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Abstract
Being able to accurately quantify the hemodynamic response function (HRF) that links the blood oxygen level dependent 
functional magnetic resonance imaging (BOLD-fMRI) signal to the underlying neural activity is important both for eluci-
dating neurovascular coupling mechanisms and improving the accuracy of fMRI-based functional connectivity analyses. In 
particular, HRF estimation using BOLD-fMRI is challenging particularly in the case of resting-state data, due to the absence 
of information about the underlying neuronal dynamics. To this end, using simultaneously recorded electroencephalography 
(EEG) and fMRI data is a promising approach, as EEG provides a more direct measure of neural activations. In the present 
work, we employ simultaneous EEG-fMRI to investigate the regional characteristics of the HRF using measurements acquired 
during resting conditions. We propose a novel methodological approach based on combining distributed EEG source space 
reconstruction, which improves the spatial resolution of HRF estimation and using block-structured linear and nonlinear 
models, which enables us to simultaneously obtain HRF estimates and the contribution of different EEG frequency bands. Our 
results suggest that the dynamics of the resting-state BOLD signal can be sufficiently described using linear models and that 
the contribution of each band is region specific. Specifically, it was found that sensory-motor cortices exhibit positive HRF 
shapes, whereas the lateral occipital cortex and areas in the parietal cortex, such as the inferior and superior parietal lobule 
exhibit negative HRF shapes. To validate the proposed method, we repeated the analysis using simultaneous EEG-fMRI 
measurements acquired during execution of a unimanual hand-grip task. Our results reveal significant associations between 
BOLD signal variations and electrophysiological power fluctuations in the ipsilateral primary motor cortex, particularly for 
the EEG beta band, in agreement with previous studies in the literature.
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Introduction

Over the last 30 years, blood oxygen level-dependent func-
tional magnetic resonance imaging (BOLD-fMRI) (Ogawa 
et  al. 1990) has become the leading imaging technique 
for studying brain function and its organization into brain 
networks in both health and disease. Although most fMRI 
studies use BOLD contrast imaging to determine the brain 
regions that are active, the BOLD fMRI signal is an indirect 
measure of neuronal activity through a series of complex 
events, which are collectively referred to as the hemody-
namic response (Buxton et al. 2004). Therefore, accurate 
interpretation of fMRI data requires understanding of the 
underlying link between neuronal activity and the BOLD 
fMRI signal. To this end, using intracranial electrophysi-
ology (Logothetis et al. 2001) has confirmed that BOLD 
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fluctuations are associated with changes in neuronal activ-
ity, with stronger correlations reported between BOLD and 
local field potential (LFP) changes, as compared to spiking 
activity. However, the physiology of the BOLD signal and 
its exact association with oscillations within specific fre-
quency bands of the LFP spectrum (< 30 Hz) is still poorly 
understood.

At the macroscopic scale, simultaneous EEG-fMRI is a 
commonly used non-invasive technique for the study of the 
relationship between electrophysiological activity, which is 
a more direct measure of the underlying neural activity, and 
the regional changes in the BOLD signal. This technique 
allows non-invasive recording of brain activity with both 
high spatial and high temporal resolution, overcoming some 
of the limitations associated with unimodal EEG or fMRI. 
Many different analysis methods have been proposed for 
EEG-fMRI data fusion (Abreu et al. 2018; Jorge et al. 2014). 
Typically, features extracted from raw EEG time-series are 
transformed using a static linear or nonlinear transformation 
and subsequently convolved with a hemodynamic response 
function (HRF) (Buxton et al. 2004) to explain BOLD signal 
fluctuations. The accuracy of these predictions depends on 
both a proper transformation of the EEG features, as well as 
the shape of the HRF (Sato et al. 2010; Rosa et al. 2010a, 
b). Symmetric EEG-fMRI data fusion techniques allowing 
examination of the dynamic interplay between the fMRI and 
EEG sources have been also suggested (Calhoun et al. 2006).

Two classes of algorithms for EEG feature extraction are 
typically found in the literature. The first class, which has 
been mainly employed in task-related studies, refers to the 
detection of large scale neural events, such as evoked or 
event-related potentials in response to motor, sensory or cog-
nitive stimuli (Bénar et al. 2007; Fuglø et al. 2012; Nguyen 
and Cunnington 2014; Wirsich et al. 2014), as well as to 
epileptic discharges (Bagshaw et al. 2005; Bénar et al. 2002; 
Murta et al. 2016; Thornton et al. 2010).

The second class, which is the most widely used in the 
literature, refers to the decomposition of the EEG data into 
frequency bands of rhythmically sustained oscillations and 
extraction of the power profile of each band. Along these 
lines, early attempts to infer BOLD signal dynamics from 
features extracted from the EEG spectrum focused on the 
alpha band (8–12 Hz), particularly for the brain in the rest-
ing-state (de Munck et al. 2007; Goldman et al. 2002; Laufs 
et al. 2003, 2006). Similarly, standard frequency bands of 
the LFP spectrum, such as the delta (2–4 Hz) (de Munck 
et al. 2009), theta (5–7 Hz) (Scheeringa et al. 2008), beta 
(15–30 Hz) (Laufs et al. 2006), and gamma (30–80 Hz; Ebi-
sch et al. 2005; Scheeringa et al. 2011, 2016) bands have 
also been used. However, focusing on specific EEG (or 
LFP) frequency bands while disregarding the information 
from others may result in less accurate BOLD signal pre-
dictions. Therefore, the importance of including multiple 

frequency bands in EEG-fMRI data fusion has been sug-
gested (Bridwell et al. 2013; de Munck et al. 2009; Mantini 
et al. 2007; Tyvaert et al. 2008). Other studies pointed out 
the importance of using broadband EEG signal transforma-
tions, such as a linear combination of band-specific power 
values (Goense and Logothetis 2008), total power (Wan 
et al. 2006), and root mean square frequency (Kilner et al. 
2005; Rosa et al. 2010a, b). Higher nonlinear or information 
theoretic transformations have been also suggested (Port-
nova et al. 2018).

Most of the aforementioned studies performed EEG-
fMRI data fusion after imposing constraints that allowed 
the authors to restrict their attention to a certain number 
of EEG sensors or within specific frequency bands. More 
recently, a number of studies proposed using data-driven 
techniques, such as spectral blind source separation (sBSS) 
or multiway decomposition to detect information hidden in 
the structure of both EEG and fMRI, without imposing any 
prior constraints with regards to the spatial, spectral, or tem-
poral dimensions of the data (Bridwell et al. 2013; Marecek 
et al. 2016). This approach yielded a set of paired EEG 
spatial-spectral and fMRI spatial–temporal atoms blindly 
derived from the data, where each pair of atoms was associ-
ated with a distinct source of underlying neuronal activity. 
The detected pairs of spatial-spectral and spatial–tempo-
ral patterns were subsequently used to model the coupling 
between the two modalities using finite impulse response 
(FIR) analysis. This method was shown to improve BOLD 
signal prediction compared to alternative fusion techniques 
using individual EEG frequency bands. While a finite num-
ber of active sources in the brain evoked during task execu-
tion might be a reasonable assumption, this may not be the 
case for the resting-state.

In this work, we extend previous work operating in the 
time–frequency domain by investigating linear and nonlin-
ear dynamic interactions between EEG and BOLD-fMRI 
measurements acquired from 12 healthy subjects during 
resting experimental conditions. To this end, we performed 
distributed EEG source space reconstruction and employed 
linear and nonlinear (Hammerstein and Weiner-Hammer-
stein) block-structured models that have been extensively 
used for modeling of physiological systems (Westwick and 
Kearney 2003). This framework allowed us to obtain smooth 
and accurate HRF estimates directly from the data, as well 
as to investigate the contribution of the delta (2–4 Hz), theta 
(5–7 Hz), alpha (8–12 Hz) and beta (15–30 Hz) EEG fre-
quency bands on the BOLD signal variance across the entire 
cerebral cortex in a high spatial resolution.

