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Abstract
The cortical thickness has been used as a biomarker to assess different cerebral conditions and to detect alterations in the 
cortical mantle. In this work, we compare methods from the FreeSurfer software, the Computational Anatomy Toolbox 
(CAT12), a Laplacian approach and a new method here proposed, based on the Euclidean Distance Transform (EDT), and 
its corresponding computational phantom designed to validate the calculation algorithm. At region of interest (ROI) level, 
within- and inter-method comparisons were carried out with a test–retest analysis, in a subset comprising 21 healthy subjects 
taken from the Multi-Modal MRI Reproducibility Resource (MMRR) dataset. From the Minimal Interval Resonance Imag-
ing in Alzheimer’s Disease (MIRIAD) data, classification methods were compared in their performance to detect cortical 
thickness differences between 23 healthy controls (HC) and 45 subjects with Alzheimer’s disease (AD). The validation of 
the proposed EDT-based method showed a more accurate and precise distance measurement as voxel resolution increased. 
For the within-method comparisons, mean test–retest measures (percentages differences/intraclass correlation/Pearson cor-
relation) were similar for FreeSurfer (1.80%/0.90/0.95), CAT12 (1.91%/0.83/0.91), Laplacian (1.27%/0.89/0.95) and EDT 
(2.20%/0.88/0.94). Inter-method correlations showed moderate to strong values (R > 0.77) and, in the AD comparison study, 
all methods were able to detect cortical alterations between groups. Surface- and voxel-based methods have advantages and 
drawbacks regarding computational demands and measurement precision, while thickness definition was mainly associated 
to the cortical thickness absolute differences among methods. However, for each method, measurements were reliable, fol-
lowed similar trends along the cortex and allowed detection of cortical atrophies between HC and patients with AD.
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Introduction

Cortical thickness has been extensively studied because it is 
one of the most sensitive biomarkers used to assess differ-
ent cerebral conditions, ranging from changes under normal 
development, such as aging (Salat et al. 2004; Hutton et al. 
2009), to neurological disorders (Rosas et al. 2002; Cardi-
nale et al. 2014; Clarkson et al. 2011). The cerebral cortex 
follows a highly convoluted gyrification pattern with gyri 
and sulci across the entire structure. It is delimited by the 
white matter (WM)/gray matter (GM) surface at the interior, 
and by the pial surface at the outermost part of the brain. 
Given this geometry, cortical thickness can be measured 
only if the WM/GM and pial surfaces are well determined 
(Fischl and Dale 2000). Methodologies employed to quan-
tify the cortical thickness from MRI data have been classi-
fied as surface-based and voxel-based (Seiger et al. 2018). 

Handling Editor: Irena Rektorova.

 *	 Fernando A. Barrios 
	 fbarrios@unam.mx

 *	 Jorge A. Marquez‑Flores 
	 jorge.marquez@icat.unam.mx

1	 Universidad Nacional Autónoma de México, Instituto de 
Ciencias Aplicadas Y Tecnología, Circuito Exterior S/N, 
Ciudad Universitaria, 04510, Coyoacán, Mexico City, 
México

2	 Graduate Program in Computer Science and Engineering, 
Universidad Nacional Autónoma de México, Ciudad 
Universitaria, 04510, Coyoacán, Ciudad de México, México

3	 Universidad Nacional Autónoma de México, Instituto de 
Neurobiología, Boulevar Juriquilla 3001, 76230, Querétaro, 
Querétaro, México

http://orcid.org/0000-0002-1947-2919
http://orcid.org/0000-0002-0637-0833
http://orcid.org/0000-0002-5699-4222
http://orcid.org/0000-0003-1605-6183
http://crossmark.crossref.org/dialog/?doi=10.1007/s10548-021-00852-2&domain=pdf


431Brain Topography (2021) 34:430–441	

1 3

A surface-based approach requires a mesh model to render 
the cortical surfaces, whereas a voxel-based approach works 
directly on the original grid of voxels, making this method-
ology less computationally expensive (Clarkson et al. 2011) 
and independent from a fitted surface model.

Regarding a surface-based approach, FreeSurfer is a 
popular toolbox to perform cortical thickness measure-
ments. Despite its well-known computational cost to ensure 
an accurate cortical topology (Clarkson et al. 2011; Fischl 
et al. 2001), FreeSurfer has been widely applied to in-vivo 
datasets, post-mortem (Rosas et al. 2002) and ex-vivo (Car-
dinale et al. 2014), making this software reliable, robust 
and accurate. However, there are some reasons an in-vivo 
cortical thickness gold standard has not been settled. His-
tology measurements do not provide reliable results due 
to structural changes in the cortex (e.g. shrinking) related 
to the fixation of the post-mortem brain (Lüsebrink et al. 
2013). Further, ex-vivo measurements have been made 
only region-specific and cannot be considered valid for the 
whole cerebral cortex (Seiger et al. 2018). Finally, there is 
no mathematical definition on how to measure the thickness 
of highly curved structures (Lüsebrink et al. 2013).

