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Abstract
Musculoskeletal pain is a clinical condition that is characterized by ongoing pain and discomfort in the deep tissues such 
as muscle, bones, ligaments, nerves, and tendons. In the last decades, it was subject to extensive research due to its high 
prevalence. Still, a quantitative description of the electrical brain activity during musculoskeletal pain is lacking. This study 
aimed to characterize intracranial current source density (CSD) estimations during sustained deep-tissue experimental 
pain. Twenty-three healthy volunteers received three types of tonic stimuli for three minutes each: computer-controlled 
cuff pressure (1) below pain threshold (sustained deep-tissue no-pain, SDTnP), (2) above pain threshold (sustained deep-
tissue pain, SDTP) and (3) vibrotactile stimulation (VT). The CSD in response to these stimuli was calculated in seven 
regions of interest (ROIs) likely involved in pain processing: contralateral anterior cingulate cortex, contralateral primary 
somatosensory cortex, bilateral anterior insula, contralateral dorsolateral prefrontal cortex, posterior parietal cortex and 
contralateral premotor cortex. Results showed that participants exhibited an overall increase in spectral power during 
SDTP in all seven ROIs compared to both SDTnP and VT, likely reflecting the differences in the salience of these stimuli. 
Moreover, we observed a difference is CSD due to the type of stimulus, likely reflecting somatosensory discrimination of 
stimulus intensity. These results describe the different contributions of neural oscillations within these brain regions in the 
processing of sustained deep-tissue pain.
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Introduction

Musculoskeletal pain is a major health problem, and 
research into the underlying neurophysiological mecha-
nisms is required to improve its understanding and manage-
ment (Arendt-Nielsen et al. 2011). It is a clinical condition 
that is characterized by ongoing pain and discomfort in the 
deep tissues such as muscle, bones, ligaments, nerves and 

tendons (Kehl and Fairbank 2003; Arendt-Nielsen et al. 
2011). Clinical musculoskeletal pain is usually not a short-
lasting and time-bound sensation; even acute pain can last 
from minutes to days or weeks. In this regard, tonic rather 
than phasic experimental pain models better resemble clin-
ical musculoskeletal pain (Svensson and Arendt-Nielsen 
1995). Although many surrogate models can closely mimic 
musculoskeletal pain (e.g. injections of saline solution or 
nerve growth factor), they are invasive, and the time course 
and intensity of pain are hard to control. In this regard, 
recent developments in cuff pressure algometry allow for 
a non-invasive, more controllable setup (Polianskis et al. 
2001).

People who suffer from musculoskeletal pain describe it 
as a sustained, intense and prolonged sensation (Soares and 
Jablonska 2004), all of which emphasize the disruptive abil-
ity of a painful stimulus to capture attention even without 
behavioural relevance and voluntary effort (Eccleston and 
Crombez 1999). Thus, pain has the intrinsic attribute of 
maintaining its salience over the duration of the stimulus, 
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and it has been shown that the anterior insula (AI) and the 
anterior cingulate cortex (ACC) display sustained responses 
during painful transcutaneous electrical stimulation (Dow-
nar et al. 2003). These two brain regions are often acti-
vated together and are involved in detecting and filtering 
salient stimuli that are behaviorally relevant (Legrain et al. 
2011). Since sustained deep-tissue pain can remain sali-
ent for a prolonged period, describing the activity of these 
regions may provide new insights into musculoskeletal pain 
mechanisms.

Previous studies that employed brain neuroimaging 
techniques such functional magnetic resonance (fMRI) 
and positron emission tomography (PET), have found 
that musculoskeletal pain is characterized by brain acti-
vation in numerous areas (Duerden and Albanese 2013). 
Among these regions, the primary somatosensory cortex 
(S1), the anterior insula (AI) and ACC are consistently 
reported in the literature as being involved in musculoskel-
etal pain (Kupers et al. 2004; Thunberg et al. 2005; Kim 
et al. 2013). Still, fMRI or PET are not suitable to assess 
neural oscillations with frequencies higher than 4 Hz (Rit-
ter and Villringer 2006). On the contrary, techniques with 
high temporal resolution such as electroencephalography 
(EEG) or magnetoencephalography (MEG) provide a bet-
ter measurement of neural oscillations, which are known 
to be in the range of 0.01 Hz to 100 Hz, and even higher 
(Cohen 2017). This characteristic makes EEG an invalu-
able tool to assess the neural dynamics during tonic pain 
(Ploner et al. 2017).

An important limitation of scalp EEG is that it does not 
provide direct information about the spatial localization of 
the underlying sources within the brain, because the elec-
trodes record the superpositions of brain signals originating 
from the entire cortical grey matter. In this regard, there is 
a considerable number of inverse solution algorithms that 
allow estimating the active neuronal populations inside 
the brain, yet with limited precision (Michel et al. 2004; 
Michel and Murray 2012). Previous studies have character-
ized the neural correlates of superficial tonic painful stimu-
lation using these techniques (Chang et al. 2002; Hansen 
et al. 2017). However, EEG studies that characterize brain 
response at the source level during sustained deep-tissue 
pain are scarce.

The main goal of this study was to characterize the current 
source density (CSD) estimations of brain source oscillations 
in healthy subjects during tonic, deep-tissue painful and non-
painful mechanical pressure stimulation (Le Pera et al. 2000; 
Lavigne et al. 2004). It was hypothesized that sustained deep-
tissue pain would result in increased power of neural oscilla-
tions compared to non-painful stimulation, reflecting higher 
activity in regions involved in pain processing.

