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Abstract
Spontaneous broadband electroencephalography (EEG) demonstrates short moments of stability in the spatial distribution 
of the head-surface voltage topography. This phenomenon underlies the premise behind segmenting multichannel EEG 
into topographically defined brain states, known as EEG microstates. Microstate segmentation methods commonly identify 
representative topographical configurations based on clustering applied to a subset of voltage maps selected at the time 
series points of greatest strength in the neuroelectric field. These moments are well-reasoned to best represent periods of 
momentary stability in the voltage topography, and consequently, points of greatest signal relative to noise. Yet, more direct 
empirical evidence for these assumptions is warranted, and the consistency of this phenomenon across individuals has not 
been characterized. In the present investigation, the association between electric field strength and topographic dissimilarity 
of temporally adjacent samples of EEG were characterized in a large sample of healthy adults engaged in quiet rest. Samples 
of individuals’ EEG time series high in electric field strength were found to be topographically similar relative to adjacent 
time series samples. The strong phase-synchronized actvity of neuronal populations therefore coincides with momentary 
stability in the topographic voltage configuration, providing robust empirical support for the basic premise underlying seg-
mentation of broadband EEG into microstates.
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Scalp recorded broadband electroencephalography (EEG) 
exhibits moments of spontaneous topographic stability that 
appear to be fundamental to the coordinated dynamics of the 
neuroelectric field. When carefully examined over short time 
scales, the spatial distribution of the head-surface voltage 

topography plotted as a succession of three-dimensional 
voltage maps gives the impression of short periods of sta-
bility, in which a particular topographic configuration pre-
dominates momentarily (~ 40–120 ms) before quickly tran-
sitioning to a different quasi-stable configuration. Moreover, 
the same topographic configurations appear to be common 
to a large portion of the voltage maps present during these 
periods of quasi-stability. These observations underlie the 
premise behind the segmentation of multichannel EEG time 
series into microstates based on clustering of topographic 
patterns to identify the millisecond spatiotemporal dynamics 
of coordinated brain states (Lehmann et al. 1987; Wacker-
mann et al. 1993).

Spatial decomposition of EEG time series into micro-
states has consistently identified a limited set of data-
driven clusters of voltage maps that explain a large portion 
of observed topographic variance (see for review, Khanna 
et al. 2015; Michel and Koenig 2018). Each distinct topo-
graphic configuration of voltage distribution implies by 
physical laws different distributions of active neural gen-
erators in the brain (Vaughan 1982), allowing topography 
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to be used to define changes in the activity of predominat-
ing whole-brain neuronal networks. That dozens of studies 
have consistently identified similar clusters of maps when 
segmenting spontaneous EEG into microstates, suggests 
a common brain network architecture underlying sources 
of spontaneous phase-synchronized activity observed at 
rest (Michel and Koenig 2018). Furthermore, the electri-
cal brain sources of microstates align with several fMRI-
derived resting state functional networks (Britz et al. 2010; 
Custo et al. 2017; Brechet et al. 2019). This makes the 
microstate approach timely given increasing interest in 
segmenting the spontaneous organization of brain activ-
ity into coordinated networks.

Methods of defining microstates based on topography 
have commonly utilized topographic clustering methods 
applied to a subset of voltage maps (e.g., Michel et al. 2009), 
selected at the local maxima in the time series of global 
electric field strength. These points can be quantified based 
on the global field power (GFP), which reflects a reference-
independent measure of the strength of synchronized brain 
response at a moment in time (Skrandies 1990). Selecting 
voltage maps at local GFP maxima for topographic clus-
tering has remained a defensible approach because of the 
observation that moments of strong phase-synchronized 
activity generally demonstrate quasi-stability in their voltage 
topography (Skrandies 1990). These moments are therefore 
suggested to reflect points of greatest signal relative to noise 
(Koenig and Brandeis 2016), making local peaks in the GFP 
time series ideal candidates for identifying quasi-stable topo-
graphic configurations present in the EEG.