In view of more efficient methods and given the lack of 
a real gold standard, different voxel-based approaches have 
been proposed. Nevertheless, the most important limitation 
has been their decreased accuracy calculations due to partial 
volume effects affecting convoluted structures, which can 
lead to a less robust segmentation of the tissues of interest 
(Clarkson et al. 2011; Hutton et al. 2008). Based on this 
framework, Jones et al. (2000) proposed the first procedures 
by solving Laplace’s equation and computing streamlines 
between the WM/GM and GM/cerebrospinal fluid (CSF) 
interfaces, which serve as the trajectories to estimate the 
cortical thickness. Improvements to provide better cortical 
boundaries consist in stacking layers with one voxel of thick-
ness around the WM, identifying sulcal regions by expecting 
a certain thickness value (Hutton et al. 2008), and others 
rely on the skeletonization of the CSF to better delineate 
the GM/CSF boundary (Hutton et al. 2009). Another voxel-
based approach is distributed in the Computational Anatomy 
Toolbox (CAT: http://​www.​neuro.​uni-​jena.​de/​cat/) for the 
Statistical Parametric Mapping (SPM: http://​www.​fil.​ion.​
ucl.​ac.​uk/​spm/) software. Given the WM/GM and GM/CSF 
segmentations, a Projection Based Thickness (PBT) method 
(Seiger et al. 2018) is employed, which consists in estimat-
ing the distance from the WM/GM boundary to project the 
local maxima to other GM voxels by taking into account 
information from the neighboring voxels and from blurred 
sulci to generate correct cortical thickness maps (Dahnke 
et al. 2013; Righart et al. 2017; Seiger et al. 2018).

Previous studies comparing the cortical thickness 
obtained by different methodologies have included Free-
Surfer and Laplace’s method (Clarkson et al. 2011; Li et al. 

2015), and more recently, between FreeSurfer and CAT12 
(Righart et al. 2017; Seiger et al. 2018). In this work, within- 
and inter-method comparisons were carried out using Free-
Surfer, CAT12, the Laplacian thickness and a Euclidean 
Distance Transform (EDT). We have already proposed and 
applied EDT-based methods in previous shape-analysis 
works; for example, a morphological average uses the EDT 
of anatomical shapes to extract a representative model for 
craniofacial morphometry (Márquez et al. 2005). Also, we 
introduced an EDT-based method to measure the width of 
cortical sulci in brains of patients with Alzheimer’s disease 
(AD) and controls (Mateos et al. 2020). It was validated with 
a mathematical exact analysis and a corresponding voxelized 
computational phantom, modeling width variations and the 
effect of discretization, voxel resolution and shape orien-
tation. The phantom in the present work follows a similar 
approach where the effect of voxel resolution was assessed 
on a set of concentric spheres (Das et al. 2009), and a distri-
bution of analytically determined distances between eccen-
tric spheres were compared to those of the EDT algorithm. 
In real brain images, region of interest (ROI)-wise cortical 
thickness measurements, applying each method, were per-
formed on a test–retest dataset to study the measurement 
reliability. Finally, as a clinical application, the detection of 
brain atrophy between healthy controls (HC) and subjects 
with AD was assessed.

Methods

Subjects and Data Acquisition

Multi‑Modal MRI Reproducibility Resource (MMRR) Dataset

Data for the test–retest analysis were taken from the freely 
available MMRR dataset (Landman et al. 2011). We ana-
lyzed T1-weighted images of the complete database (21 sub-
jects), comprising 10 females and 11 males (31.8 ± 9.5 years 
[mean age ± standard deviation]) with no history of neuro-
logical conditions. The volunteers were scanned and res-
canned with a short break between sessions (two in the same 
day); a total of 42 sessions were completed in a two-week 
interval. See detailed information in Landman et al. (2011).

Minimal Interval Resonance Imaging in Alzheimer’s Disease 
(MIRIAD) Dataset

As a potential clinical application, the MIRIAD data-
set (Malone et al. 2013) was included comprising a total 
of 46 AD subjects and 23 HC. One female with AD was 
excluded as the data of the session (baseline) we analyzed 
were not available. Therefore, for the analysis, 45 subjects 
(26 females) diagnosed with mild-moderate probable AD 

http://www.neuro.uni-jena.de/cat/
http://www.fil.ion.ucl.ac.uk/spm/
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(Mini-Mental State Examination < 27), and 23 healthy con-
trols (11 females) were considered. The AD and HC subjects 
were age-matched at 69.1 ± 7.1 and 69.7 ± 7.2 years, respec-
tively. See detailed information in Malone et al. (2013).