Materials and Methods

Subjects

Twenty-three healthy human subjects (nine males, fourteen 
females, mean ± SD age: 24.5 ± 2.5 years) participated in the 
study. The participants were recruited by advertisement at 
the local university. None of the participants suffered from 
chronic pain, had any pain or used pain medication during 
one week before participation. Written informed consent was 
obtained from every participant. This study was approved 
by the ethics committee of Northern Jutland, Denmark 
(N-20170047) and conducted in accordance with the Dec-
laration of Helsinki.

Stimulation

Sustained Deep‑Tissue Stimulation

A computer-controlled cuff-pressure algometer (CPA) 
(NociTech, Denmark, and Aalborg University, Denmark) 
(Polianskis et al. 2002a) was used to deliver pressure stimu-
lation to the right forearm. The CPA consists of a 10-cm 
wide silicone tourniquet cuff (VBM, Germany), a com-
pressor (Condor MDR2, JUN-AIR International A/S, Nør-
resundby, Denmark) connected to an electric–pneumatic 
converter (ITV2030, SMC Corp., Tokyo, Japan) and con-
trolled by a computer through a data acquisition card (PCI 
6024E, National Instruments, Austin, TX, USA). The cuff 
was placed around the right forearm making sure that it was 
attached over the belly of the extensor carpi radialis brevis 
(ECRB) muscle 3-cm proximal to the cubital fossa.

Vibrotactile Stimulation

Continuous vibrotactile stimuli (VT) was delivered to the 
right forearm using a vibrotactile stimulator (g.STIMbox, 
g.tec medical engineering GmbH, Austria). The vibrotac-
tile was placed under the cuff and over the ECRB muscle, 
to ensure that the same skin area was stimulated with both 
modalities. Vibrotactile stimuli consisted of constant-ampli-
tude sinusoidal mechanical vibration delivered at 30 Hz 
using a vibrotactile transducer (g.VIBROstim, length: 3 cm; 
width: 1 cm, g.tec medical engineering GmbH, Austria).

Behavioural Data

The participants were instructed to relax, pay attention 
only to the stimulation and use their left hand to manipu-
late a slider in a 10-cm visual analogue scale (VAS) device 
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to score the perceived intensity of each stimulus. Besides, 
the participant could press a button to stop the stimulation. 
The intensity of the perceived sensation was rated on a 
scale anchored from 0 (no sensation at all) to 10 (maxi-
mal pain), where 5 represented the pain detection threshold 
(Hansen et al. 2017). Therefore, VAS scores from 0 to 5 
were considered as non-painful, and VAS above 5 up to 10 
were regarded as painful. The participants were instructed 
to start rating the stimulation intensity continuously on the 
VAS device (sampled at 10 Hz) once the stimulation became 
noticeable and to press the button to stop the stimulation if 
the pain became intolerable.

Electrophysiological Data

EEG data were collected using a g.HIamp amplifier (g.tec 
medical engineering GmbH, Austria) from 64 scalp elec-
trodes placed according to the international 10/20 system. 
Electrode impedance was kept below 10 kΩ and the sam-
pling rate was 1200 Hz. Electrodes were referenced to the 
left earlobe (A1) and AFz served as the ground. At the 
beginning of the experiment, three minutes of eyes-open 
resting EEG (REEG) recordings were conducted for quality 
control. To prevent eye movements during resting, the par-
ticipants were instructed to fix their sight to a fixation cross 
displayed on the computer screen placed in front of them. 
Furthermore, to minimize eyes movement during stimula-
tion, participants were instructed to fix their sight to a verti-
cal VAS bar displayed on the computer screen that showed 
their actual VAS score.

Experimental Setup

Data acquisition was carried out in a single session. Partici-
pants were seated on a comfortable chair, with both forearms 
resting on the armrest and facing a computer screen. Partici-
pants wore foam earplugs (Earplugs, TaperFit 3 M, Min-
nesota, United States) to reduce ambient noise. Prior to the 
acquisition of data, familiarization trials were conducted to 
introduce the participants to the cuff pressure sensation and 
to train them to score with the VAS device. Familiarization 
trials consisted of the administration of constant stimula-
tion for 2 min at a random pressure that ranged from 10 to 
100 kPa. After familiarization, the average of the cuff pres-
sure that elicited VAS 7 and VAS 3 in three consecutive 
ramps (rate = 1 kPa/s, interstimulus interval = 5 min, pres-
sure limit = 110 kPa) were used to estimate the pressure of 
the sustained deep-tissue pain (SDTP) and sustained deep-
tissue no-pain (SDTnP) conditions, respectively.

The session continued with three stimulation blocks of 
three minutes each: SDTP, SDTnP, and VT. Both VAS and 

EEG were recorded simultaneously during stimulation. 
There was a pause of five minutes between every block, 
during which no stimulus was presented. The order of the 
stimulation blocks was randomized across participants. In 
order to reach the pressure used in the SDTP and SDTnP 
conditions, the cuff was inflated at a rate of 1 kPa/s until 
the pressure level was reached, and it was kept constant for 
three minutes.