The most striking evidence for these suppositions, how-
ever, come from the broad success of topographic clustering 
approaches in identifying common microstate configurations 
across studies, and the utility of segmentation procedures in 
defining time series sequences of microstates (Michel and 
Koenig 2018). Large proportions of topographic variance 
in the continuous EEG are therefore explained by only a 
few microstate cluster centroids identified from cluster-
ing of voltage maps at local peaks in the GFP time series 
(e.g., Seitzman et al. 2017; Zanesco et al. 2020). The cen-
troids of clusters (i.e., microstate configurations) are sub-
sequently used to categorize the EEG in a winner-take-all 
fashion according to the cluster centroid with the strongest 
spatial correlation between it and each voltage map in the 
time series. Yet, recent studies have also called into question 
some of the basic assumptions of the microstate approach. 
Namely, Mishra et al. (2020) have questioned the assump-
tion that each voltage map in the EEG time series is best 
represented by only a single discrete microstate (i.e., the 
winner-take-all principle). This “discreteness assumption” 
implies that EEG data is distributed closely around a limited 
number of microstate configurations, and is supported by the 
observation that voltage maps remain in a single, relatively 

similar configuration for brief periods of time before quickly 
transitioning to other configurations.

Instead, Mishra et al. (2020) found that assumptions about 
topographic discreteness are most valid for peaks in the GFP 
time series (i.e., local GFP maxima) but are less valid when 
GFP is low. This makes sense in that microstate cluster con-
figurations are themselves commonly derived from voltage 
maps at local GFP maxima, which are well-reasoned to 
reflect points of greatest signal relative to noise. But local 
GFP maxima can also have low GFP relative to other sam-
ples in the overall distribution. Accordingly, voltage maps 
with lower GFP—even those at local GFP maxima—are less 
likely to be best represented by only a single discrete micro-
state configuration (Mishra et al. 2020). This is consistent 
with other work demonstrating uncertainty in the microstate 
solution for samples with low GFP (Dinov and Leech 2017). 
Thus, categorizing voltage maps into classes of microstates 
is more probabilistic than certain, and the winner-take-all 
approach will lead to uncertain categorizations for some 
samples of the EEG time series (Dinov and Leech 2017; 
Mishra et al. 2020).

More empirical studies investigating the basic assump-
tions of the microstate approach are therefore warranted. 
Empirical evidence supporting the basic association between 
GFP and topographic stability in spontaneous EEG collected 
at rest has not been comprehensively reported in the litera-
ture. Koenig and Brandeis (2016), however, provided one 
compelling demonstration of the strong within-person asso-
ciation between GFP and momentary topographic stability in 
the EEG time series. By calculating the similarity between 
temporally adjacent voltage maps, they quantified fluctua-
tions in the topographic stability of voltage maps. They then 
demonstrated a strong association between samples with 
high GFP and topographic similarity with adjacent samples 
in an hour-long EEG recording acquired from a single indi-
vidual (Koenig and Brandeis 2016). This was an important 
observation, but the consistency of this phenomenon across 
a wider range of individuals has not been  characterized.

In the present investigation, I revisit the basic premise 
behind EEG microstate analysis that periods of strong phase-
synchronized neural activity demonstrate topographic sta-
bility for brief moments of time. In line with the approach 
used by Koenig and Brandeis (2016) to demonstrate this 
principle, I examined the consistency and variability of 
associations between GFP and topographic dissimilarity of 
adjacent samples of EEG in a large sample of healthy adults. 
True to the notion that strong activity of phase-synchronized 
neuronal populations coincides with periods of topographic 
stability, samples of the EEG time series high in GFP ought 
to be topographically similar relative to adjacent samples.

