusion

The scaling properties of the IAF were unraveled through 
three studies here. Firstly, scale-free behavior was inherent 
in IAF fluctuations, whether in the EC/EO resting state or 
the visual working memory task. Secondly, the test–retest 
reliability of the scaling exponent of IAF fluctuations was 
fairly high over the parietal-occipital region. This suggests 
that the scaling exponent of IAF fluctuations may be a sta-
ble neurophysiological trait biomarker. Thirdly, the demands 
for efficiency of online visual information processing could 
modulate the scaling exponent/LRTCs of IAF fluctuations, 
which indicates that this feature of IAF is also dependent on 
the individuals’ state.
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