Our results suggest that during the resting-state all the 
examined EEG bands contribute to the fluctuations in the 
BOLD signal and that the contribution of each EEG band 
is region specific. They also suggest that increases in the 
power within lower EEG bands are followed by positive 
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BOLD responses in the sensory-motor cortices. In contrast, 
increases in the alpha and beta power are followed by nega-
tive BOLD responses in the superior and inferior parietal 
lobule and lateral occipital cortices. Furthermore, increases 
in the beta band are followed by negative BOLD responses 
in most brain regions. To validate the proposed method for 
resting-state HRF estimation, we repeated the same analy-
sis using EEG-fMRI measurements collected during execu-
tion of a unimanual hand-grip task. Our results suggest that 
BOLD signal variance in this case is mainly explained by 
EEG oscillations in the beta band in the ipsilateral primary 
motor cortex, in agreement with previous studies is the 
literature.

Methods

Experimental Methods

Twelve healthy volunteers (age range 20–29 years) partici-
pated in this study after giving a written informed consent 
in accordance with the McGill University Ethical Advisory 
Committee. All participants were right-handed according 
to the Edinburgh Handedness Inventory (EHI; Oldfield 
1971): mean EHI score = 76.66 ± 14.74 (SD); EHI score 
range [44.44–100]. Measurements were recorded at the 
McConnel Brain Imaging center (BIC) of the Montreal Neu-
rological Institute (MNI), at McGill University.

Experimental Paradigm

The study was divided in two scans (Fig. S1). During the first 
scan (resting-state experiment—time of acquisition = 15 min 
7 s), subjects were asked to perform no particular task other 
than to remain awake while looking at a white fixation cross 
displayed in a dark background. During the second scan (motor 
task experiment—time of acquisition = 14 min 14 s), subjects 
were asked to perform unimanual isometric right-hand grips 
to track a target as accurately as possible, while receiving vis-
ual feedback. At the beginning of each trial, an orange circle 
appeared on the screen and subjects had to adapt their force 
at 15% of their maximum voluntary contraction (MVC) to 
reach a white vertical block (low force level). This force was 
maintained at this level for 3 s. Subsequently, subjects had to 
progressively increase their force over a 3-s period following 
a white ramp to reach 30% of their MVC and to sustain their 
applied force at this level for another 3 s (high force level). A 
single trial lasted 11 s and was repeated 50 times. The inter-
trial interval was randomly jittered between 3 and 5 s, dur-
ing which subjects were able to rest their hand while looking 
on a white fixation cross. The MVC of each participant was 
obtained between the two scans, using the same hand gripper 
that was employed during the motor task.

Hand Grip Force Measurements

A non-magnetic hand clench dynamometer (Biopac Systems 
Inc, USA) was used to measure the subjects’ hand grip force 
strength during the motor paradigm. The dynamometer was 
connected to an MR compatible Biopac MP150 data acqui-
sition system from which the signal was transferred to a 
computer.

EEG Data Acquisition

Scalp EEG signals were simultaneously acquired during fMRI 
scanning at 5 kHz using a 64 channel MR-compatible EEG 
system with ring Ag/AgCl electrodes (Brain Products GmbH, 
Germany). The electrodes were placed according to the 10/20 
system and referenced to electrode FCz. The EEG data were 
synchronized with the MRI scanner clock via a synchronization 
device to improve the effectiveness of MRI artifact removal 
(see "EEG Data Preprocessing" section for details). Triggers 
indicating the beginning and end of each session, as well as the 
timing of each phase of the motor task during the motor task 
experiment were sent to both the Biopac and the EEG record-
ing devices via a TriggerBox device (Brain Products GmbH, 
Germany). The electrodes were precisely localized using a 3-D 
electromagnetic digitizer (Polhemus Isotrack, USA).

BOLD Imaging

Whole-brain BOLD-fMRI volumes were acquired on a 3 T 
MRI scanner (Siemens MAGNETOM Prisma fit) with a 
standard T2*-weighted echo planar imaging (EPI) sequence 
using a 32-channel head coil for reception. EPI sequence 
parameters: TR/TE = 2120/30 ms (Repetition/Echo Time), 
Voxel size = 3 × 3 × 4 mm, 35 slices, Slice thickness = 4 mm, 
Field of view (FOV) = 192 mm, Flip angle = 90°, Acquisition 
matrix = 64 × 64 (RO × PE), Bandwidth = 2368 Hz/Px. Four 
hundred-twenty whole-brain volumes were acquired during 
the resting-state experiment and four hundred during the motor 
task experiment, respectively. A high-resolution T1-weighted 
MPRAGE structural image was also acquired to aid registra-
tion of the functional volumes to a common stereotactic space. 
MPRAGE sequence parameters: TI/TR/TE = 900/2300/2.32 ms 
(Inversion/Repetition/Echo Time), Flip angle = 8°, 0.9 mm iso-
tropic voxels, 192 slices, Slice thickness = 0.9 mm, Field of 
view = 240 mm, Acquisition matrix = 256 × 256 (RO × PE), 
Bandwidth = 200 Hz/Px.

Data Preprocessing

EEG Data Preprocessing

EEG data acquired inside the scanner were corrected off-line 
for gradient and ballisto-cardiogram (BCG) artifacts using 
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the BrainVision Analyser 2 software package (Brainprod-
ucts GmbH, Germany). The gradient artifact was removed 
via adaptive template subtraction (Allen et al. 2000). Gra-
dient-free data were band-passed between 1 and 200 Hz, 
notch-filtered at 60, 120, and 180 Hz to remove power-line 
artifacts, and down-sampled to a 400 Hz sampling rate. Tem-
poral independent component analysis (ICA) (Delorme and 
Makeig 2004) was performed on each subject separately. In 
each case, the number of components extracted was equal to 
the number of channels in the EEG data. The BCG-related 
component that accounted for most of the variance in the 
data was isolated and used to detect heartbeat events. Sub-
sequently, BCG-related artifacts were removed via pulse 
artifact template subtraction, which was constructed using a 
moving average of EEG signal synchronized to the detected 
heartbeat events (Allen et al. 1998). Poorly connected elec-
trodes were detected using visual inspection, as well as 
evaluation of their power spectrum, and interpolated using 
spherical interpolation (Delorme and Makeig 2004). Subse-
quently, a second temporal ICA was performed, and noisy 
components associated with non-neural sources, such as gra-
dient and BCG residuals, ocular, or muscle artifacts were 
removed. The median of the retained ICA components was 
21 (interquartile range (IQR) 13.5–23) for the resting-state 
data and 16 (IQR 13–20) for the motor task data, respec-
tively. The remaining data were re-referenced to an average 
reference. After preprocessing, one subject was excluded 
from further analysis due to excessive noise that remained 
in the data.

MRI Data Pre‑processing

Pre-processing of the BOLD images was carried out using 
the Oxford Centre for Functional Magnetic Resonance 
Imaging of the Brain Software Library (FMRIB, UK—FSL 
version 5.0.10) (Jenkinson et al. 2012). The following pre-
processing steps were applied: brain extraction, high-pass 
temporal filtering (cutoff point = 90 s), spatial smoothing 
using a Gaussian kernel of 5 mm FWHM, volume realign-
ment, and normalization to the MNI-152 template space, 
with resolution of 2 mm3. Spatial ICA was carried out for 
each subject using FSL’s MELODIC (Beckmann and Smith 
2004) and spatial maps associated with head motion, car-
diac pulsatility, susceptibility and other MRI-related artifacts 
with non-physiologically meaningful temporal waveforms 
were removed. MRI structural analysis and reconstruction of 
cortical surface models were performed with the FreeSurfer 
image analysis suite (version 5.3.0) (Fischl, 2012). 62 ana-
tomical regions of interest (ROIs) were also defined in the 
native space of each individual according to the Mindboggle 
atlas using FreeSurfer (https://​mindb​oggle.​info) (Klein and 
Tourville 2012). The fMRI data were co-registered to the 
reconstructed EEG cortical source space (see "EEG Source 

Imaging" section for details) using volume-to-surface reg-
istration (Dickie et al. 2019).

Data Analysis

EEG Source Imaging

Our main aim was to model the dynamic interactions 
between individual EEG sources and BOLD-fMRI in high 
spatial resolution. To this end, we reconstructed the EEG 
source space for each subject using an extension of the lin-
early constrained minimum variance (LCMV) beamformer 
(Van Veen et al. 1997), which is implemented in Brainstorm 
(Tadel et al. 2011). Beamformers are adaptive linear spatial 
filters that isolate the contribution of a source located at a 
specific position of a 3D grid model of the cortical surface, 
while attenuating noise from all other locations yielding a 
3D map of brain activity.