Cortical Thickness Estimation with Current Software

FreeSurfer

Under FreeSurfer software version 6.0 (http://​surfer.​nmr.​
mgh.​harva​rd.​edu/), all subjects were processed using the 
command recon-all with default parameters. The pipeline 
consists of several stages. First, with a Talairach transforma-
tion (Talairach and Tournoux 1988), the original volume was 
registered to a standard space and the white matter points 
were labeled based on their location and intensity, followed 
by an intensity normalization procedure (Dale et al. 1999; 
Fischl et al. 2004). The skull was then stripped (Ségonne 
et al. 2004) and the hemispheres were separated based on 
the expected location of the corpus callosum and pons, while 
the cerebellum and brain stem were removed. Following the 
intensity gradients of the GM/WM boundary (white sur-
face), topological correction to create accurate and topo-
logically correct surfaces was achieved with a subsequent 
deformation to follow the intensity gradients of the CSF/GM 
boundary (pial surface) (Fischl et al. 2001). Finally, the cor-
tical thickness was estimated as the average of two distances: 
the distance from a point on the white surface to the closest 
point on the pial surface and the distance from that point 
back to the nearest point on the white surface (Clarkson et al. 
2011; Rosas et al. 2002). No manual editing was performed 
in any case, but each output was visually inspected. For the 
MMRR dataset, obvious issues regarding skull stripping, 
intensity normalization and tissue segmentation were not 
visible. For the MIRIAD dataset, no skull stripping failures 
were present although there were four AD subjects and one 
HC with soft issues regarding intensity normalization and 
tissue classification. However, we considered this is of no 
major concern as a comparison to other cortical thickness 
measurement methods, using the same FreeSurfer segmenta-
tion, was carried out.

Computational Anatomy Toolbox (CAT12)

As an alternative and relatively new software to perform 
cortical thickness estimates, all subjects were processed 
with CAT12 version r1430 (http://​www.​neuro.​uni-​jena.​de/​
cat/) under SPM12 version 7487 (http://​www.​fil.​ion.​ucl.​
ac.​uk/​spm/) using Matlab (R2017b). Before running the 
pipeline, we set the origin in each cerebral volume at the 
anterior commissure. Afterwards, we segmented the origi-
nal volume specifying the surface and thickness estimation 
for ROI analysis in the options. To calculate the cortical 

thickness, tissue segmentation was used to estimate the WM 
distance and project the local maxima to other GM voxels by 
using a neighbor relationship described by the WM distance 
(Dahnke et al. 2013). The reconstruction process included 
topology correction relying on spherical harmonics (Yotter 
et al. 2011a), spherical mapping to reparameterize the sur-
face mesh into a common coordinate system (Yotter et al. 
2011b) and spherical registration (Ashburner 2007). It is 
important to mention that CAT12 is a stand-alone segmenta-
tion pipeline of structural brain MR images, as an extension 
to SPM12, where a range of morphometric methods offered 
are optional, including cortical thickness estimation. In this 
study, CAT12 has been used with default settings to allow 
comparisons against a truly alternative method taking advan-
tage of a fast and a fully automated pipeline.

Laplacian

Supplied by ANTs (Advanced Normalization Tools, http://​
stnava.​github.​io/​ANTs/) version 2.3.1, we implemented the 
Laplacian thickness method as previously described (Jones 
et al. 2000). The input for the command was the segmented 
GM and WM provided by FreeSurfer after the cortical 
reconstruction process. We used these volumes for a more 
direct comparison, reducing the software-dependent seg-
mentation procedure. The thickness maps were capped at 
5 mm and smoothed using a Gaussian filter of sigma equal 
to 1 mm.

Proposed EDT for Cortical Thickness Estimation

The input for this method was the segmented WM and GM 
taken from FreeSurfer. The EDT is a transformation D car-
ried out on the WM to obtain a distance map d as a function 
of each voxel in the volume of interest. The voxel value 
is given by the Euclidean distance from the coordinates of 
that voxel to the closest point on the boundary ∂ WM as 
expressed by:

The next step was to crop and delimit the EDT to the 
region ranging all along the GM only. This was achieved by 
modulating the original distance map with the GM volume. 
The outcome was a cortical thickness map capped at 5 mm 
and smoothed using a Gaussian filter of 1 mm.

Validation of the EDT

Eccentric Spheres

Two eccentric spheres were designed to model a source 
of varying distances between an inner sphere (r = 5 mm), 

[D(WM)](p) = d(p, �WM) ≜ min
q∈�WM

|p − q|, p ∈ ℤ
3
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centered at Ci, and an outer sphere (R = 8 mm) centered at 
Co. The relative displacement of the inner to the outer sphere 
was of 1 and 2 mm in the x and y direction, respectively. This 
phantom simulates thickness variations of the GM and does 
not model the shape of the brain or other features. Also, this 
simple geometry allowed us to obtain an analytical ground 
truth to compare with the discrete EDT measurement. Thus, 
we carried out the analytical calculation as follows (see 
Fig. 1). First, the general equation of the sphere was used to 
compute a unit normal vector (n ̂inner) at every point of the 
inner sphere (pi). Then, using the parameterized equation of 
a line in the space, we projected the normal vector until the 
intersection with the outer sphere (po) was found, and this 
value was recorded as d1. The coordinates at the intersection 
(po) were taken to compute a unit normal vector to the outer 
sphere (n ̂outer), which was projected back to the interior part 
of the geometry until the intersection with the inner sphere 
(pi) was reached and its distance was recorded as d2. Finally, 
the thickness at (po) was measured as the average between 
the distances d1 and d2.