16-minutes of scalp recorded multichannel EEG were 
acquired from 216 healthy adults at rest by Babayan et al. 
(2019) and de-identified data was made publicly available 
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on a data-sharing repository. Resting EEG were divided into 
eyes closed (8-min) and eyes open (8-min) epochs. Using 
these data, I calculated within-person correlations between 
the GFP and topographic dissimilarity of temporally adja-
cent (sample t and sample t − 1) voltage maps for all samples 
of individuals’ EEG recordings (Skrandies 1990; Murray 
et al. 2008). In addition to supporting the notion that maps 
at local maxima of GFP are strong indicators of momentary 
stability in topographic configuration, voltage maps with 
high field strength and stable topography ought to reflect 
optimal points for clustering voltage maps to obtain common 
patterns of global microstate configurations across individu-
als. To address this question, I examined the degree to which 
the GFP and topographic dissimilarity of voltage maps were 
predictive of their spatial correlation with microstate con-
figurations identified through topographic clustering.

Methods

Participants

227 participants were recruited to participate as part of the 
MPI-Leipzig Mind-Brain-Body study (MPILMBB; Babayan 
et al. 2019). Participants were recruited as part of two sepa-
rate age cohorts. The younger age cohort was between 20 
and 35 years old (N = 153, 45 females, age M = 25.1 years, 
SD = 3.1) and the older age cohort was between 59 and 77 
years old (N = 74, 37 females, age M = 67.6 years, SD = 4.7). 
Participants underwent an extensive medical and psycho-
logical screening procedure before inclusion (see Babayan 
et al. 2019). Resting EEG was recorded from 216 of these 
participants at the Day Clinic for Cognitive Neurology of the 
University Clinic Leipzig and the Max Planck Institute for 
Human Cognitive and Brain Sciences (MPI CBS) in Leipzig, 
Germany. Written informed consent was obtained prior to 
participating in the study, and all participants received mon-
etary compensation. The study was carried out in accordance 
with the Declaration of Helsinki and the study protocol was 
approved by the ethics committee of the University of Leip-
zig (Reference #154/13-ff).

Procedure

16 min of resting EEG was acquired from 216 participants 
in a sound attenuated chamber prior to the administration 
of psychological questionnaires and assessments includ-
ing a psychiatric interview (SCID; Wittchen et al. 1997). 
Each EEG recording was divided into 16 contiguous 1-min 
blocks, with two conditions interleaved, eyes closed and eyes 
open, beginning with the eyes closed condition. Presenta-
tion software (Neurobehavioral Systems Inc., USA) was 

used to indicate changes between blocks. Participants were 
instructed to fixate on a black cross presented on a white 
background during the eyes open blocks.

EEG Data Collection and Processing

Resting EEG was recorded from a 62-channel active elec-
trode cap (ActiCAP, Brain Products GmbH, Germany), with 
61 channels in the international 10–20 system arrangement 
and one additional electrode below the right eye recording 
vertical eye movements. The reference electrode was located 
at electrode position FCz and the ground was located at the 
sternum. Electrode impedance were kept below 5 kΩ. Data 
were acquired with a BrainAmp MR plus amplifier (Brain 
Products GmbH, Germany) at an amplitude resolution of 
0.1 µV and sampling rate of 2500 Hz. EEG were bandpass 
filtered online between 0.015 Hz and 1 kHz, subsequently 
downsampled offline to 250 Hz, and bandpass filtered 
between 1 and 45 Hz (Butterworth filter, filter order 4). 
8-min eyes closed and eyes open epochs were separately 
concatenated.

Preprocessed EEG recordings (Babayan et  al. 2019) 
were made available for use to interested researchers on 
a data-sharing repository (https​://ftp.gwdg.de/pub/misc/
MPI-Leipz​ig_Mind-Brain​-Body-LEMON​/). As reported 
by Babayan et al. (2019), outlier channels with poor signal 
quality, extreme peak-to-peak deflections, or large bursts 
of high frequency activity, were excluded based on visual 
inspection. Principal component analysis (PCA) was used 
to reduce the dimensionality of the data by keeping compo-
nents that explain 95% of the total data variance. Infomax 
independent component analysis (ICA) was used to remove 
components reflecting eye movements, eye blinks, or heart-
beat related signal contaminants. Remaining independent 
components (M = 21.4 components, range: 14–28) were then 
reconstructed and projected back to sensor space. 13 par-
ticipants were excluded due to missing event information, 
different sampling rate, or insufficient data quality.