A set of 15,000 current dipoles distributed over the corti-
cal surface was used. Source activity at each target location 
on the cortical surface was estimated as a linear combina-
tion of scalp field measurements, wherein the weights, as 
well as the orientation of the source dipoles were optimally 
estimated from the EEG data in the least-squares sense. A 
realistic head model for each subject was obtained using the 
subject’s individual cortical anatomy and precise electrode 
locations on the scalp. Lead fields were estimated using the 
symmetric boundary element method (BEM) (Gramfort 
et al. 2009). The relative conductivities assumed for esti-
mation of the lead fields were 1 for the scalp, 0.0125 for the 
skull, and 1 for the brain.

Time–Frequency Analysis

EEG source waveforms were band-passed into the delta 
(2–4  Hz), theta (5–7  Hz), alpha (8–12  Hz) and beta 
(15–30 Hz) frequency bands and the complex analytic signal 
of each band was obtained via the Hilbert transform (Bruns 
2004; Le Van Quyen et al. 2001). Band-pass filtering was 
performed using even-order linear phase FIR filters with 
zero-phase and zero-delay compensation implemented in 
Brainstorm. Subsequently, the instantaneous power time-
series within each EEG band was calculated as the squared 
amplitude of the corresponding complex analytic signal. 
The EEG bandwidth was limited between 1 and 30 Hz, as 
above that frequency range MRI-related artifacts are more 
difficult to remove (Mullinger et al. 2008, 2011, 2014; Ryali 
et al. 2009), particularly for resting-state EEG, making the 
calculation of a signal of good quality more challenging. 
EEG instantaneous power time-series were down-sampled 
by averaging within the BOLD sampling interval yielding 
one value per fMRI volume. Representative band-specific 
EEG instantaneous power time-series from the left lateral 

https://mindboggle.info
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occipital cortex superimposed with the corresponding 
BOLD time-series obtained from one representative subject 
during the motor task are shown in (Fig. S2) in the supple-
mentary material.

Mathematical Methods

Block‑Structured System Modeling  The dynamic interac-
tions between EEG bands and BOLD were assessed using 
multiple-input single-output models. The nonlinear Ham-
merstein model (Fig. 1a) consists of the cascade connection 
of a static nonlinear map followed by a dynamic, linear time 
invariant (LTI) system. In the linear Hammerstein model 
(Fig. 1b), the static nonlinear map is substituted by a static 
linear map. The nonlinear Hammerstein-Wiener model 
(Fig. 1c) is an extension of the nonlinear Hammerstein model 
consisting of a second static nonlinearity that follows the 
output of the dynamic LTI system. The output nonlinearity 
of the Hammerstein-Wiener model allows modeling of non-
linear dynamic interactions between the input (source EEG 
frequency bands) and output data (BOLD-fMRI). These 
modular cascade models, which have been extensively used 

for modeling linear and nonlinear physiological systems 
(Westwick and Kearney 2003), are well suited for modeling 
the dynamics between EEG and BOLD-fMRI data as they 
provide estimates of the interactions between different EEG 
frequency bands and their effect on the BOLD signal, as 
well as the HRF without requiring a priori assumptions with 
regards to its shape.

Hammerstein Model Identification The MISO Hammer-
stein model (Fig. 1a) of the dynamic interactions between 
source EEG frequency bands and BOLD-fMRI consists 
of a nonlinear (polynomial) signal transformation of the 
EEG bands N(⋅) in cascade with a LTI system L(⋅) , which is 
described in terms of an HRF h(t) . The input–output rela-
tionship in discrete time is given by

where y(n) denotes the output (i.e. BOLD signal) and �(n) 
the multivariate input (i.e. EEG frequency bands). The non-
linear block can be described by

(1)y(n) =

M
∑

m=0

h(m)N(�(n −m)) + ε(n)

Fig. 1   a Multiple-input–single-output (MISO) nonlinear Hammer-
stein model consisting of a static (memoryless) nonlinearity N(⋅) 
followed by a linear time-invariant (LTI) system L. b Multiple-
input–single-output (MISO) linear Hammerstein model consisting 
of a static linear map NL(⋅) followed by a LTI system L. c Multiple-
input–single-output (MISO) Hammerstein-Wiener model consist-
ing of a Hammerstein model followed by a static nonlinearity NL(⋅). 
Notation: n = 1,… denotes time. u1(n), …, uQ(n) denote the meas-

ured input (i.e. instantaneous power in Q different EEG bands) and 
y(n) the measured output (i.e. BOLD signal) of the different MISO 
systems. N(u(t)) and NL(u(t)) denote the static nonlinear and linear 
transformation of the Hammerstein and linear Hammerstein system 
input, respectively. yh(n) and F(yh(n)) denote the Hammerstein and 
Hammerstein-Weiner model output prediction, respectively. ε(n) 
denotes a noise process
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where g(p)
i
(⋅) are polynomial terms of order p that allow rep-

resentation of nonlinearities in the EEG bands, aI,p are the 
unknown coefficients corresponding to the p-th polynomial 
term of the i-th EEG band, and Q denotes the total number 
of EEG bands. In this study, Q = 4 as the model input con-
sists within four distinct source EEG frequency bands (see 
"Time-Frequency Analysis" section for details).

The MISO linear Hammerstein model is a special case 
of the Hammerstein model when P = 1 . In this case, the 
output of the system is described as the convolution between 
a linear combination of the EEG frequency bands with the 
HRF. This model is consistent with the frequency response 
(FR) model that has been previously proposed in the neuro-
imaging literature (Goense and Logothetis 2008; Rosa et al. 
2010a, b), which assumes that BOLD is best explained by a 
linear combination of synchronized activity within different 
EEG bands.

Hammerstein-Wiener Model Identification The MISO 
Hammerstein-Wiener (HW) model structure (Fig. 1b) con-
sists of a nonlinear transformation �(⋅) in cascade with a 
Hammerstein system described by (1). The input–output 
relationship of the HW model in discrete time is given by

 where y(n) denotes the system output (i.e. BOLD signal), 
and yH(n) the output of the preceding Hammerstein system. 
F(k)(⋅) are polynomial terms of order K that allow repre-
sentation of nonlinearities in the output of the preceding 
Hammerstein system, and zk is the coefficient of the k-th 
polynomial term.

The unknown polynomial coefficients aI,p and zk , and the 
unknown HRF of these block-structured models were esti-
mated efficiently from the data using a function expansion 
technique (Marmarelis 1993), as described in Appendix.

Model Performance  Our goal was to compare models con-
sidering linear (linear Hammerstein) and nonlinear (Ham-
merstein) transformation of the power within different 
source EEG frequency bands, as well as linear and nonlinear 
dynamic behavior (Hammerstein-Wiener) that can be used 
to predict BOLD signal variations. To this end, we employed 
a threefold cross validation approach as follows: band-spe-
cific EEG and BOLD time-series were partitioned into three 
segments of equal length. Each segment was sequentially 
used as the validation set for assessing the performance of 
each model and the remaining two segments were used as 
the training set. For each segment, the parameters of the 
three models under consideration were estimated using the 

(2)N(�(n)) =

Q
∑

i=1

∑P

p=1
ai,pg

(p)

i

(

ui(n)
)

(3)y(n) = F
(

yH(n)
)

=

K
∑

k=1

zkf
(k)
(

yH(n)
)

+ ε(n)

training set, and model performance was evaluated using 
the testing set in terms of the mean-squared prediction error 
(MSE). For the resting-state data, the validation and training 
set consisted of 280 and 140 data points, respectively. For 
the task data, the training and testing set consisted of 266 
and 134 data points, respectively. In each case, the MSE was 
computed as

where ŷ(n) , and y(n) denote the predicted and measured 
BOLD, respectively. The average MSE value obtained across 
the three folds, which is typically referred to in the litera-
ture as the generalization error, was calculated and used for 
model comparisons. To prevent overfitting, particularly in 
the case of resting-state EEG-fMRI measurements where 
the SNR is considerably lower, the range for the total num-
ber L of spherical Laguerre functions used for modeling the 
impulse response of the linear filter L(.) and the range for 
� were set to 2 < L ≤ 4 and 0.5 < 𝛼 < 1 , respectively (see 
Appendix for details). The range of these parameters was 
selected to ensure a reasonable complexity for the estimated 
hemodynamic models while providing a broad range of pos-
sible dynamics (fast/slow) (Fig. S12). The optimal value for 
the L and α parameters was determined based on model per-
formance using a grid search.