Concentric Spheres

Centered at the same coordinates, inner and outer spheri-
cal surfaces of radius r = 5 and R = 8 mm, respectively, 
were modeled so that a theoretical exact thickness of 3 mm 
was expected at every point on the outer surface. To study 
the effect of spatial resolution and discretization, the same 

geometries were voxelized at isotropic voxel sizes of 0.1, 
0.5 and 1.0 mm (see Fig. 2). The only difference with 
respect to the theoretical value is produced by two factors: 
the discretization error and machine precision, giving the 
latter a much lower error than the former.

Statistical Analysis

Cortical thickness data were extracted using regular 
commands in FreeSurfer and CAT12, while a script was 
devised for the Laplacian and the EDT methods. ROI-wise 
mean and standard deviation were obtained over the 34 
regions of the Desikan-Killiany atlas (Desikan et al. 2006). 
For within-method comparisons, percent difference, paired 
sample t-test, intraclass (ICC) and Pearson (R) correlation 
coefficients between scans were calculated to assess the 
reliability measurement. For inter-method comparisons, 
the first scan of the MMRR dataset was taken and the 
Pearson correlation coefficient was calculated to measure 
the agreement on a between-methods basis. Finally, to 
assess the method capability for detecting group differ-
ences (HC, AD) in cortical atrophy, effect sizes (Cohen’s 
d) and Welch’s t-tests for unequal variances were com-
puted. Significance was defined at p < 0.05 and t-tests were 
corrected for multiple comparisons with a False Discovery 
Rate (FDR correction) of 0.05.

Fig. 1   Slice of a set of eccentric spherical surfaces to analytically 
determine the thickness point wise. First, a unit normal vector (n̂inner) 
to every point (pi) of the inner sphere, centered at ci, is computed. 
The normal vector is projected until the intersection with the outer 
sphere is found (Intersection  1), and the distance is recorded as d1. 

Then, Intersection 1 (point po on the outer sphere, centered at co) is 
used to compute and project a unit normal vector (nôuter) back to the 
inner sphere (pi) to find Intersection  2. This distance is recorded as 
d2. Finally, the exact thickness at po is obtained as the average of d1 
and d2
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Results

Evaluation of the EDT used on synthetic images at dif-
ferent spatial resolution showed the following: For the 
concentric spheres (mathematical models), the analyti-
cally measured thickness was 3 mm at every point of the 
outer sphere (Fig. 2A). In the voxelized geometries (com-
putational models), a narrow distribution of thicknesses 

was still near 3 mm at a voxel size of 0.1 mm isotropic 
(Fig. 2B) with an average of 2.95 ± 0.04 mm. However, 
the histogram broadened as the distances was measured 
on images of lower spatial resolution of 0.5 mm (average: 
2.86 ± 0.19 mm) and 1.0 mm (average: 2.75 ± 0.34 mm), 
resulting in less precise and accurate estimations of the 
thickness (see Fig. 2).

Regarding the geometry of eccentric spheres, the data 
distribution of thicknesses was described using a violin plot 

Fig. 2   Accuracy and precision of the EDT represented by a slice of the concentric spheres (top row) and its corresponding histogram (bottom 
row) of the (A) analytically measured thickness and the voxelized approach at voxel sizes of (B) 0.1 mm, (C) 0.5 mm and (D) 1.0 mm isometric

Fig. 3   Analytical and EDT thickness distribution between eccentric spheres. Analytically, the thickness was determined as detailed in Fig. 1. On 
the other hand, the EDT was applied at a different spatial resolution. A similar Coefficient of Variation, CV (standard deviation/mean), is shown
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(see Fig. 3). In the analytical model, a distribution more 
densely concentrated around its mean (2.84 ± 0.14 mm) was 
obtained. The violin shape was similar between the EDT at 
0.1- and 0.5-mm voxel with mean values of 3.15 ± 1.35 and 
3.06 ± 1.34 mm, respectively. The data distribution was more 
concentrated at higher values which we assumed was due to 
a rounding-up voxel effect. Conversely, at an isotropic voxel 
size of 1.0 mm (average: 3.04 ± 1.28 mm), a poorer sphere 
segmentation was given so that the distance map resulted in 
zero-valued voxels with short distances, and thus, in a lower 
mean value. Despite differences in the data distribution, the 
Coefficient of Variation, CV (ratio of the standard deviation 
to the mean), showed robust results among measurements 
with values between 0.40 and 0.44.