EEG Pre‑processing

EEG data were exported to Matlab R2016b (The Math-
works Inc, Natick, MA, USA) for off-line processing using 
EEGLAB toolbox v14.1.1 (Delorme and Makeig 2004). 
EEG data were digitally band-pass-filtered between 0.1 and 
30 Hz and resampled to 500 Hz. The recorded signals were 
visually inspected to exclude noisy segments (non-cerebral 
source activity). In the event that a bad/noisy channel was 
found in a certain participant, such channel was rejected for 
all conditions for that said participant. A maximum of three 
channels were removed from the EEG dataset. Moreover, 
independent component analysis was carried out to remove 
remaining noise from blinks, muscle activity, and electrode 
artefacts (Jung et al. 2000). The continuous clean datasets 
were segmented in 4-s epochs. EEG data length was further 
reduced to a total of 160 s for each condition to account 
for differences in the number of segments eliminated dur-
ing cleaning, ensuring the same amount of data for all the 
subjects. Furthermore, the first two epochs were rejected to 
avoid transient evoked responses (Chen et al. 2008). In total, 
38 epochs were used in the subsequent analyses per condi-
tion and per participant.

Before further data analysis, across-subject grand aver-
age scalp topographic of spectral power were plotted for 
each condition and each frequency band for quality control, 
since further signal processing steps are highly dependent 
on artefact-free data (Hoffman 2006). Since eye movements 
generate increased power in the delta band of the frontal 
electrodes (Babiloni et  al. 2020), this entire frequency 
range would be disregarded from the analysis in the event 
that it exhibits clear remnants of artefacts in the delta band 
topography.

Estimation of Cortical CSD Distribution

For the estimation of the cortical three-dimensional current 
source density distribution, the exact low-resolution brain 
electromagnetic tomography (eLORETA) method was used 
(Pascual-Marqui 2007). The eLORETA (LORETA-KEY 
software v20150415, http://www.uzh.ch/keyin st/loret a.htm) 
allows estimating the cortical current density from the EEG 

http://www.uzh.ch/keyinst/loreta.htm
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scalp recordings. This is performed by solving the so-called 
EEG inverse problem (Michel et al. 2004). The solution 
space is limited to the cortical grey matter and has a volume 
of 6239 voxels at 5  mm3 spatial resolution. In this solution, 
the lead field was computed using a realistic head model 
based on the Montreal Neurologic Institute average MRI 
(MNI152) (Lancaster et al. 2000; Fuchs et al. 2002; Brett 
et al. 2002). The current density was calculated from the 
cleaned EEG epochs for each condition and for each subject. 
The eLORETA CSD was estimated for five frequency bands: 
delta (1–3.9 Hz), theta (4–7.9 Hz), alpha (8–13.9 Hz) and 
beta (14–29.9 Hz).

The CSD was extracted from seven specific regions of 
interest (ROIs), which are frequently reported to be active 
during pain processing (Peyron et al. 2000; Downar et al. 
2003; Apkarian et al. 2005; Duerden and Albanese 2013; 
Jensen et al. 2016), see Table 1. Note that, in the present 
study, the insulae were the only anatomical regions that were 
analysed bilaterally. The other selected regions (Table 1) were 
those located contralateral to the stimulation site. In previous 
literature, however, some of these areas are reported as being 
active bilaterally during pain, namely the posterior parietal 
cortex (PPC), pre-motor cortex (Pre-MC) and dorsolateral-
prefrontal cortex (DLPFC). Despite these ipsilateral areas 
are likely to be active during pain, higher brain activity can 
be expected in the contralateral counterparts (Shenoy et al. 
2011; Yücel et al. 2015). Since the experimental procedure 
involved the use of the left hand to score their sensation using 
a VAS, and this task certainly elicits brain activity in the 
ipsilateral side that could be confounded (Fuchs et al. 2000), 
it was decided to focus primarily on the contralateral regions, 
marked with the “L-” (left) prefix throughout the text. The 
ROIs were defined as the average of all voxels that fell within 
a 15-mm radius sphere around the seed point (Canuet et al. 
2012). Additionally, the absolute CSD of the ROIs during 
REEG, SDTP, SDTnP and VT was estimated.

Statistical Analysis

Perceived Stimulus Intensity

To assess the effects of the stimulation conditions (SDTP vs. 
SDTnP vs. VT) on the perceived stimulus intensity, a point-
by-point, one-way repeated measures analyses of variance 
(RM ANOVA) with permutation test (Maris and Oostenveld 
2007) was performed on the continuous VAS scores over the 
180-s interval using Letswave software (https:// github.com/
NOCIONS/letswave6/). The permutation test was performed 
to control for false positives (type I error) that may result from 
the multiple comparisons performed for each time point.

CSD Estimations

To assess possible differences in CSD estimations between 
conditions, a within-subject generalized linear mixed model 
was built in SPSS (version 24; IBM Corporation, New York, 
NY). The CSD was defined as the target, while the experi-
mental conditions (three levels: SDTP, SDTnP and VT), the 
ROIs (seven levels: L-ACC, L-S1, R-AI, L-DLPFC, L-AI, 
L-PPC, L-S2), the EEG frequencies (three levels: theta, 
alpha and beta), and all possible combinations between 
them were included as fixed factors. Furthermore, subject 
was included as a random effect and the covariance type 
structure for the residual was specified as compound symme-
try. Since the CSD is non-normally distributed (Tzyy-Ping 
Jung et al. 1997; Cohen 2014), a gamma distribution with a 
log link was used to fit the model (Bolker et al. 2009). The 
absolute criterion for parameter convergence of the model 
was set at 1 ⋅ 10−5 . Post-hoc Sidak corrections were applied 
to adjust for Type I error.