Vertex‑Wise Analysis

Contribution of  Individual EEG Bands to  BOLD Signal Vari‑
ance  In each voxel, the contribution of individual source 
EEG frequency bands to the BOLD signal variance was 
evaluated in two steps. In the first step, the linear Ham-
merstein model, which is described by Eq.  (1) for P = 1 , 
was fitted to the full data set, and a BOLD prediction was 
obtained. In the second step, the linear Hammerstein model 
was refitted to a reduced data set from which the target EEG 
frequency band was excluded, and a BOLD prediction was 
obtained. Then the F-score was calculated using

where SSEF and SSER are the residual sum of squares of the 
full and reduced model respectively. Likewise, DFEF and 
DFER are the number of degrees of freedom for the full and 
reduced model, respectively. In each case, there are N –Q 
degrees of freedom, where N is the number of data points 
and Q is the number of regressors used in the model. The 
statistic F follows a F(DFER−DFEF,DFEF) distribution and a large 
value of F indicates that the target EEG band significantly 
contributes to BOLD signal variance while taking into 

(4)MSE =
1

N

N
∑

n=1

(

y(n) − ŷ(n)
)

,
2

(5)F =

(

SSER − SSEF

)

∕
(

DFER − DFEF

)

SSEF∕DFEF
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consideration the difference in the number of regressors used 
in the full and reduced model, respectively.

Influence of Individual EEG Bands on HRF Scaling  The lin-
ear Hammerstein model described by Eq.  (1) when P = 1 
quantifies the interactions between EEG and fMRI as an 
HRF (impulse response of the LTI block) scaled by coef-
ficients reflecting the relative contribution of each EEG 
band to BOLD signal variations (static linear MISO block). 
To investigate the influence of individual EEG bands on 
HRF scaling we proceeded in two steps (Fig. 2): First, we 
excited all inputs of the linear Hammerstein system at the 
same time using a Kronecker delta function δ(n) as input 
(Fig. 2a) to derive the system’s dynamic response to instan-
taneous changes in the power of all EEG bands (total HRF). 
The scaling of the total HRF was determined by the sum of 
the coefficients � that define the static linear MISO block. 
Subsequently, we excited one input at a time (Fig. 2b). In 
each case, the scaling of the derived response (band-specific 
HRF), was determined by the coefficient ai corresponding to 
the i-th band.

To assess the contribution of individual EEG bands on the 
scaling of the total HRF in different brain regions, we com-
pared the spatial maps of the HRF peak with the spatial maps 
of the band-specific HRF peak. The HRF peak describes the 
maximum instantaneous hemodynamic response to changes 
in neuronal activity.

Statistics

Model comparisons were performed using MSE values 
obtained for all the 62 Mindboggle atlas ROIs, which were 
derived in the native space of each individual using Free-
Surfer. The selected ROIs are illustrated in Fig. S11 in the 

Supplementary material. Group-level statistical comparisons 
were carried out using linear models including the averaged 
MSE across ROIs within each subject as outcome variable 
and the block-structured model type as predictor variable. 
The MSE values were averaged across ROIs to account for 
spatial correlation within subjects. The optimal model for 
explaining the dynamic relation between source EEG fre-
quency bands and fMRI was determined as the most parsi-
monious model exhibiting the smallest generalization error. 
Comparison of the MSE values indicated that the linear 
Hammerstein model is sufficient for describing the dynamic 
relation between different source EEG bands and BOLD 
for both experimental conditions (Fig. 3). Furthermore, to 
assess the performance of our approach, we compared the 
HRF estimates obtained using the proposed function expan-
sion technique to three other HRF estimation methods that 
have been previously used in the neuroimaging literature 
for HRF estimation: (i) non-parametric, direct impulse 
response estimation with stable spline regularization (Chen 
et al. 2012; Lu et al. 2006; Sato et al. 2010), (ii) function 
expansions using the canonical HRF along with its time and 
dispersion derivatives (Friston et al. 1998), and (iii) function 
expansions using the first two components derived by apply-
ing principal component analysis (PCA) on an extended set 
of gamma density functions (Hossein-Zadeh et al. 2003). 
In the latter case, the extended set of gamma density func-
tions was constructed by varying the peak (τ) and dispersion 
(σ) parameters of the gamma density function1 as follows: 

Fig. 2   Network representation of the multiple-input–single-output 
linear Hammerstein model used for quantifying the dynamical inter-
actions between EEG and BOLD-fMRI. a The total HRF hT(n) is 
obtained by exciting all inputs of the linear Hammerstein system at 
the same time using a Kronecker delta function δ(n). The scaling of 

the total HRF is determined by the sum of all input coefficients ai, 
i = 1,…,Q. b A band-specific HRF hi(n) is obtained by exciting only 
the i-th input, which is associated with the i-th EEG frequency band. 
The scaling of the HRF in this case is determined by coefficient ai

1  We considered the gamma density function given by 

h(t;τ, σ) =

⎧
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where and control the 

location of the peak and width (dispersion), respectively (Hossein-
Zadeh et al. 2003).
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0.2 ≤ σ ≤ 0.4 and 1 ≤ τ ≤ 14. For the purpose of this compari-
son, we employed the hand grip force time-series. Statistical 
comparisons of the MSE values achieved by each method 
were performed using linear models including MSE as the 
outcome variable and estimation method as the predictor 
variable. Voxel-wise statistical comparisons were performed 
at the group level using one-sample t-tests. The resulting 
statistical parametric maps were corrected for multiple com-
parisons using false discovery rate (FDR).

Results

Model Comparisons

The Hammerstein-Wiener, Hammerstein, and linear Ham-
merstein block-structured models were compared in terms 
of their mean square prediction error (MSE) obtained in 
large structurally defined ROIs according to the Mind-
boggle atlas. Boxplots of the averaged MSE values across 
ROIs within subjects are shown in Fig. 3 for each model 
and experimental condition. During resting conditions, the 
MSE values achieved by the linear Hammerstein model were 
significantly lower compared to the Hammerstein-Wiener 
model (B =  − 0.1, t(30) =  − 4.355, p < 0.001), but not when 
compared to the standard Hammerstein model. No signifi-
cant differences were detected during the task. These results 
suggest that increasing model complexity does not improve 

its performance. They also suggest that the BOLD signal 
can be sufficiently described as the convolution between a 
linear combination of the power profile within different fre-
quency bands and a HRF, which can be estimated from the 
data using the functional expansion technique along with 
the spherical Laguerre basis (see "Block-Structured System 
Modeling" section for details). Representative HRF esti-
mates obtained using the proposed method, as well as three 
other methods previously used in the literature (see "Statis-
tics" section) are illustrated in Fig. S3a. Figure S3b shows 
boxplots of the cross-validation MSE values achieved by 
each method. The MSE achieved by the spherical Laguerre 
model was lower compared to all other methods within 
each subject, and statistically lower compared to the direct 
impulse response method (p < 0.01).