For the test–retest analysis, in general, most of the ROIs 
obtained a percent difference between 1 and 3%, while the 
ICC and Pearson correlation coefficients were greater than 
0.85 and 0.91, respectively. The extreme case was in the 
entorhinal and parahippocampal region measured with 
CAT12, delivering the highest percent differences and 
poorer correlations between scans. Another complicated 
region with low correlation values, regarding the voxel-
based approaches only, was the temporal pole, transverse 
temporal and the insula. Detailed information of these meas-
urements is displayed in Table 1. A paired sample t-test of 
equal variances was performed for each ROI. Previously, 
the assumption of normality and equal variances was tested 
(and fulfilled the criteria) running the Shapiro–Wilk’s test 
and Bartlett’s test, respectively. Despite some low ICCs and 
Pearson correlation coefficients shown in Table 1, the t-test 
suggested a non-significant mean difference between scans 
in every ROI (FDR correction) for surface- and voxel-based 
approaches. To complement this description, the cortical 
thickness (measured with four methods) on the scan-rescan 
images is depicted in Fig. 4. The first trend was the signifi-
cant higher values obtained with the Laplacian method with 
respect to FreeSurfer and the EDT for all 34 ROIs. Likewise, 
CAT12 provided higher values compared to FreeSurfer and 
the EDT in 29 and 26 out of 34 ROIs, respectively. Pro-
nounced differences were detected at the entorhinal, parahip-
pocampal and the posterior cingulate. 

For inter-method comparisons, Pearson correlation coef-
ficients between methods are shown in Table 2. Compari-
son between FreeSurfer and CAT12 resulted in the highest 
correlation coefficient, followed by the Laplacian approach 
against the EDT and FreeSurfer against the EDT. When 
CAT12 was compared to the voxel-based methods, moder-
ate correlation coefficients were obtained against the EDT 
(R = 0.79) and Laplacian (R = 0.77) approaches.

Results concerning the MIRIAD cohort are displayed in 
Fig. 5, where mean cortical thickness was plotted against the 
ROIs for each method. Again, for all 34 ROIs, significant 
higher values were obtained using the Laplace method with 

a greater difference when compared against FreeSurfer and 
the EDT. Nevertheless, a very similar trend among methods 
along the range of regions under study was observed.

Regarding the within-method comparison, an evident 
decrease in cortical thickness in diseased subjects was 
shown, although the opposite was revealed in a few ROIs. 
A thorough comparison, based on Cohen’s d effect size and 
Welch’s t-test (unequal variances), indicated the similar sig-
nificant differences (FDR correction) between HC and AD 
as follows. Out of 34 ROIs, a significant group difference 
was found in 21 ROIs when measuring with FreeSurfer. 
Likewise, significant differences were found in 24 ROIs and 
18 ROIs for the Laplacian and EDT methods, respectively. 
In terms of detecting group differences, CAT12 differed 
the most with respect to other methods, but most Cohen’s 
d values were the highest followed by the Laplacian and 
EDT methods, and FreeSurfer. For all methods, pronounced 
differences (d > 1.00) were found mainly in temporal brain 
regions. Detailed information is shown in Table 3.

Discussion

Due to the lack of an in-vivo gold standard of cortical thick-
ness, an underexploited mathematical model and its corre-
sponding computational phantom were designed to validate 
the proposed EDT. Results reported here have shown that the 
accuracy and precision of the EDT method, compared to a 
mathematical standard, vary as spatial resolution decreases. 
Apparent inconsistencies between high- and low-resolution 
data, for arbitrary geometries, were strongly attributed to 
partial volume effects. To alleviate this issue mainly affect-
ing the voxel-based methods, it might be worth spending 
more time on image acquisition to enhance voxel resolution 
and obtain more precise measurements.

For cortical thickness estimations, comparisons of three 
currently used methods (FreeSurfer, CAT12 and the Lapla-
cian approach) were conducted, adding the EDT-based 
measurement to the volume-based methodology list. For 
all within-method comparisons in the test–retest analysis, 
non-significant cortical thickness differences were found, 
and three test–retest measures were devised suggesting 
a strong correlation between scans in almost all ROIs 
under investigation. Inter-methods comparisons, taking 
the measurements of the first scans of the MMRR dataset, 
showed from moderate to strong significant correlations 
for all observations, performing slightly better when the 
surface-based method was involved. In more detail, the 
highest correlation coefficient was observed for FreeSurfer 
against CAT12. This might be explained as these are pipe-
lines with specialized stages to better estimate the corti-
cal thickness including topology correction, in the case 
of FreeSurfer and adaptation of blurred sulci and gyri in 
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the PBT mapping for CAT12. High correlations between 
FreeSurfer and the remaining voxel-based methods might 
be attributed to the use of the same segmented WM and 
GM outputted from FreeSurfer. However, there is a strik-
ing lower correlation between the voxel-based methods 
which we ascribed to the segmentation process. While the 
Laplacian and EDT techniques (R = 0.90) took the same 

WM and GM volumes, CAT12 produced their own tissue 
segmentation.