Table 1  Spatial locations of 
regions of interest considered 
for the analysis

The regions were defined as the average of all voxels that fell within a 15-mm radius sphere around the 
seed point. Coordinates are in Talairach space
BA Brodmann area, x medial–lateral, y anterior–posterior, z superior-inferior

Side Region Abbrev BA x y z

Left Anterior cingulate cortex L-ACC 24  − 4 10 30
Left Primary somatosensory cortex L-S1 2  − 40  − 26 48
Right Anterior insula R-AI 13 41 13 0
Left Dorsolateral prefrontal cortex L-DLPFC 9  − 37 17 36
Left Anterior insula L-AI 13  − 41 13 0
Left Posterior parietal cortex L-PPC 7  − 18  − 62 66
Left Premotor cortex L-PreMC 6  − 60 1 9
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Results

Perceived Stimulus Intensity

There was a marked difference in the perceived intensity 
scores between the SDTP, SDTnP, and VT conditions differ-
ently across time (p < 0.001) in accordance with the intended 
stimulation levels, see Fig. 1 Neither SDTnP nor VT mean 
intensity scores surpassed the pain threshold, and the SDTP 
did not fall below the pain threshold either. Furthermore, 
the three curves reached a plateau, and habituation was not 
observed during most of the stimulation period. The mean 
cuff pressure that elicited SDTnP was 29.69 ± 9.65 kPa and 
SDTP was 62.02 ± 14.62 kPa.

Topographic Representation

The grand-average scalp topographies for REEG, SDTP, 
SDTnP and VT for each frequency band are represented in 
Fig. 2. Higher activity over parieto-occipital electrodes is 
displayed during REEG in the alpha band, which appears 
to decrease during stimulation. Moreover, there was higher 
activity in the frontal electrodes than in the rest of the scalp 
for the delta band. The estimation of spectral components 

from frontal electrodes are heavily affected by eye move-
ments (Hagemann and Naumann 2001), and the present 
scalp maps clearly showed that not all ocular artefacts were 
separated and rejected from the brain signals. Therefore, the 
delta band was not included in the statistical analysis.

CSD Estimation

Figure 3 exhibits the current source density of three particu-
lar areas (L-ACC, R-AI and L-S1) across the 1–30 Hz fre-
quency range for REEG, SDTP, SDTnP and VT conditions. 
Overall, the CSD of REEG showed higher values in the delta 
frequency range in the three regions. Furthermore, a clear 
peak in the alpha band was observed in S1 during REEG.

The statistical analysis showed a main effect of the con-
dition  (F3,1.386 = 99.92, p < 0.001), ROIs  (F6,1.386 = 105.19, 
p < 0.001) and frequency  (F2, 1.386 = 553.89, p < 0.001) 
on the CSD. The two-way interactions condition × ROIs 
 (F12,1.386 = 2.11, p = 0.014) and condition × frequency 
 (F6,1.386 = 6.86, p < 0.001) showed significant effect. No 
effect was found in the tree-way interaction ROIs × con-
dition × frequency  (F24,1.386 = 0.67, p = 0.885). Adjusted 

Fig. 1  Mean (dashed) and 
standard deviation (shaded) 
visual analogue scale (VAS) 
scores for all subjects (N = 23) 
during SDTP (red), SDTnP 
(blue) and continuous vibro-
tactile (VT, black) stimula-
tion. Point-by-point, one-way 
repeated measures analyses of 
variance with permutation test 
revealed significant differ-
ences across the whole-time 
interval (p < 0.001) in the VAS 
scores between conditions. The 
orange dotted line represents 
the pain threshold anchored at 
VAS = 5. (red) SDTP sustained 
seep tissue pain, (blue) SDTnP 
sustained deep-tissue no-pain, 
(black) VT continuous vibrotac-
tile (Color figure online)

SDTP
SDTnP
VT
Pain Threshold
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Fig. 2  Grand-average topo-
graphic distribution of absolute 
EEG power across frequency 
bands and experimental condi-
tions. REEG resting EEG, 
SDTP sustained seep tissue 
pain, SDTnP sustained deep-
tissue no-pain, VT continuous 
vibrotactile
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Fig. 3  Across subject mean (± SD) of the Log current source den-
sity (CSD) under resting EEG (REEG), sustained deep-tissue pain 
(SDTP), sustained deep-tissue no-pain (SDTnP) and vibrotactile (VT) 

of the left anterior cingulate cortex (L-ACC), right anterior insula 
(R-AI) and left primary somatosensory cortex (L-S1)
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pairwise comparisons of relevant interactions are shown in 
Tables 2, 3, Fig. 4 and 5.

Analysis of the condition × ROIs interactions showed 
that the participants presented higher brain activity in the 
L-ACC, both anterior insulas, the L-DLPFC, L-PPC and 
L-PreMC when they reported pain (SDTP) compared to 
when they did not experience pain (SDTnP and VT). Fur-
thermore, the participants had higher activity in the L-S1 for 
increasing stimulus intensity.

Analysis of the condition × frequency interactions showed 
that the participants had higher alpha and beta activity when 
they reported pain compared to when did not. Participants 
had higher theta activity when increasing the stimulus 
intensity.

Discussion

The purpose of this study was to characterize the effects of 
sustained deep-tissue painful stimulation on the brain oscil-
lations in regions involved in pain processing. The results 
show that evoked activity by painful cuff-pressure algometry 
can be differentiated from non-painful cuff-pressure algom-
etry. More precisely, increased activity within the L-ACC, 
AI, L-DLPFC, L-PPC, L-PreMC were consistent with 
increasingly painful input. In contrast, the activity in L-S1 
may be related to somatosensory discrimination of stimulus 
intensity with higher CSD evoked by pressure algometry in 
comparison with vibrotactile stimulations.