Following collection of the 406 preprocessed EEG 
recordings from 203 participants from the data-sharing 
repository, missing electrodes were interpolated based on 
spherical spline interpolation to a 64-channel montage 
and average-referenced using the Cartool software toolbox 
version 3.7 (Brunet et al. 2011). To focus my analyses on 
healthy individuals, I excluded 12 additional participants 
from further analysis because the psychiatric interview con-
ducted at the second assessment identified potential psycho-
logical concerns (e.g., substance abuse or unspecified hallu-
cinations). This left 191 participants in the current analysis, 
with an average of 7.83 min (SD = 0.51) of eyes closed and 
7.77 min (SD = 0.53) of eyes open resting EEG.

https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body-LEMON/
https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body-LEMON/
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Global Field Power and Topographic 
Dissimilarity

Global field power (GFP) and topographic dissimilarity 
(DISS) of temporally adjacent samples (sample t − 1) were 
calculated for samples of the EEG time series. GFP is a 
reference-independent measure of voltage potential (µV) that 
quantifies the strength of the scalp electric field at a given 
sample of the recording and is equivalent to the standard 
deviation of amplitude across the average-referenced elec-
trode montage (Skrandies 1990; Murray et al. 2008). GFP 
was calculated for all samples of the EEG time series for the 
remaining 191 participants (382 total eyes closed and eyes 
open recordings). Furthermore, the difference in topography 
between temporally adjacent voltage maps was calculated 
based on the measure of global topographic dissimilarity 
(Skrandies 1990; Murray et al. 2008). DISS is quantified as 
the square root of the mean of squared differences between 
GFP normalized electrodes and reflects a measure of the 
overall difference in spatial configuration between two elec-
tric fields, independent of their strength. DISS was calcu-
lated between the voltage map of each time series sample 
(sample t) and the map of the preceding sample (sample t 
− 1). This quantified the topographic dissimilarity between 
voltage maps in subsequent moments.

Figure 1a depicts the calculation of GFP and DISS from 
1 s of EEG from a participant chosen at random. High DISS 

indicates that the voltage map of the current sample and 
the preceding sample were dissimilar in spatial configura-
tion. Values of GFP and DISS were log-transformed and 
the correlation between the strength of the electric field and 
dissimilarity of temporally adjacent voltage maps was cal-
culated for the EEG time series of each individual record-
ing. Correlations were compared between eyes closed and 
eyes open conditions with a paired t test after Fisher r to z 
transformation. In addition, the GFP and DISS of samples 
selected at the local GFP maxima of the EEG time series 
were compared to all the remaining samples of each indi-
vidual recording, and the proportion of variance accounted 
for by local GFP maxima was examined. Figure 1b depicts 
the time series of voltage maps from 1 s of EEG with 
maps at local GFP maxima indicated. There were 14624.6 
(SD = 2371.0) and 16669.1 (SD = 2357.7) samples at the 
local GFP maxima on average for individuals in the eyes 
closed and eyes open conditions, respectively. This was out 
of 117839.9 (SD = 7616.2) total EEG samples in the eyes 
closed condition and 116538.4 (SD = 7918.0) samples in the 
eyes open condition on average. Finally, differences in the 
association between GFP and DISS were examined for sam-
ples at the local GFP maxima compared to other samples. 
The amount of variance explained in DISS by the interac-
tion between GFP and whether a sample was selected at the 
local GFP maxima was examined, over and above both main 
effects alone.