Inter-method comparisons have shown that absolute 
values obtained for each method were not directly compa-
rable, and caution should be taken when studying group 
differences and comparing among methods. On the other 
hand, inter-method disagreement in absolute values might 
also be attributed to systematic differences due to distinct 

Table 1   Test–retest cortical thickness measurement using the Desikan-Killiany atlas

The significance is P < 0.05, corrected for multiple comparisons
For each region of interest (ROI) of the Desikan-Killiany atlas, ∆ (%) mean percentage difference (test–retest reliability), intraclass (ICC) and 
Pearson (R) correlation coefficients were determined between subjects’ scans. Measurement methods included FreeSurfer (FS6), the Computa-
tional Anatomy Toolbox (CAT12), the Laplacian approach and the Euclidean Distance Transform (EDT) approach

ROI FS6 CAT12 Laplacian EDT

∆ (%) ICC R ∆ (%) ICC R ∆ (%) ICC R ∆ (%) ICC R

1-Banks superior temporal sulcus-(B) 1.06 0.95 0.98 1.17 0.88 0.94 1.43 0.93 0.98 1.67 0.94 0.97
2-Caudal anterior cingulate-(CACg) 1.71 0.97 0.98 1.58 0.97 0.98 1.29 0.90 0.95 1.45 0.96 0.98
3-Caudal middle frontal-(CMF) 2.38 0.78 0.89 2.20 0.78 0.91 1.31 0.85 0.92 2.14 0.89 0.94
4-Cuneus-(Cu) 1.52 0.96 0.98 1.41 0.88 0.94 1.97 0.91 0.96 2.81 0.89 0.95
5-Entorhinal-(En) 4.18 0.83 0.92 6.96 0.35 0.58 1.08 0.91 0.95 4.63 0.77 0.88
6-Fusiform-(Fu) 1.19 0.93 0.97 1.71 0.90 0.95 0.77 0.86 0.95 1.62 0.84 0.93
7-Inferior parietal-(IP) 2.06 0.81 0.92 1.29 0.90 0.95 1.57 0.80 0.89 2.15 0.85 0.93
8-Inferior temporal-(IT) 1.14 0.94 0.97 1.47 0.86 0.93 0.86 0.87 0.96 1.73 0.89 0.96
9-Isthmus cingulate-(IstCg) 1.80 0.90 0.95 1.62 0.96 0.98 1.18 0.85 0.92 2.28 0.86 0.93
10-Lateral occipital-(LO) 1.67 0.92 0.97 0.93 0.96 0.98 1.80 0.86 0.94 2.99 0.86 0.94
11-Lateral orbital frontal-(LOrF) 1.57 0.88 0.94 1.17 0.93 0.97 1.01 0.86 0.93 1.94 0.80 0.91
12-Lingual-(Lg) 1.56 0.94 0.97 1.67 0.75 0.88 1.54 0.90 0.96 2.63 0.91 0.96
13-Medial orbital frontal-(MOrF) 1.95 0.91 0.96 1.98 0.83 0.94 1.23 0.86 0.94 2.66 0.80 0.91
14-Middle temporal-(MT) 1.13 0.92 0.96 1.55 0.59 0.77 0.73 0.92 0.96 1.49 0.87 0.94
15-Parahippocampal-(PaH) 1.73 0.95 0.97 4.00 0.54 0.73 1.17 0.92 0.96 2.34 0.92 0.96
16-Paracentral-(PaC) 1.86 0.91 0.96 1.57 0.81 0.91 1.77 0.92 0.96 2.02 0.94 0.97
17-Pars opercularis–(Op) 1.60 0.88 0.94 1.35 0.90 0.95 0.91 0.94 0.97 1.75 0.92 0.96
18-Pars orbitalis-(Or) 1.76 0.92 0.96 1.32 0.95 0.97 1.06 0.87 0.94 2.40 0.90 0.95
19-Pars triangularis-(Tr) 1.47 0.94 0.97 1.42 0.94 0.97 1.18 0.94 0.97 2.37 0.91 0.96
20-Pericalcarine-(PerCa) 2.84 0.85 0.92 2.43 0.66 0.81 3.00 0.91 0.96 4.10 0.84 0.93
21-Postcentral-(PoC) 0.88 0.97 0.98 1.14 0.96 0.99 1.19 0.95 0.97 1.42 0.95 0.97
22-Posterior cingulate-(PoCg) 1.45 0.93 0.96 1.21 0.92 0.96 1.03 0.90 0.95 1.25 0.92 0.97
23-Precentral-(PreC) 1.47 0.90 0.95 1.35 0.91 0.96 1.30 0.96 0.98 1.80 0.95 0.97
24-Precuneus-(PreCu) 1.68 0.90 0.95 1.01 0.93 0.96 1.42 0.91 0.95 1.70 0.90 0.95
25-Rostral anterior cingulate-RoACg) 2.08 0.91 0.95 1.70 0.94 0.97 1.18 0.89 0.94 1.84 0.88 0.93
26-Rostral middle frontal-(RoMF) 1.51 0.85 0.93 1.57 0.88 0.95 1.43 0.79 0.91 1.97 0.87 0.93
27-Superior frontal-(SF) 2.05 0.88 0.94 1.96 0.82 0.92 1.07 0.84 0.92 1.62 0.94 0.97
28-Superior parietal-(SP) 2.03 0.88 0.94 1.67 0.92 0.96 1.78 0.87 0.93 2.05 0.91 0.95
29-Superior temporal-(ST) 1.07 0.98 0.99 1.93 0.80 0.89 0.59 0.97 0.98 1.10 0.97 0.99
30-Supramarginal-(SM) 1.45 0.88 0.95 1.11 0.93 0.97 1.02 0.89 0.95 1.27 0.94 0.97
31-Frontal pole-(FPol) 2.45 0.89 0.95 3.30 0.81 0.92 1.15 0.90 0.95 2.96 0.88 0.93
32-Temporal pole-(TPol) 2.55 0.73 0.87 3.59 0.45 0.66 0.39 0.77 0.88 2.94 0.62 0.81
33-Transverse temporal-(TrT) 2.39 0.92 0.96 1.83 0.94 0.97 1.58 0.95 0.98 2.59 0.96 0.98
34-Insula-(Ins) 1.85 0.86 0.93 2.81 0.73 0.85 1.34 0.75 0.86 2.99 0.79 0.89
Mean 1.80 0.90 0.95 1.91 0.83 0.91 1.27 0.89 0.95 2.20 0.88 0.94
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distance definitions, as has been pointed out in other 
works (Das et al. 2009; Seiger et al. 2018). The Laplacian 
approach differed the most in terms of the absolute values 
delivered. This may be explained as follows: in the Lapla-
cian approach, the cortical thickness was estimated as a 
curved distance defined along computed streamlines in 
the GM (Hutton et al. 2008; Jones et al. 2000). Therefore, 
the measurement resemblance among other inter-method 
comparisons (FreeSurfer, CAT12 and EDT) was attributed 
to a straight-line definition since they share the essence of 
a Euclidean metric. However, the distance definition was 
still different; FreeSurfer computed the cortical thickness 
as an average nearest neighbor points (Rosas et al. 2002) 
of two fully reconstructed cortical surfaces, which in turn 
can be a source of discrepancy due to its fitting model 
nature that is not exempt from disregarding local, irregular 
variations of the cortex. Slight overestimations of CAT12 
were also associated with the calculation algorithm based 
on a local maxima projection method adapting for blurred 
sulci and gyri (Righart et al. 2017; Seiger et al. 2018). 
Finally, the EDT distance definition was also different 
from the rest, as cortical thickness was estimated as the 
distance between closest corresponding points given by 
the EDT. Overall, despite these characteristics, most ROI 
cortical thickness patterns were similar among methods.