Contribution of Individual EEG Bands to BOLD 
Signal Variance

Figure 4 illustrates the contribution of individual frequency 
bands of EEG current sources to the resting-state BOLD 
signal variance. EEG source space reconstruction was per-
formed using distributed source imaging, whereby dipolar 
current sources were estimated along the cortical surface in 
high spatial resolution (see "EEG Source Imaging" section 
for details). BOLD signal predictions were obtained using 
the linear Hammerstein model and the custom spherical 
Laguerre HRF. The results suggest significant contributions 
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Fig. 3   Boxplots of mean square error (MSE) values between meas-
ured versus predicted BOLD in large structurally defined ROIs 
from all subjects. BOLD predictions were obtained using the block-
structured Hammerstein-Wiener (HW), Hammerstein (H), and linear 
Hammerstein (LH) models, and the instantaneous power time series 
within the delta (2–4 Hz), theta (5–7 Hz), alpha (8–12 Hz) and beta 
(15–30  Hz) bands. Statistical comparisons between the MSE val-
ues obtained from each model were performed using linear models 
including averaged MSE values across ROIs within each subject as 
outcome variable and block-structured model type as predictor varia-

ble. During resting conditions, the MSE obtained from the H and LH 
were significantly lower compared to the WH (WH vs H: B = − 0.07, 
t(30) = − 3.27, p = 0.003; WH vs LH: B = − 0.1, t(30) = − 4.355, 
p < 0.001). No significant differences were detected between the H 
and LH models. Also, no significant differences were detected during 
the task. The results collectively suggest that increasing model com-
plexity does not significantly improve model performance and that 
the LH model is adequate to describe the dynamics between EEG and 
BOLD during both experimental conditions
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from all EEG frequency bands ( p < 0.0001 , FDR corrected 
for multiple comparisons), and for each band the significant 
contributions were found to be region-specific. Specifically, 
lower EEG bands, such as the delta and theta frequency 
bands, exhibited significant contribution to the BOLD signal 
in the primary motor and somatosensory cortices (Fig. 4—
upper row). On the other hand, higher EEG bands, such as 
the alpha and beta frequency bands, exhibited significant 
contribution to the BOLD signal in visual-related areas in 
the occipital cortex (Fig. 4—bottom row). To validate the 
proposed method, we repeated the same analysis using the 
data obtained during the hand grip task (Fig. S4). Using the 
handgrip force time-series, we observed significant BOLD 
signal predictions in the left primary motor cortex, which 
was used as a gold standard (Fig. S4d). As expected, similar 
results were obtained using the source space EEG frequency 
bands (Fig. S4c). In this case, larger contributions to the 
BOLD signal variance in this area were observed from the 
beta frequency band (15–30 Hz).

Group average HRF estimates obtained in functionally 
defined ROIs in which EEG explained a large fraction of 
BOLD variance during resting conditions are shown in 
(Fig. 5). These ROIs included the right primary motor and 
lateral occipital cortices (Fig. 4). Representative BOLD 
signal predictions obtained from one subject for the right 
lateral occipital cortex is also shown in the same Figure. 
These results suggest that the linear Hammerstein model 
can be used to obtain reliable estimates of the HRF as well 

as BOLD signal predictions from the EEG even during the 
resting state, where SNR is particularly low. Similar results 
were also obtained during the motor task for the left pri-
mary motor and superior parietal lobule cortices (Fig. S5). 
It should be noted similar results were also obtained when 
using EEG instantaneous power time-series at a higher sam-
pling rate (256 Hz). Therefore, using down-sampled EEG 
instantaneous power time-series did not affect the accuracy 
of the BOLD signal predictions (Fig. S10).

Influence of Individual EEG Bands on HRF Scaling

To investigate the regional variability of the total HRF in 
high spatial resolution, we excited all inputs of the esti-
mated linear Hammerstein model at each voxel at the same 
time using one Kronecker delta function for each input. The 
derived dynamic response was determined from both the 
shape of the HRF provided by the impulse response of the 
LTI block, as well as the total scaling coefficient provided 
by the sum of the � coefficients that define the static lin-
ear MISO block (see "Mathematical methods" section for 
details). Average maps of total HRF peak values obtained 
during resting conditions across all subjects are shown in 
(Fig. 6). The results suggest that areas in the attention corti-
cal network, such as the dorsal lateral prefrontal and infe-
rior parietal lobule cortices, as well as areas in the default 
mode network, such as the medial prefrontal and precuneus 
cortices exhibit a negative response to abrupt instantaneous 

Fig. 4   Contribution of individual frequency bands of distributed 
EEG sources to BOLD signal variance during resting-state condi-
tions. The analysis was performed using custom voxel-specific HRFs, 
which were estimated directly from the data using the linear Ham-
merstein model and spherical Laguerre basis functions. Group-level 
one-sample t-statistical maps were obtained for each frequency band 

separately ( p < 0.0001 , FDR corrected for multiple comparisons). 
The delta (2–4 Hz) and theta (4–8 Hz) frequency bands contributed 
significantly to BOLD signal variance in the primary motor and 
somatosensory cortices. The alpha (8–12  Hz) and beta (15–30  Hz) 
frequency bands contributed significantly to BOLD signal variance in 
the occipital cortex
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Fig. 5   Group average normalized HRF curves obtained in the right 
primary motor and right lateral occipital cortices under resting con-
ditions. The red curve corresponds to the mean HRF curve across 
all subjects. The blue shaded area corresponds to the standard error. 
The ROIs were functionally defined based on regions where EEG 

explained a large fraction of the variance in the BOLD signal (Fig. 4). 
A representative BOLD prediction in the right occipital cortex 
obtained from one subject is shown in the lower panel. The same plot 
superimposed with the instantaneous power of individual EEG bands 
is shown in (Fig. S9) the supplementary material
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Fig. 6   Group-level averaged maps of total HRF peak obtained by 
exciting all inputs of the linear Hammerstein model estimated at each 
voxel at the same time, using one Kronecker delta function (resting 
conditions). The total HRF was determined by both the HRF shape 
provided by the impulse response of the LTI block, as well as the 
total scaling coefficient provided by the sum of the a coefficients that 
define the static linear MISO block of the linear Hammerstein model. 
Areas in the attention cortical network, such as the dorsal-lateral 
prefrontal and inferior parietal lobule cortices, as well as areas in 

the default mode network, such as the medial prefrontal and precu-
neus cortices, exhibited a negative hemodynamic response to abrupt 
instantaneous increases in the resting-state EEG power. On the other 
hand, areas in the primary somatosensory, primary motor, medial 
occipital, insular, and auditory cortices exhibited a positive hemo-
dynamic response. mPFC medial prefrontal cortex, PCC precuneus 
cortex, S1 primary sensory cortex, M1 primary motor cortex, PMC 
premotor cortex, SPL superior parietal lobule, IPL inferior parietal 
lobule
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increases in the source EEG power. On the other hand, areas 
in the primary sensory, primary motor, medial occipital, 
insular, and auditory cortices exhibit a positive hemody-
namic response. During the motor task (Fig. S6), the vast 
majority of brain areas spanning the cortical surface exhib-
ited a negative hemodynamic response to abrupt instanta-
neous increases of the source EEG power for all frequency 
bands. The largest negative responses were observed in the 
superior parietal lobule and lateral occipital cortices. On the 
other hand, areas in the primary somatosensory, primary 
motor and medial occipital cortices exhibited a positive 
hemodynamic response.

Figure 7 shows group-level average band-specific HRF 
peak maps obtained under the resting-state condition for the 
delta (2–4 Hz), theta (5–7 Hz), alpha (8–12 Hz) and beta 
(15–30 Hz) frequency bands. Band-specific HRF peak maps 
were obtained by exciting one input of the linear Hammer-
stein model estimated at each voxel at a time, using a Kro-
necker delta function. The obtained band-specific HRF asso-
ciated with the i-th input was determined by both the HRF 
shape provided by the impulse response of the LTI block, as 
well as the coefficient ai , which reflects the relative contri-
bution of the i-th input to the BOLD signal. The alpha and 
beta bands exhibited widespread negative responses. The 
largest negative responses for the alpha band were observed 
in the occipital cortex, whereas for the beta band in areas 
involved in the cortical attention network, such as the dorsal 

lateral prefrontal cortex. On the other hand, the delta and 
theta frequency bands exhibited strong positive responses 
in the motor, somatosensory, superior parietal lobule, audi-
tory and insular cortices. Also, the medial occipital cortex 
exhibited negative responses for the alpha and beta bands, 
and strong positive responses for the delta and theta fre-
quency bands. During the motor task (Fig. S7), the alpha and 
beta frequency bands exhibited strong negative responses in 
visual related areas, such as the lateral occipital and superior 
parietal lobule cortices. On the other hand, the delta and 
theta frequency bands exhibited strong positive responses 
in the primary motor and somatosensory cortices. All fre-
quency bands exhibited a positive hemodynamic response 
in the medial occipital cortex, with the strongest responses 
being observed for the delta and beta frequency bands.