Stimulus Intensity and Evoked Sensations

In this study, the participants reported steady sensations 
when the stimulus intensities were held constant. Similarly, 
previous studies have reported that continuous cuff-pressure 
algometry and vibrotactile stimulations elicit stable sensa-
tions that do not easily adapt or build-up (Polianskis et al. 
2002a). This contrasts with other experimental tonic pain 
models. For instance, intramuscular infusion of hypertonic 
solution induces temporal summation of pain after its injec-
tion, which can last several minutes (Stohler and Kowalski 
1999; Arendt-Nielsen and Svensson 2001). Moreover, tonic 
heat stimulation initially induces temporal summation, in 
which a non-painful stimulus can become painful (Huber 
et al. 2006); however, it is followed by pain habituation that 
may even lead back to non-painful perception (Hashmi and 
Davis 2009). These adaptive processes certainly modulate 
the perception of pain and involve different levels of salience 
(Davis 2011). Thus, conclusions about tonic pain process-
ing and salience can be affected when either habituation or 

Table 2  Pair-wise comparisons of the ROI × condition double inter-
actions

Bold values are significant differences of (p < 0.05)
SDTP sustained seep tissue pain, SDTnP sustained deep-tissue no-
pain, VT continuous vibrotactile, ROIs regions of interest, L-ACC  
left anterior cingulate cortex, L-S1 left primary somatosensory cor-
tex, L-AI left anterior insula, R-AI right anterior insula, L-DLPFC left 
dorsolateral prefrontal cortex, L-PPC left posterior parietal cortex, 
L-PreMC left premotor cortex

Interaction ROI × condition

ROI Pair-wise T p

L-ACC SDTP–SDTnP 2.40 0.033
SDTP–VT 2.56 0.032
SDTnP–VT 0.16 0.876

L-S1 SDTP–SDTnP 3.41 0.001
SDTP–VT 6.22  < 0.001
SDTnP–VT 2.81 0.005

L-AI SDTP–SDTnP 6.57  < 0.001
SDTP–VT 7.09  < 0.001
SDTnP–VT 0.52 0.605

R-AI SDTP–SDTnP 4.64  < 0.001
SDTP–VT 5.13  < 0.001
SDTnP–VT 0.50 0.619

L-DLPFC SDTP–SDTnP 4.16  < 0.001
SDTP–VT 4.38  < 0.001
SDTnP–VT 0.20 0.826

L-PPC SDTP–SDTnP 2.59 0.020
SDTP–VT 2.93 0.010
SDTnP–VT 0.35 0.729

L-PreMC SDTP–SDTnP 5.49  < 0.001
SDTP–VT 6.54  < 0.001
SDTnP–VT 1.12 0.265

Table 3  Pair-wise comparisons of the Frequency × condition double 
interactions

Bold values are significant differences of (p < 0.05)
SDTP sustained seep tissue pain, SDTnP sustained deep-tissue no-
pain, VT continuous vibrotactile

Interaction Frequency × condition

ROI Pair-wise T p

Theta SDTP–SDTnP 8.97  < 0.001
SDTP–VT 11.60  < 0.001
SDTnP–VT 2.64 0.008

Alpha SDTP–SDTnP 4.13  < 0.001
SDTP–VT 5.73  < 0.001
SDTnP–VT 1.60 0.106

Beta SDTP–SDTnP 6.00  < 0.001
SDTP–VT 5.48  < 0.001
SDTnP–VT  − 0.59 0.598
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temporal summation are present (Jepma et al. 2014; Weiss-
man-Fogel et al. 2015). Alternatively, using a stimulus that 
evokes a constant perception of pain intensity may help 
to disentangle the mechanisms underlying tonic pain and 
salience. Consequently, computer-controlled cuff pressure 
algometry can provide deep stimulation and evoke continu-
ous aching sensation, which consequently decreases the 
variability in pain ratings associated with the mechanisms 
previously mentioned (Polianskis et al. 2001).

Effect of Sustained Simulation in the Overall CSD

The present results showed that vibrotactile, sustained deep-
tissue painful and non-painful stimulation elicited different 
activity levels in the studied regions. Particularly, these 

regions exhibited an overall higher CSD when the partici-
pants reported pain in comparison to when they did not feel 
pain. This is in agreement with several observations that 
found that self-reported pain intensity strongly correlates 
with the magnitude of brain oscillations (Tracey and Mantyh 
2007; Nir et al. 2012; Zhang et al. 2012; Schulz et al. 2015). 
These findings are similar to those reported by studies that 
investigated phasic evoked responses to painful stimulation 
(Ohara et al. 2004; Iannetti et al. 2005; Zhang et al. 2012), 
and further supported by neuroimaging evidence (Schneider 
et al. 2001; Davis et al. 2002; Baliki et al. 2008; Lin et al. 
2018).