As a clinical application, the MIRIAD dataset was used 
to detect atrophies due to a neurodegenerative condition. 
In terms of significant ROI-wise group differences, effect 
sizes were slightly higher for CAT12. This may suggest an 
outperformance of CAT12 to discriminate AD from HC as 
was indicated in a previous study comparing against Free-
Surfer (Seiger et al. 2018). As CAT12 is a fully automated 
pipeline with its own tissue classification, topological cor-
rection and cortical thickness mapping, it is difficult to 
identify the source of the claimed better performance. Sig-
nificant group differences were more in agreement among 
FreeSurfer, Laplacian and EDT methods. Once again, it 
seemed that results were more alike when the same segmen-
tation volumes were used within the calculation algorithm. 

Fig. 4   Mean cortical thickness and standard deviation using Free-
Surfer, CAT12, the Laplacian method and EDT in the MMRR data-
set. For all methods, non-significant differences (P < 0.05, corrected 
for multiple comparisons) were found between the scan-rescan 
images for 34 ROIs of the Desikan-Killiany atlas. Numbers on ROIs-
axis indicate a region described in Table 1

Table 2   Linear correlations to assess cortical thickness agreement 
between methods

Each value represents the Pearson correlation coefficient calculated 
between methods including FreeSurfer (FS6), the Computational 
Anatomy Toolbox (CAT12), the Laplacian approach and the Euclid-
ean Distance Transform (EDT) approach. All correlations were sig-
nificant (P < 0.05)

FS6 CAT12 Laplacian EDT

FS6 0.92 0.85 0.89
CAT12 0.77 0.79
Laplacian 0.90
EDT
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This, pattern repeated from the correlation analysis, might 
highlight the importance of segmentation when comparing 
results among techniques.

In sum, all methods performed similar for almost all ROIs 
with undesirable measures found in the entorhinal cortex, 
insula and temporal regions (parahippocampal, transverse 
temporal and temporal pole). These results were in line with 
published works where variable results were attributed to 
a poor volume segmentation and surface reconstruction of 
the temporal regions (Han et al. 2006), due to a very likely 
low contrast and susceptibility artifacts in the image acqui-
sition (Lüsebrink et al. 2013). Another complicated struc-
ture is the insula (Blustajn et al. 2019; Li et al. 2015) and 
entorhinal (Li et al. 2015, Price et al. 2011) mainly due to 
their size and to challenges in detecting the boundaries to 
distinguish them from their surroundings. Because tissue 
segmentation appeared to be the main source of misleading 
results in highly convoluted regions, it could be suggested 
to optimize segmentation algorithms and acquisition pro-
tocols for specific brain areas. Despite these observations, 
efficient alternative methods attaining reliable estimates of 
cortical thickness measures can be valuable when computa-
tional resources are not enough or when shorter processing 
times of large datasets is a priority. FreeSurfer version 7 has 
been released and according to the FreeSurfer Release Notes 
(https://​surfer.​nmr.​mgh.​harva​rd.​edu/​fswiki/​Relea​seNot​es), 
the complete reconstruction pipeline is 20–25% faster than 
previous versions along with improved algorithms to pro-
cess volumes at higher spatial resolution. Although these 
new features, voxel-based methods are still more efficient 
and they are also capable of managing data with increased 
resolution, overcoming one of the most important drawbacks 
of these kind of techniques.