Discussion

In the present work, we investigated in detail the dynamic 
interactions between changes in neuronal activity and the 
BOLD signal measured with simultaneous EEG-fMRI 
under resting-state conditions. To quantify these interac-
tions in high spatial resolution, we reconstructed the EEG 
source space along the cortical surface using distributed 
source space analysis, in contrast to similar previous stud-
ies, which performed this investigation using EEG sensor 

Delta band (2-4 Hz) Theta band (5-7 Hz)
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Fig. 7   Group-level average maps of band-specific HRF peak values 
obtained during resting-state by exciting one input of the linear Ham-
merstein model estimated at each voxel at a time, using a Kronecker 
delta function. Each input was associated with a different frequency 
band, and the relative contribution of the i-th input to BOLD signal 
variance was quantified in terms of the coefficient ai. In each case, the 
band-specific HRF was determined by both the HRF shape provided 
by the impulse response of the LTI block, as well as the coefficient 
ai of the associated i-th input. The alpha and beta frequency bands 

exhibited widespread negative hemodynamic responses spanning 
in multiple cortical regions. For the alpha band, the largest negative 
responses were observed in the lateral occipital cortex, and for the 
beta band in areas in the attention cortical network, such as the dorsal 
lateral prefrontal and inferior parietal lobule cortices. Moreover, the 
delta and theta frequency bands exhibited strong positive responses 
in areas in the primary somatosensory, motor, insular, and auditory 
cortices, as well as in visual-related areas, such as the lateral occipital 
and superior parietal lobule cortices
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level measurements (de Munck et al. 2009, 2007; Laufs 
et al. 2003, 2006; Mantini et al. 2007; Portnova et al. 2018; 
Rosa et al. 2010a, b; Sclocco et al. 2014). Source space 
reconstruction allows the spatial information present in the 
multi-channel EEG to be better exploited, providing more 
information regarding the local neuronal input within a 
given cortical area. The dynamic interactions between EEG 
and BOLD were investigated using block-structured linear 
and nonlinear models that describe the BOLD signal as the 
convolution between a static linear (linear Hammerstein) or 
nonlinear (standard Hammerstein) polynomial transforma-
tion of the EEG power within different frequency bands with 
a hemodynamic response function. We also investigated the 
possible presence of dynamic nonlinearities in the BOLD 
signal using the Hammerstein-Wiener model. These nonlin-
earities may result from suppression and increased latency 
of present BOLD responses that are incurred by preceding 
changes in the source EEG power (Friston et al. 2000).

The degree and coefficients of the polynomial transfor-
mation preceding (Hammerstein structure) and following 
(Hammerstein-Wiener structure) the linear hemodynamic 
system (Fig. 1), as well as the shape of the unknown HRF 
curve were determined from the data using partial least 
squares regression (PLSR). PLSR was employed to account 
for the high collinearity between the instantaneous power of 
different frequency bands, as it provides unbiased estimates 
of the unknown model parameters. Moreover, the unknown 
HRF curves estimated in both large ROIs and individual 
voxels were estimated efficiently from the data using func-
tion expansions in terms of the spherical Laguerre basis 
functions. The use of an orthonormal basis reduces the 
number of required free parameters in the model and allows 
parameter estimation using least-squares regression, which 
leads to increased estimation accuracy in the presence of 
noise even from short experimental data-records (Marma-
relis 2004).

To validate the proposed method used for the analysis 
of resting-state EEG-fMRI data, we repeated the same pro-
cedure for the analysis of data acquired during a hand grip 
task that elicits a well-described neuronal response in the 
ipsilateral primary motor cortex (Xifra-Porxas et al. 2019; 
Sclocco et al. 2014). The comparison of the BOLD variance 
explained by the different EEG frequency bands using sensor 
versus source space analysis (Fig. S4a, b), as well as using 
the canonical, double gamma versus a custom HRF (Fig. 
S4b, c) revealed increased detection sensitivity and region 
specificity of brain activation when source space analysis 
and a custom HRF were employed. Similar activation pat-
terns were obtained using the handgrip force time-series 
(Fig. S4d), which reflect the dynamics of neural activation 
in the ipsilateral primary motor cortex in response to the 
handgrip task. The similarity between the activation maps 
obtained using the handgrip force and power in the beta 

band during the task suggests the potential of the proposed 
method for obtaining reliable BOLD predictions and HRF 
estimates even from resting-state data, where there is no 
explicit task.

Model comparisons revealed that the convolution 
between a linear combination of the power profile of dif-
ferent EEG frequency bands with a hemodynamic response 
function is sufficient to describe the dynamics observed 
between fluctuations in the power of different frequency 
bands and the BOLD signal. Using this linear model, we 
showed that the contribution of different frequency bands to 
the BOLD signal variance strongly depends on brain region 
and experimental condition. Our results suggest that the 
proposed method yields robust HRF estimates even during 
resting conditions, despite the lower SNR associated with 
them. This has important implications particularly in the 
context of resting-state functional connectivity, as accurate 
HRF estimates are important for removing the hemodynamic 
blurring that is inherent in the fMRI time series, resulting in 
more accurate functional connectivity maps (Rangaprakash 
et al. 2018; Wu et al. 2013).

The Proposed Linear Model for the Dynamic 
Interactions Between Source Space EEG 
and BOLD‑fMRI

The model comparisons shown in Fig. 3 suggest that the 
linear Hammerstein model achieves smaller mean squared 
error ( MSE ) values compared to the standard Hammerstein 
and Hammerstein-Wiener model, for both experimental con-
ditions. In each case the MSE values were obtained using a 
threefold cross-validation approach, which was implemented 
to assess model performance (see "Model performance" 
section for details). In this context, the linear Hammerstein 
model was found to yield the optimal balance between pre-
dictive accuracy and parsimony, which suggests that it can 
sufficiently describe the dynamics between source EEG and 
BOLD-fMRI without overfitting.

The linear Hammerstein model assumes that the BOLD 
signal is best explained by a linear combination of activ-
ity within different frequency bands in agreement with the 
frequency response (FR) model2 previously used to predict 
BOLD activity from intra-cortical LFP recordings in alert 
behaving monkeys (Goense and Logothetis 2008). The 
main difference between the FR and the linear Hammer-
stein hemodynamic model proposed herein is that the latter 

2  Although the idea of using multiple frequency bands of intra-cor-
tical LFP measurements in a general linear model to predict BOLD 
activity was first introduced by (Goense and Logothetis 2008), the 
term “Frequency response (FR) model” was coined by (Rosa et  al. 
2010a, b).
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employs a custom HRF to describe the dynamic interac-
tions between source EEG power and BOLD-fMRI, which 
is estimated directly from the experimental data. This pro-
vides additional flexibility in modeling the dynamic relation 
between changes in neuronal activity and BOLD as com-
pared to the FR model. Also, it allows for the investigation of 
the regional variability of the HRF in high spatial resolution.

In contrast to other linear hemodynamic models which 
assume a different HRF shape for each EEG frequency band 
(Bridwell et al. 2013; de Munck et al. 2009), the linear Ham-
merstein model employs a unique HRF curve shape for all 
EEG bands, which is estimated directly from the data. We 
hypothesized that the dynamics of the physiological mecha-
nism that relates changes in neuronal activity to changes in 
cerebral blood flow do not depend on the specific frequency 
of the underlying neural oscillations. Instead, the dynam-
ics of the hemodynamic response to changes in the EEG 
power, which determine the HRF curve shape, are an intrin-
sic property of the local cerebral vasculature that is related 
to elastance and compliance. On the other hand, the relative 
contribution of each EEG band to BOLD signal variance 
is reflected on the scaling coefficient ai of the HRF that is 
associated with each band. Hence, a large positive scaling 
coefficient corresponds to a frequency band that is positively 
correlated with the BOLD signal and explains a large por-
tion of its variance. Likewise, a large negative coefficient 
corresponds to a frequency band that is negatively correlated 
with the BOLD signal. In contrast, a small positive (nega-
tive) scaling coefficient corresponds to a frequency band that 
is weakly positively (negatively) correlated with the BOLD 
signal.