***
***

** ***
***

*
*

***
***

L-ACC L-S1 IA-RIA-L

***
***

*
**

***
***

L-PPCL-DLPFC L-PreMC

SDTP
SDTnP
VT

Fig. 4  Violin-plots representing the current source density (CSD) 
estimations of the interaction between conditions and the regions 
of interest. The grey bar represents the interquartile range and the 
white dot the median. The whiskers represent 1.5 times the interquar-
tile range. The outer shape represents the distribution density of the 
 log10(CSD). Each point in the violin represents an individual value. 
The black line represents the mean of the  log10(CSD). *P < 0.05; 

**P < 0.01; ***P < 0.001. SDTP sustained deep-tissue pain, SDTnP 
sustained deep-tissue no-pain, VT continuous vibrotactile, L-ACC  
left anterior cingulate cortex, L-S1 left primary somatosensory cor-
tex, R-AI right anterior insula, L-AI left anterior insula, L-DLPFC left 
dorsolateral prefrontal cortex, L-PPC left posterior parietal cortex, 
L-PreMC left premotor cortex
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Acute muscle pain serves to protect the body and is 
subject to an appropriate motor response to avoid further 
damage and contribute to recovery (Graven-Nielsen 2006). 
In this experiment, participants continuously slid the VAS 
scale to quantify the perceived stimulus intensity, which acti-
vates sensory and motor cortical areas. Thus, the difference 
found in the CSD estimations between SDTP and SDTnP 
may be related to the preparation and the execution of motor 
responses. Yet, previous evidence suggests that painful and 
non-painful stimuli do not differ in the influence on motor 
preparation in the human brain (Postorino et al. 2017). Fur-
thermore, the participants repeated this scoring activity in 
all three experimental conditions. Therefore, the observed 
differences in the CSD estimations between conditions can-
not be attributed to the scoring task.

During cuff-pressure algometry not only deep-tissue is 
stimulated, but also the skin. Therefore, differences in CSD 
estimations between painful and non-painful cuff stimula-
tion may be attributed to factors other than deep pain. How-
ever, Polianskis et al. (2002b) induced hyperalgesia in the 
skin using topical capsaicin cream, yet the participants did 
not report increased pain sensitivity to cuff stimulation in 
the treated area. In another study (Manafi-Khanian et al. 
2015), the researchers investigated the mechanical stress and 
strain distribution in superficial and deep tissues during cuff 
algometry using a computational three-dimensional finite 
element model of the lower leg; showing that cuff algometry 
preferentially stimulates deep somatic tissue. On the other 
hand, vibrotactile stimulation mostly stimulates mechanore-
ceptors in the skin (Verrillo 1985). Thus, differences in CSD 

found in this study between cuff pressure and vibrotactile are 
likely due to different tissues and receptors being stimulated.

The L-ACC and AI are central hubs of a network involved 
in salience detection called the salience network. Observing 
brain activity within these regions when a person experi-
ences pain is not sufficient to assume that such activity is 
a direct correlate of pain perception (Iannetti et al. 2013). 
A body of work argues that the measured brain activity not 
only reflects the processing of the perceived stimulus inten-
sity, but it also reflects its salience (Legrain et al. 2003; Ian-
netti et al. 2008; Wiech et al. 2010). A salient stimulus thus 
evokes activity in the brain that directs the attention towards 
any perceived event that may have a potential impact on the 
organism (Costantini et al. 2008). In other words, a pain-
ful experience will generally stand out from other stimuli, 
since maintaining tissue integrity is crucial. Therefore, the 
observed increase in brain activity in the most painful condi-
tion might not strictly be related to the change in stimulus 
intensity, but to an increase in the salience of the stimulus 
(Iannetti et al. 2008; Legrain et al. 2009).

In the present study, each stimulus block lasted three min-
utes, which highly contrasts to the duration of high-intensity 
laser or electrical pulses (in the tens of milliseconds) used 
in the majority of previous studies that investigated the tran-
sient brain responses elicited by these stimuli and its func-
tional significance in pain neurophysiology (Legrain et al. 
2011). It can be argued that the long-duration, constant stim-
ulation loses its novelty and its ability to capture attention. 
Still, novelty might not be the only factor that determines 
the salience of a stimulus, but rather its ability to stand out 
(Ronga et al. 2013). Indeed, non-painful somatosensory 
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Fig. 5  Violin-plots representing current source density (CSD) esti-
mations of the interaction between conditions and frequency bands. 
The grey bar represents the interquartile range and the white dot the 
median. The whiskers represent 1.5 times the interquartile range. The 
outer shape represents the distribution density of the  log10(CSD). 

Each point in the violin represents an individual value. The black 
line represents the mean of the  log10(CSD). *P < 0.05; **P < 0.01; 
***P < 0.001. SDTP sustained deep-tissue pain, SDTnP sustained 
deep-tissue no-pain, VT continuous vibrotactile
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stimulation requires voluntary attention or behavioural rel-
evance to maintain salience; for instance, voluntary atten-
tion to score the perceived sensation continuously on a scale 
(Frith 2001). On the other hand, constant painful stimulation 
tends to maintain salience even without voluntary attention, 
because pain is able to keep attention both involuntarily and 
continuously (Downar et al. 2003). Therefore, the observed 
changes in the CSD estimations during SDTP might indeed 
reflect the processing of the salience of cuff-pressure pain-
ful stimulation that makes it stand from the environmental 
context.

Effect of Sustained Simulation in the ROIs

The present results showed differences in CSD at L-S1 
among conditions. It is well documented that S1 is mostly 
involved in the sensory-discriminative aspects of somatosen-
sory processing, such as stimulus intensity, localization and 
frequency, (Kenshalo et al. 1988; Jousmäki and Forss 1998; 
Bushnell et al. 1999). It is worth noting that vibration and 
pressure are mediated by different receptors. When using a 
cuff-pressure algometer, the pressure sensation originates 
from activation of free nerve endings in the deep tissues, 
conducted via group III (Aδ) and IV (c) afferent fibres that 
project to S1 via the thalamus (Graven-Nielsen et al. 2004). 
On the other hand, the vibrotactile sensation originates from 
activation of Meissner and Pacinian corpuscles in the skin, 
conducted via group II (Aβ) afferent fibres which also pro-
ject to S1 (Breitwieser et al. 2012). Furthermore, neuroimag-
ing studies confirm that S1 is not only involved in discrimi-
nating the stimulus intensity but also its localization and 
quality discrimination (Peyron et al. 1999; Hofbauer et al. 
2001; Lemus et al. 2010). Therefore, the observed differ-
ences in oscillatory activity within S1 between all conditions 
possibly reflect the differences in somatosensory input given 
by the different tissue and fibres stimulated by the cuff and 
vibrotactile stimulator.