Conclusions

Comparison results were limited to the use of FreeSurfer 
6. As the latest stable release included a triangular mesh 
of the white surface of better quality, bias field correction 
using ANTS N4, among others, trends observed in this work 
may change mainly when comparing against CAT12, assum-
ing that the Laplacian and EDT techniques take FreeSurfer 
segmentation as input. Another limitation was associated 
to CAT12 in terms of the comparison of cortical thickness 
metrics against the other methods, because CAT12 applied 
their own processing steps different to those of FreeSurfer.

We have introduced a voxel-based method using the EDT, 
validated by an analytical model and its corresponding com-
puter phantom, and implemented to estimate the cortical 
thickness. A “beta” version of the EDT-based calculation 
cortical thickness in discrete brain datasets, written in Mat-
lab will be available free, by written demand to the first 

Fig. 5   Mean cortical thickness and standard deviation for Free-
Surfer, CAT12, the Laplacian method and EDT in the MIRIAD data-
set. Measurements included 34 ROIs of the Desikan-Killiany atlas 
comparing subjects with Alzheimer’s disease (AD: red) and healthy 
controls (HC: blue). Numbers on the ROI axis indicate a region 
described in Table 1

https://surfer.nmr.mgh.harvard.edu/fswiki/ReleaseNotes
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and last authors emails. In conclusion, the current work has 
shown reliable test–retest cortical thickness measures with 
surface- and voxel-based methods, and good agreement 
regarding their ability to detect atrophies in the cortex. Inter-
method absolute differences reported might be attributed to 
systematic errors as evidenced. Each methodology has its 

own foundations which make every technique unique; sur-
face-based methods attain higher precision calculations if a 
reliable and accurate model is reconstructed, at the expense 
of more computational demands. Besides, voxel-based 
approaches have been limited by spatial resolution, as was 
also suggested by the computational phantom for the EDT.

Table 3   Cortical thickness 
comparison between healthy 
controls and the Alzheimer 
diseased population, reporting 
the effect size (Cohen’s d) using 
the Desikan-Killiany atlas

For each region of interest (ROI) of the Desikan-Killiany atlas, the effect size (Cohen’s d) is given for 
each measurement method, including FreeSurfer (FS6), the Computational Anatomy Toolbox (CAT12), the 
Laplacian approach and the Euclidean Distance Transform (EDT) approach.
Significant mean cortical thickness difference (P < 0.05, FDR-correction) between groups is indicated with 
*.
The values at the bold represent the mean of the significant effect size for the given method

ROI FS6 Cohen’s d CAT12 Cohen’s d Laplacian 
Cohen’s d

EDT Cohen’s d

1-B 0.84* 0.83* 0.92* 0.93*
2-CACg − 0.38 0.33 0.04 − 0.16
3-CMF 0.78* 0.70* 0.92* 0.73*
4-Cu 0.14 0.50* 0.23 − 0.04
5-En 1.33* 1.57* 1.37* 1.13*
6-Fu 1.20* 1.69* 1.16* 1.08*
7-IP 1.09* 1.08* 1.46* 1.33*
8-IT 1.35* 1.89* 1.38* 1.32*
9-IstCg 1.44* 1.21* 1.05* 1.29*
10-LO 0.56* 0.77* 0.83* 0.68*
11-LOrF 0.51 0.81* 0.61* 0.38
12-Lg 0.57* 0.53* 0.57* 0.15
13-MOrF 0.74* 0.31 0.56* 0.41
14-MT 1.27* 1.85* 1.61* 1.40*
15-PaH 0.63* 1.35* 0.88* 0.52
16-PaC 0.23 0.20 − 0.14 − 0.17
17-Op 0.54 1.01* 0.72* 0.67*
18-Or 0.37 0.67* 0.36 0.20
19-Tr 0.13 0.71* 0.33 0.25
20-PerCa − 0.26 − 0.03 0.22 − 0.16
21-PoC 0.37 0.21 0.14 0.05
22-PoCg 0.79* 1.24* 0.88* 0.45
23-PreC 0.39 − 0.04 0.22 0.14
24-PreCu 0.83* 0.99* 1.13* 0.95*
25-RoACg 0.55 0.41 0.76* 0.31
26-RoMF 0.80* 1.06* 1.22* 0.91*
27-SF 0.93* 0.98* 0.80* 0.77*
28-SP 0.79* 0.76* 0.97* 0.81*
29-ST 1.57* 1.76* 1.45* 1.51*
30-SM 1.02* 1.07* 1.24* 1.08*
31-FPol 0.54 0.67* 0.45 0.46
32-TPol 1.28* 1.38* 0.92* 0.86*
33-TrT − 0.01 0.78* 0.37 0.20
34-Ins 0.79* 1.30* 1.40* 1.11*
Mean (significant 

group differences)
0.98 1.08 1.03 1.03
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