Fig. 1   One second of 64-channel eyes-closed resting EEG (sam-
pled at 250 Hz) is shown (a) from a recording chosen at random. 
The global field power (GFP) is calculated from the multichannel 
EEG and reflects a measure of the ongoing strength of the electric 
field. The periodicity of peaks in GFP coincide with oscillations at 
the dominant EEG frequency. Topographic dissimilarity (DISS) 
is also calculated and reflects a measure of the difference in spatial 
configuration between electric fields of temporally adjacent (sample 
t and sample t – 1) voltage maps, independent of their strength. GFP 

appears inversely correlated with topographic dissimilarity. b Rows 
depict the time series succession of voltage maps from left to right of 
1 s of EEG. Voltage maps are 2D isometric projections with nasion 
upwards. Voltage maps are highlighted at the local maxima in the 
global field power (GFP). The topography generally appears quasi-
stable for several samples surrounding local GFP maxima. k-means 
clustering of maps at local GFP maxima identified six optimal sub-
ject-level topographic clusters of maps for this individual
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Topographic Clustering and Microstate 
Segmentation

Topographic microstate segmentation of EEG and param-
eterization of the microstate time series in the 191 partici-
pants (382 recordings) was previously reported in Zanesco 
et al. (2020). The results of topographic clustering are sum-
marized below. Briefly, topographic clustering of voltage 
maps at local GFP maxima was conducted separately for 
each individual recording. The adapted k-means clustering 
procedure, implemented in Cartool (Brunet et al. 2011), 
revealed an optimal number of 4 to 8 subject-level centroid 
topographies (totaling 1940 topographies) for each indi-
vidual EEG recording (M = 5.08, SD = 0.94) that explained 
81.71% (SD = 4.36, range = 72.31–91.90) of GEV of 

centroids on average in the eyes closed condition and 78.84% 
(SD = 3.45, range = 68.76–88.37) in the eyes open condition. 
A second round of clustering of individual subject-level cen-
troids revealed five global clusters that together explained 
85.03% of the GEV in the 1940 individual subject-level clus-
ter centroid topographies. These five clusters, designated 
as microstate configurations A through E, were retained as 
the optimal number of global clusters. Figure 2 depicts the 
five optimal global cluster centroids and the 1938 individual 
subject-level cluster topographies (two topographies went 
unassigned) grouped according to their cluster membership.

The dependence of the microstate fitting procedure on the 
strength and topographic stability of the electric field was 
also examined. Spatial correlations were calculated between 
GFP normalized EEG samples and each of the five global 

Fig. 2   Five global cluster centroids were identified from k-means 
clustering during 8-min of eyes closed and 8-min of eyes open rest. 
1938 cluster centroids derived from k-means clustering of volt-
age maps at GFP peaks from 382 individual subject recordings are 

shown grouped according to their global cluster membership. Voltage 
topographies are 2D isometric projections with nasion upwards. Each 
global topography (A through E) is the centroid of respective clusters 
of maps
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microstate cluster centroids. Polarity was ignored when 
calculating spatial correlations and only the relative spatial 
configuration was considered. EEG were spatially smoothed 
in Cartool using the spatial interseptile weighted mean to 
minimize the influence of outliers in the electrode montage. 
The maximal spatial correlation between microstate cluster 
centroids was retained for each sample. This is in line with 
the winner-take-all principle commonly used to categorize 
samples of EEG according to the microstate that best rep-
resents each voltage map in the time series. The correlation 
between log-transformed GFP and DISS, and the Fisher r 
to z-transformed spatial correlation with microstate cluster 
centroids, were calculated for samples of each individual 
recording.

Results

Global Field Power and Topographic Temporal 
Stability

Within-person correlations were calculated between the GFP 
of each sample and the topographic dissimilarity (DISS) 
between temporally adjacent (sample t and sample t – 1) 
voltage maps for the EEG time series of each recording. Val-
ues of GFP and DISS were also log-transformed. Figure 3 
depicts scatterplots demonstrating the association between 
GFP and DISS, and log-transformed GFP and DISS, for 4 
eyes-closed and 4 eyes-open EEG recordings chosen at ran-
dom. As can be seen, the DISS of temporally adjacent maps 
was low at points of high GFP. The reverse, however, does 
not appear to be true. At points of low GFP, DISS ranged 
across the entire distribution of values.