CSD in the L-ACC and both AI was higher when the 
participants reported pain compared to when they did not 
(SDTnP and VT). Previous researchers have stated that the 
AI and ACC contribute to a large extent in detecting and 
attending salient events in the sensory environment (Downar 
et al. 2002; Wiech et al. 2010). Furthermore, these regions 
have also been reported to be involved in emotional, senso-
rimotor, homeostatic and cognitive functions (Bush et al. 
2000; Taylor et al. 2009; Dolcos et al. 2011; Gasquoine 
2014). The L-DLPFC, L-PPC and L-PreMC exhibited simi-
lar responses to the AI and L-ACC. Indeed, previous work 
indicates that the activation of the PreMC may be associ-
ated to the urge of hand withdrawal from the source of pain 
while the participants were instructed to remain still (Sven-
sson et al. 1997). The activation of PPC is associated with 
the body awareness of the painful area and sensorimotor 

coordination (Forss et al. 2005) when compared to non-
painful stimulation. Even though the activation of DLPFC 
has been associated with pain detection (Seminowicz and 
Davis 2007; Seminowicz and Moayedi 2017), the function 
of this area during pain is still debated. Except for S1, all the 
studied areas exhibit a similar increased neuronal activity 
during sustained deep tissue pain. This supports the notion 
that none of these regions is exclusive to pain processing but 
contributes to the different dimensions of pain (Peyron et al. 
2000) and their activity is increased under pain.

Last but not least, these results are in accordance with 
the concept suggested by Davis et al. (2015) where some 
regions/networks of the brain should work as a “pain switch” 
that changes its state during pain. In other words, brain oscil-
lations within these regions, seem to be in low activity state 
(“off”) when subjects perceived non-painful stimuli, while it 
seems to change to high activity state (“on”) when subjects 
perceived pain. However, with the present methods, pain 
cannot be disentangled from saliency, and therefore further 
investigations are needed to understand the “pain switch”. 
According to the results of this study, the “pain switch” may 
not be exclusive of a single region, but a shared trait of sev-
eral interconnected regions.

EEG Spectral Changes During Sustained Stimulation

Consistent with other studies, increased theta activity was 
found during tonic pain (Navid et al. 2019). The literature 
suggests that theta oscillations are related to the level of 
attention (Fallon et al. 2017; Keller et al. 2017). In the pre-
sent study, the participants were instructed to keep their 
attention to the stimulus source and score their perceived 
sensation across all conditions. Thus, the differences found 
in CSD in the theta band cannot be only attributed to dif-
ferences in attention. The present differences were not only 
observed between painful and non-painful conditions, but 
also between non-painful stimulations (SDTnP and VT). 
Even though a few studies have proposed that theta oscilla-
tions have an association to pain intensity (Ray et al. 2009; 
Huishi Zhang et al. 2016), the present findings suggest that 
theta oscillations in the studied regions may not be exclu-
sively related to pain perception, but rather associated with 
the amount of somatosensory input.

Increased CSD in the beta band was detected when the 
participants reported pain. Previous work has observed a 
desynchronization of the beta band, relative to pre-stimulus 
activity, immediately after a brief stimulus (Stancák et al. 
2003). Another study found that after the desynchronization, 
there is a beta rebound (Hauck et al. 2007). It is noteworthy, 
that whereas those studies used repeated brief painful stimu-
lus to test the beta synchronization and desynchronization, 
the present study applied a constant stimulus, and the first 
eight seconds of the EEG were excluded. Therefore, it is 
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unlikely that this beta desynchronization may be reflected 
in the results. Moreover, beta oscillations are commonly 
associated with motor functions and increased beta activity 
is normally observed when a movement has to be resisted 
or voluntarily suppressed (Androulidakis et al. 2007; Kila-
vik et al. 2013). The typical defensive response to a painful 
stimulus is to withdraw the affected limb. In this experimen-
tal setting, however, the participants were asked to maintain 
the forearm in the same position across the experiment. It is 
therefore likely that the increase in the beta band reflects the 
voluntary action of suppressing the withdrawal movement 
(Misra et al. 2017).

The present results showed an increase in the alpha band 
during SDTP compared to VT and SDTnP. Le Pera and 
colleagues (2000) also found increased CSD in the alpha 
band during experimental muscle pain when compared with 
vibrotactile stimulation. Increased alpha activity has been 
observed during hand immersion in painful cold water (cold 
pressor test), compared to immersion in non-painful cool 
water (Backonja et al. 1991). In the latter, enhanced alpha-
band activity was found over central electrodes contralateral 
to the stimulation site, at the beginning of the painful condi-
tion, and followed by a reduction of alpha activity after the 
first minute. A bulk of work otherwise reported that pain-
ful stimulation reduces alpha activity; importantly, these 
studies compared the painful condition to resting state (Nir 
et al. 2012; Peng et al. 2014; Hansen et al. 2017; Navid et al. 
2019). Current evidence strongly suggests that the alpha 
band has a functional inhibitory function, i.e., the alpha 
band activity gates information by inhibiting task-irrelevant 
regions of the brain (Klimesch et al. 2007; Jensen and Maza-
heri 2010). This implies that increased CSD in the alpha 
band found in the present study may be the consequence of 
increased cortical inhibition induced by painful cuff-pressure 
stimulation.