A model that has been extensively used in the literature 
for modelling the dynamic interactions between neuronal 
activity and BOLD during task execution (Murta et al. 2015; 
Rosa et al. 2010a, b; Rosa et al. 2011; Sclocco et al. 2014), 
as well as during EEG epileptic activity (Leite et al. 2013) 
is the so called Heuristic model proposed by (Kilner et al. 
2005). This model uses the root mean square frequency of 
the normalized power spectrum to define a nonlinear sig-
nal transformation of the EEG power that is used to predict 
changes in the BOLD signal. The power spectrum employed 
by this model is normalized with the total average power 
of the EEG (area under the power spectral density) at each 
time instant. Hence, direct comparison between the Heuris-
tic and the linear Hammerstein model employed in this work 
is not straightforward, as the later uses an absolute power 
spectrum. However, the statistical comparisons shown in 
(Fig. 3) suggest that the linear Hammerstein model would be 
superior to the root mean square frequency model using an 
absolute power spectrum (unnormalized Heuristic model), 
as the latter can be adequately described with a standard 
Hammerstein model. Moreover, (Rosa et  al. 2010a, b) 
performed a comparison between the normalized FR and 

Heuristic models, which revealed no significant differences. 
Considering the additional flexibility provided by the custom 
HRF in the linear Hammerstein model, which is estimated 
directly from the data as compared to the FR model, we 
speculate that the normalized linear Hammerstein model can 
explain a larger fraction of BOLD variance compared to the 
Heuristic model (Kilner et al. 2005). However, this remains 
to be investigated in a future study.

BOLD Signal Variance Explained by the Individual 
Frequency Bands

The comparison of the resting-state BOLD variance 
explained by the different frequency bands using EEG 
source space analysis and the linear Hammerstein model 
revealed significant contributions from all frequency bands, 
which are region specific (Fig. 4). Oscillations in the alpha 
band explained significant BOLD signal variance in visual-
related areas. This finding agrees with previous studies in the 
literature which investigated the electrophysiology corelates 
of the BOLD signal during resting-state with eyes closed 
(de Munck et al. 2007; Laufs et al. 2003, 2006; Mantini 
et al. 2007), suggesting the important role of these regions 
in the generation of the alpha rhythm even during resting-
state with eyes open. Furthermore, we also observed sig-
nificant contributions from the beta band, which could be 
related to changes in the brain state associated with vigilance 
and alertness that occur during eyes open as compared to 
eyes closed (Falahpour et al. 2018; Chang et al. 2016). On 
the other hand, significant contributions from the delta and 
theta bands were detected in the primary motor cortex. We 
believe that it is less likely that activation in these areas is 
solely due to motion-related artifacts as proposed in (Jansen 
et al. 2012), since (i) we have employed stringent methods 
to remove motion-related artefacts from both the EEG and 
fMRI data, and (ii) the neuronally plausible patterns of acti-
vation predicted by motion-related EEG artifacts shown 
in (Jansen et al. 2012) do not include the primary motor 
cortices.

During the handgrip task, the source EEG beta frequency 
band was found to significantly contribute to the BOLD sig-
nal in the ipsilateral primary somatosensory and motor cor-
tices (Fig. S4c). This finding is in agreement with previous 
similar studies that showed strong correlations between beta 
EEG oscillations and BOLD-fMRI in the same brain regions 
during motor tasks (Ohara et al. 2001; Ritter et al. 2009; 
Sclocco et al. 2014). Also, our results suggest significant 
contributions from the beta band in the occipital and the 
superior parietal lobule cortices, which become activated 
in response to the visual feedback that the subjects received 
during task execution. The superior parietal lobule is a poly-
modal association area integrating motor, somesthetic and 
visual information.
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Influence of Individual EEG Bands on HRF Scaling

The average maps of the total HRF peak obtained during the 
resting-state condition across subjects (Fig. 6) show that the 
hemodynamic response in the occipital, parietal and frontal 
cortices is mainly negative. In accordance with the results 
of previous studies (de Munck et al. 2007; Goldman et al. 
2002; Laufs et al. 2003, 2006; Moosmann et al. 2003) these 
negative hemodynamic responses were found to be associ-
ated with instantaneous increases in the alpha band (Fig. 7). 
Occipital BOLD deactivation was discussed in (Goldman 
et al. 2002) as a result of alpha synchronization and idling. 
It has been also linked to changes in vigilance (Moosmann 
et al. 2003). In addition to contributions of the alpha band 
in negative resting-state BOLD responses, we also observed 
contributions of the beta frequency band (Fig. 7). Specifi-
cally, our results revealed negative responses in almost all 
regions spanning the cerebral cortex for both the alpha and 
beta frequency bands in agreement with a previous study by 
(Mantini et al. 2007), which showed negative correlations 
between the power profile of these bands and the BOLD 
signal in the default mode, dorsal attention, visual, motor 
and auditory networks.

During the motor task, our results revealed large negative 
HRF peak values in the lateral occipital and superior parietal 
lobule cortices for the alpha and beta bands (Figs. S4, S7). 
Negative HRF peak values were also observed areas within 
the left primary motor and somatosensory cortices for the 
beta band. These findings are consistent with desynchroni-
zation in the alpha and beta bands observed in young adults 
during a handgrip task using MEG (van Wijk et al. 2012; 
Xifra-Porxas et al. 2019) and EEG (Erbil and Ungan, 2007). 
Alpha and beta band desynchronizations are associated with 
decreases in the instantaneous EEG power and increases in 
the BOLD signal, which result in negative hemodynamic 
responses.

Areas in the somatosensory and motor cortices exhibited 
large positive values during both the resting-state condition 
(Fig. 6) and the motor task (Fig. S6). Similar patterns were 
also observed in the average HRF peak maps obtained for the 
delta and theta frequency bands for both experimental condi-
tions (Figs. 7, S7). These findings suggest that the positive 
hemodynamic responses observed in these areas are more 
strongly associated with activity in lower frequency bands. 
Moreover, during resting conditions, the medial occipital 
cortex exhibited positive responses for the delta and theta 
bands, while the alpha and beta bands exhibited negative 
responses. During the motor task, the same area exhibited 
a positive HRF peak values in all frequency bands, with the 
strongest responses being observed for the delta and beta 
bands. Interestingly, this increase in the HRF peak values 
observed for the beta band in the medial occipital cortex 
between the task versus the resting condition is in agreement 

with the Heuristic model (Kilner et al. 2005), which states 
that the shifts in the EEG spectral profile towards higher 
frequencies that observed during neuronal activation are 
related to increases in the rate of energy dissipation and the 
BOLD-fMRI signal. However, it should be also noted that 
since the medial occipital cortex is more densely vascular-
ized compared to other brain regions (Bernier et al. 2018), 
it is plausible that the large BOLD signal increases observed 
in this region during the task are related to artificial BOLD 
signal amplification resulting from its dense vascular net-
work and proximity to large draining veins compared to 
other brain regions.

Limitations

The present study set out to investigate the link between 
changes in the level of neuronal activity as these manifests in 
narrow frequency bands of the LFP spectrum with the cor-
responding changes in the BOLD signal, using simultaneous 
EEG-fMRI. The cohort size (n = 12) used to achieve this 
was relatively small compared to recent EEG-fMRI stud-
ies in the literature. However, as the main purpose of this 
work was to demonstrate a method for describing the rela-
tionship between EEG and BOLD-fMRI, the available data 
are sufficient. Furthermore, a large body of animal studies 
has pointed to the gamma band (30–80 Hz) exhibiting the 
highest correlations with fluctuations in the BOLD signal 
(Goense and Logothetis 2008; Logothetis et al. 2001; Magri 
et al. 2012; Shmuel and Leopold 2008; Scheeringa et al. 
2011; Uji et al. 2018). In the present study, however, the 
gamma band was excluded from the analysis, as we were 
not able to sufficiently remove MRI-related artifacts, such as 
RF gradient, ballisto-cardiogram, and helium pump artifacts 
within this frequency band. Of note, the proposed method 
for modeling the dynamic relation between source EEG 
and BOLD-fMRI presented herein can be readily applied to 
any number of EEG frequency bands, including the gamma 
band, in cases where the non-neural related artefacts can be 
successfully removed. Future work performed using gradi-
ent-free multimodal imaging techniques, such as simultane-
ous EEG-FNIRS would help overcome these limitations, but 
at the cost of a reduced spatial resolution.