Strong negative correlations between log-transformed 
GFP and DISS were observed on average in both the eyes 
closed (mean r = – 0.658, SD = 0.060, 95% CI [– 0.667, 
– 0.650]) and eyes open conditions (mean r = – 0.663, 
SD = 0.065, 95% CI [– 0.672, – 0.654]).1 One individual 
was a clear outlier overall (eyes closed r = – 0.261 and eyes 
open r = – 0.311), and there were two other outlier eyes 
open recordings with r = – 0.293 and r = – 0.332, respec-
tively. All the remaining correlations were strongly nega-
tive and ranged from r = – 0.453 to – 0.766 for the eyes 
closed condition, and r = – 0.426 to – 0.766 for the eyes 
open condition. Figure 4 depicts the mean correlations for 
each condition and range of correlations among individuals. 

Fisher z-transformed correlations did not significantly differ 
between conditions, t(190) = 1.338, p = 0.182, but were posi-
tively correlated within-persons across conditions (r = 0.582, 
p < 0.001, 95% CI [0.480, 0.669]). These findings confirm 
the robust association between GFP and topographic tem-
poral stability in a large sample of healthy adults. Voltage 
topography at moments of high electric field strength is 
therefore more temporally stable than when field strength 
is lower.

Global Field Power and Topographic Temporal 
Stability at Local GFP Maxima

The topographic dissimilarity (DISS) between temporally 
adjacent (sample t and sample t – 1) voltage maps was 
next compared between samples selected at the local GFP 
maxima of the EEG time series and all remaining samples. 
Figure 5 depicts scatterplots between GFP and DISS, and 
log-transformed GFP and DISS, for samples (in yellow) 
selected at the local GFP maxima in the EEG time series. 
As depicted, samples selected at the local GFP maxima 
have consistently lower DISS compared to the overall dis-
tribution. In contrast, local GFP maxima vary in magnitude 
across the entire range of the GFP distribution.

Accordingly, the log-transformed DISS of samples at the 
local GFP maxima was lower on average compared to all the 
remaining samples in both the eyes closed (Mdiff = – 0.375, 
SD = 0.076, 95% CI [– 0.386, – 0.364]) and eyes open 
conditions (Mdiff = – 0.316, SD = 0.059, 95% CI [– 0.324, 
– 0.308]). Whether a sample was selected at the local GFP 
maxima (or not) explained roughly 5% of the variance in 
log-transformed DISS on average in both the eyes closed 
(mean R2 = 0.054, SD = 0.012, 95% CI [0.052, 0.056]) and 
eyes open conditions (mean R2 = 0.052, SD = 0.014, 95% 
CI [0.050, 0.054]). These findings provide further support 
for the premise that points of local GFP maxima demon-
strate greater topographic stability compared to the overall 
distribution of EEG samples (see Fig. 5). The basic prem-
ise of microstate segmentation that voltage maps at local 
GFP maxima are strong indicators of momentary stability 
in topographic configuration is therefore well supported by 
empirical data.

The log-transformed GFP of samples at the local GFP 
maxima was also greater on average compared to other 
samples in the eyes closed (Mdiff = 0.217, SD = 0.031, 
95% CI [0.213, 0.222]) and eyes open conditions (Mdiff = 
0.205, SD = 0.023, 95% CI [0.202, 0.209]). Yet, whether 
samples were selected at the local GFP maxima or not 
explained only 3% of variance in log-transformed GFP on 
average in the eyes closed (mean R2 = 0.031, SD = 0.017, 
95% CI [0.028, 0.033]) and eyes open conditions (mean 
R2 = 0.037, SD = 0.019, 95% CI [0.034, 0.040]). It is 
thus unsurprising that samples selected at the local GFP 