The observed increase in alpha activity during tonic 
deep-tissue pain may therefore be reflecting a lack of inhi-
bition possibly mediated by the neurotransmitter gamma-
aminobutyric acid (GABA) (Klimesch et al. 2007; Başar and 
Güntekin 2008). Increased GABA levels have been previ-
ously measured in the ACC and R-AI with MR spectros-
copy during tonic painful stimulation (Jasmin et al. 2005; 
LaGraize and Fuchs 2007; Kupers et al. 2009). The neuro-
transmitter GABA is involved in the cortical modulation of 
pain trough inhibition of synapses in the brain (Olsen and 
Sieghart 2009). Still, the functional role of the alpha band 
oscillations in the brain is not fully elucidated (Palva and 
Palva 2011), and further studies are needed to understand its 
function in tonic pain processing. The observed differences 
between power amplitude in the frequency bands are not 
relevant to discuss; it is well-known that the power spectrum 
of EEG decays with a ratio of 1/f, resulting in EEG power 
bands being generally different (Cohen 2017).

Study Considerations and Limitations

Numerous studies have reported an effect of tonic pain in the 
gamma band (Gross et al. 2007; Schulz et al. 2015; Wang 
et al. 2016; De Pascalis et al. 2019). Nevertheless, it has 
been reported that the gamma band is highly contaminated 
with muscle artefacts (Hipp and Siegel 2013). Indeed, a 
number of studies showed that scalp EEG high oscillations 
have an electromyographic origin (Whitham et al. 2007; 
Yuval-Greenberg et al. 2008). In the last years, several pro-
cedures such as phased noise template removal for power 
line noise, ICA for correcting extra-ocular muscle activity 
and mathematical modelling to reduce muscle activity, have 
been applied to obtain only high-frequency brain generated 
signals (Nottage and Horder 2016). In this study, only visual 
inspection and ICA were used to eliminate EMG artefacts. 
Hence, it is not possible to ensure that the origin of the 
gamma oscillations was only from brain sources.

The present study has some limitations that are important 
to consider in future studies that investigate the neural cor-
relates of deep-tissue pain. First, this study did not include 
a stimulus that was salient but non-painful. For instance, 
this could be achieved by including another sensory modal-
ity, e.g. a loud sound, whose salience could be comparable 
to that of the painful stimulus (Mouraux et al. 2011). This 
could help elucidate the specificity of the activity within 
the investigated regions during sustained deep-tissue pain.

Second, eLORETA, which is an improved version of 
LORETA, was used to estimate the activity in several ROIs 
involved in pain processing. This technique has been vali-
dated and reported as having no localization bias (Pascual-
Marqui 2007). Still, the spatial accuracy of eLORETA, like 
other inverse solution methods, is highly dependent on a 
number of parameters, e.g. the number and location of elec-
trodes and whether individual MRI data or a template model 
is being used (Michel et al. 2004; Michel and Brunet 2019).

Third, it is important to highlight that the present findings 
were mostly related to the contralateral regions, and, to a 
large extent, the discussion did not consider their lateral-
ity during pain. Numerous studies reported that unilateral 
painful stimulation evokes bilateral activity in a number 
of regions (Downar et al. 2003), but contralateral regions 
generally display higher brain activity compared to the ipsi-
lateral counterparts (Shenoy et al. 2011; Yücel et al. 2015). 
In this experiment, the participants used their left hand to 
score the ongoing perceived intensity using a VAS device, 
and brain activity evoked by this action could mask / interact 
with pain-evoked activity (Fuchs et al. 2000). Hence, con-
sidering that this study aimed to identify differences in brain 
activity between painful and non-painful stimulation condi-
tions, it was decided to focus on the activity of contralateral 
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regions. Nonetheless, laterality should be considered in 
future experimental designs.

Finally, 64-channel configuration and a template head 
model were used to calculate the EEG forward solution and 
locate the electric brain sources. This approach simplifies 
the experimental procedure, circumvents the lack of MRI 
capabilities and avoids the labour-intensive task of measur-
ing the electrode positions on every subject. On the other 
hand, individual differences in the anatomy of the head and 
the electrode positions are not taken into account, which can 
lead to a limited spatial accuracy. Although it is possible 
to obtain acceptable estimates of the location of the brain 
sources with these settings, more accurate estimations are 
obtained when using a whole-head, dense-array sampling 
(> 256 channels) and the individual MRI of each participant. 
Due to this constraint, other regions that have been reported 
to be involved in pain processing (e.g. the primary motor 
cortex or posterior insula) that are located within a proximity 
of 3 cm to other regions already included, were disregarded 
from the analysis (Michel and Brunet 2019). Similarly, deep 
structures that are important in the endogenous modulation 
of pain, such as those located in the brainstem, were not 
included in this analysis. Finally, limiting the number of 
ROIs is reducing the risk of false positives (type I error).

Conclusions

The present findings indicate that sustained deep tissue pain 
evokes different responses on brain oscillations compared 
with innocuous deep tissue stimulation. Results suggest 
that the increased activity observed among the considered 
areas between painful and non-painful stimulation (SDTP 
vs SDTnP and VT) denote physiological differences in neu-
ronal activity that are linked to pain processing. Further 
studies are required in order to disentangle mechanisms 
related to pain processing from saliency.
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