In the present study we employed source space recon-
struction to investigate the dynamic interactions between 
different frequency bands of individual current sources and 
BOLD-fMRI. Source space reconstruction was performed 
using linearly constrained minimum variance beamformers. 
Our results (Figs. S4, 4) suggested that source space analy-
sis improved BOLD signal prediction for both task-based 
and resting-state experimental conditions. They also sug-
gested that under each condition, different frequency bands 
may explain more BOLD signal variance relative to oth-
ers depending on brain region. However, we note that HRF 
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estimation using EEG-fMRI may be affected by the localiza-
tion error of the underlying neuronal activation associated 
with each individual modality. However, evaluation of this 
error is challenging and remains an open question for future 
investigation. Furthermore, the EEG bands might be local-
ized with different errors since different EEG sensors might 
be affected in a different way from various sources of noise 
characterized by distinct frequency content. For example, 
it is well known that eyeblink and BCG artefacts mainly 
affect frontal sensors (Marino et al. 2018), whereas muscle 
artifacts affect more temporal sensors (Muthukumaraswamy 
2013). In this study, although gradient and BCG artefact 
removal was performed on a channel-by-channel basis, it is 
likely that the levels of noise that remained after preprocess-
ing might be different for each sensor, which might result in 
different localization error for each band.

Lastly, accurate estimation of the HRF shape requires 
matching the power-spectrum of the experimental task to 
the power spectrum of the HRF (Wager and Nichols 2003). 
During the resting-state, which was the main condition of 
interest in this work, it is reasonable to assume that that the 
underlying spontaneous neuronal oscillations excited most of 
the frequencies within the HRF bandwidth (< 0.2 Hz). Dur-
ing the motor task, on the other hand, the power spectrum 
of the experimental task was restricted in the 0.05–0.08 Hz 
range, which may have affected the HRF shape estimates to 
some extent.

Conclusion

We developed a novel methodological approach using lin-
ear and nonlinear block-structured models to investigate 
the dynamic interactions between distributed dipolar cur-
rent sources and changes in BOLD-fMRI signal evaluated 
using simultaneous EEG-fMRI. We applied the proposed 
method to data collected during resting-state conditions 
with eyes open, as well as data collected during a handgrip 
task. Our results suggest that these interactions can be suf-
ficiently described using a linear Hammerstein model, which 
describes the BOLD signal as the convolution between a 
linear combination of the power profile of individual fre-
quency bands with a data-driven HRF. Using this model, we 
rigorously investigated the regional variability of the HRF 
during both experimental conditions. Our results reveal that 
the regional characteristics of the HRF depend on both brain 
region, as well as on specific frequency bands under each 
experimental condition. Moreover, during the motor task, 
the proposed method was shown to yield similar results to 
those obtained when using the subjects’ hand grip force. This 
suggests the potential of the proposed method for obtaining 
reliable BOLD predictions and HRF estimates even from 
resting-state data, where there is no explicit task and SNR 

is lower. The proposed method can be readily applied to 
studying resting-state functional connectivity, as accurate 
resting-state HRF estimates are important for removing the 
hemodynamic blurring, which is inherent in the fMRI data.

Appendix

Identification of Hammerstein 
and Wiener‑Hammerstein Models

The Hammerstein model (Fig. 1a; Eq. (1)) can be estimated 
efficiently from the input–output data using orthonormal 
basis functions for the representation of the LTI block 
(Gómez and Baeyens 2004), which is given by

where 
{

Bj(n);j = 0,… , L − 1;n = 0,… ,M
}

 is a set of L 
orthonormal basis functions, and bj is the unknown expan-
sion coefficient of the j-th order basis function. The use 
of orthonormal bases reduces the number of required free 
parameters in the model and allows parameter estimation 
using least-squares regression. This leads to increased esti-
mation accuracy in the presence of noise even from short 
experimental data-records. Combining Eqs. (1, 2) and (6), 
the input–output relationship can be written as

where v(p)
i,j
(n) denotes the convolution between the p-th poly-

nomial power of the i-th input with the j-th basis function. 
Equation  (7) can be re-expressed as a linear regression 
problem

where � =
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]T is 

a vector of the unknown model parameters.
Power fluctuations within distinct EEG frequency bands 

are highly correlated as previously reported in the litera-
ture (de Munck et al. 2009). As a result, the columns in � 
are strongly collinear, which makes estimation of � using 
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ordinary least-squares numerically unstable due to ill-con-
ditioning of the Gram matrix 

[

���
]

. Therefore, to obtain a 
numerically more stable estimate of the unknown param-
eter vector � , we employed partial least-squares regression 
(PLSR) (Rospiral and Kramer 2006).

PLSR is performed in three phases. In phase 1, the algo-
rithm finds projections of � and � to a new co-ordinate sys-
tem such that the covariance of these projections is maxi-
mized. This is achieved using a linear decomposition of both 
� and � into a set of orthonormal latent variables (scores) 
and loadings given by

where � and � are matrices of latent variables associated 
with � and � , respectively. � and � are the corresponding 
loadings for each latent variable matrix, and �1,2 are error 
terms. The decomposition of � and � is performed such that 
the covariance between � and � is maximized. In phase 
2, the algorithm performs ordinary least-squares regression 
analysis between the latent variables � and system output �

where � =
[

θ1,… , θQ×L×P
]T is a vector of the regression 

coefficients. Note that in this case the Gram matrix 
[

���
]

 is 
well-conditioned since the columns in � are orthonormal. In 
phase 3, the estimated �̂��� coefficients are projected back to 
the original parameter space yielding unbiased estimates of 
the original model parameters �̂��� (die Jong 1993).

To uniquely identify the unknown parameters of the 
Hammerstein model described by (1, 2) and (6, 7), the bilin-
ear parameter vector � needs to be dissociated into its con-
stituent ai,p and bj parameters. The parameter vector � can be 
reshaped into a block-column matrix ��� , such that

where � =
[

a1,1,… , aQ,1, a1,2,…… , aQ,P−1, a1,P,… , aQ,P
]T 

and � =
[

b0,… , bL−1
]T . An optimal, in the least-squares 

sense, estimate of the model parameters �̂��� and �̂��� can 
be obtained solving the following constrained minimization 
problem
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where h(m) is given by (6). Note that as a result of normaliz-
ing the polynomial coefficients � , the estimate �̂��� reflects a 
relative rather than absolute contribution of individual EEG 
bands to the BOLD signal variance. A solution to (A9) is 
provided by the singular value decomposition (SVD) of 
matrix ��� (Gómez and Baeyens 2004). Specifically,

where �1 is the first left singular vector, �1 the first right 
singular vector, and �1 ∈ ℝ the first singular value of the 
SVD of �̂ab.

Hammerstein‑Wiener Model Identification

The MISO Hammerstein-Wiener (HW) described by Eq. (3) 
can be re-expressed in a compact matrix form as

where � denotes a matrix the columns of which are polyno-
mial powers of yH , and � is a vector of the unknown poly-
nomial coefficients, which can be estimated using ordinary 
least-squares

Orthonormal Basis Functions

There are several sets of orthonormal basis functions that 
can be used for modeling the impulse response function of 
the LTI block in the Hammerstein and Wiener-Hammerstein 
model configuration (Heuberger et al. 2005). The selection 
of the appropriate basis set depends on the dynamic behavior 
of the system to be modelled. One basis set that has been 
extensively used in the literature for modeling of physiologi-
cal systems is the Laguerre basis. Laguerre basis functions 
exhibit exponentially decaying structure and constitute an 
orthonormal set in [0,∞) , which makes them suitable for 
modeling causal systems with finite memory (Marmarelis 
1993).

In this work we employ a smoother variant of the 
Laguerre basis functions that is based on the spherical 
Laguerre basis functions (Leistedt and McEwen 2012), 
which allow obtaining robust HRF estimates in single vox-
els even during resting conditions where the signal-to-noise 
ratio (SNR) is particularly low. The j-th spherical Laguerre 
basis function bj(n);j = 0,… , L − 1; n = 1,… ,M is given by

(14)

�
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where � ∈ ℝ+ is a parameter that determines the rate of 
exponential asymptotic decline of bj(n) , and Kj(n) is the j
-th generalized Laguerre polynomial of order two, defined as

The j-th spherical Laguerre basis function bj(n) were 
convolved with a Gaussian kernel G(μ,τ), with μ > 0 and 
τ = 1. The μ > 0 parameter controls how late bj(n) will start to 
fluctuate. The range of this parameter was set to 2.5 < μ < 5 
corresponding to HRF estimates with time-to-peak ranging 
between 3 and 10 s (Fig. S12). The orthonormal properties 
of the derived basis set was ensured by entering the result of 
this convolution into an orthogonalization process based on 
the Gram-Schmidt orthogonalization algorithm.
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