1  The mean correlations were nearly identical when including the 
12 individuals originally excluded from the sample. Correlations 
for all 203 individuals were large on average in both the eyes closed 
(mean r = − 0.657, SD = 0.060, 95% CI [− 0.666, − 0.649]) and eyes 
open conditions (mean r = − 0.663, SD = 0.064, 95% CI [− 0.672, − 
0.654]).
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maxima had greater GFP amplitude than the rest of the 
distribution. However, it is perhaps counterintuitive that 
these points better differentiated the topographic dissimi-
larity of temporally adjacent samples than they did overall 
GFP amplitude (see Fig. 5).

Importantly, associations between log-transformed GFP and 
DISS did not differ for samples selected at the local GFP max-
ima compared to all remaining samples. That is, differences in 
how well log-transformed GFP predicted DISS between those 
samples selected at the local GFP maxima and all remaining 

Fig. 3   Scatterplots depicting samples of global field power (GFP) by 
topographic dissimilarity between temporally adjacent (sample t and 
sample t – 1) voltage maps for four eyes closed and four eyes open 
EEG recordings selected at random. The left column of each pair 

depicts raw values and the right column depicts the corresponding 
log-transformed values and within-person correlation. The density of 
the distribution of values is indicated (from low density in purple to 
high density in yellow)
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samples explained only a negligible amount of additional vari-
ance in log-transformed DISS on average across individuals 
in both the eyes closed (mean ΔR2 = 0.0007, SD = 0.0006, 
95% CI [0.0006, 0.0008]) and eyes open conditions (mean 
ΔR2 = 0.0004, SD = 0.0004, 95% CI [0.0003, 0.0005]). Thus, 
even among those samples selected at the local GFP maxima, 
voltage topography was more stable during moments when 
the electric field strength was high compared to when field 
strength was lower.

Global Field Power and Topographic Stability 
as Predictors of Microstate Fitting

The dependence of the microstate fitting procedure on the 
strength and topographic stability of the electric field was 
next examined. Maximal spatial correlations were calculated 
between EEG samples and each of the five global microstate 
cluster centroids. Figure 6 depicts 3D scatterplots between 
GFP, DISS, and the maximal spatial correlation of samples 
with microstates. As can be seen, voltage maps of samples 
with high GFP had uniformly greater spatial correlations 
than those samples with lower GFP.

This was confirmed by strong positive correlations for 
individuals on average between log-transformed GFP and 

the Fisher r to z-transformed spatial correlation with micro-
state cluster centroids in the eyes closed (mean r = 0.557, 
SD = 0.043, 95% CI [0.551, 0.563]) and eyes open condi-
tions (mean r = 0.553, SD = 0.041, 95% CI [0.548, 0.559]). 
Log-transformed DISS only explained a small amount of 
additional variance in the z-transformed spatial correlations 
over and above log-transformed GFP in the eyes closed 
(mean ΔR2 = 0.027, SD = 0.016, 95% CI [0.025, 0.029]) 
and eyes open conditions (mean ΔR2 = 0.020, SD = 0.015, 
95% CI [0.018, 0.022]). Samples selected at the local GFP 
maxima, however, had only a minimally larger spatial cor-
relation with one of the five global microstate configurations 
than all remaining samples in the eyes closed (Mdiff = 0.029, 
SD = 0.008, 95% CI [0.028, 0.030]) and eyes open conditions 
(Mdiff = 0.024, SD = 0.008, 95% CI [0.023, 0.025]). These 
findings suggest that moments of high electric field strength 
were not only more topographically stable than when field 
strength was low but also better resemble the voltage topog-
raphy of the five global microstate configurations.

Discussion

The basic premise underlying segmentation of broadband 
EEG into microstates based on momentary periods of topo-
graphic stability is well supported by empirical data in the 
present study. 191 healthy adults demonstrated strong and 
consistent associations between the GFP of samples and the 
topographic dissimilarity of temporally adjacent voltage 
maps. Voltage maps of samples selected at the local GFP 
maxima were also systematically less dissimilar from tem-
porally adjacent samples compared to other samples in the 
EEG. These findings support the notion that the time series 
succession of voltage maps exhibit momentary topographic 
stability when the electric field strength is high. When the 
field strength was low, however, topographic stability varied 
considerably. That is, points of low field strength ranged 
across the entire distribution of values of topographic dis-
similarity. After all, samples selected at the local GFP max-
ima also frequently occurred at points of low GFP relative to 
the entire distribution, though they were consistently more 
topographically stable relative to other samples. Select-
ing time series samples at the local GFP maxima there-
fore appears to be a good heuristic for identifying optimal 
points of topographic stability for clustering and microstate 
labeling.

The reported findings were also highly consistent across 
individuals. The strong association between log-transformed 
GFP and topographic stability was observed across thou-
sands of samples of the EEG time series in every recording 
included in the present study. Yet, there was also some vari-
ability in terms of the magnitude of these correlations, and 
only 34% of the variance was shared between eyes closed 

Fig. 4   Means are plotted for within-person correlations between log-
transformed global field power (GFP) and topographic dissimilar-
ity for eyes-closed and eyes-open conditions. Observed participant 
(n = 191) correlations are plotted as dots. Errors bars are 95% CI of 
the mean
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and eyes open conditions. This suggests that associations 
between GFP and topographic stability appear to quantify 
aspects of spatiotemporal dynamics that vary within indi-
viduals, which likely depend on the prevalence of noise and 
artifact in the EEG recording and variation in perceptual and 
cognitive states that condition the magnitude of synchro-
nized oscillations over subsequent moments.

Clustering of EEG voltage maps at GFP peaks led to the 
identification of five data-driven microstate configurations 
that explained more than 60% of the total topographic vari-
ance when fit to individuals’ EEG time series (Zanesco et al. 
2020). The spatial correlation between voltage maps at sam-
ples of the EEG time series and these five microstate con-
figurations were found to strongly correlate with the strength 

Fig. 5   Scatterplots depicting the global field power (GFP) and topo-
graphic dissimilarity between temporally adjacent (sample t and sam-
ple t – 1) voltage maps for samples (in yellow) selected at the local 

GFP maxima in the EEG time series. The remaining samples are in 
purple. The same EEG recordings are shown from Fig. 3
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and topographic stability of the electric field. This association 
was largely driven by variation in GFP magnitude, as the top-
ographic dissimilarity of adjacent samples only explained a 
small amount of additional variance in the spatial correlation 
between microstates and voltage maps above that explained 
by GFP. Moments of strength in the electric field were not 
only more topographically stable than when field strength 
was low but also better resembled the voltage topography of 
the global microstate configurations. This is perhaps expected 
as microstate clusters are themselves derived from voltage 
maps at local GFP maxima, and were consistently more topo-
graphically stable relative to other samples.

Microstate clustering is commonly applied to voltage 
maps generated at the GFP peaks of the EEG time series 
because of the well-reasoned assumption that these instances 
maximize signal-to-noise ratio and provide optimal represen-
tations of the momentary quasi-stable voltage topography. 
Furthermore, moments of high GFP correspond to instances 
of greatest momentary synchronization in the activity of brain 
generators. While the present findings provide additional 
empirical support for the notion that clustering at local GFP 
maxima produces microstate configurations that optimally 
represent moments of topographic stability, this does not 
imply that clustering at other moments of the EEG time series 

Fig. 6   3D scatterplots depicting samples of global field power (GFP) 
by topographic dissimilarity between temporally adjacent (sample 
t and sample t -1) voltage maps and the maximal spatial correlation 
between samples and the five microstate cluster centroids. Four eyes 

closed EEG recordings are shown selected at random. The spatial 
correlations of samples are indicated based on their color (from low 
spatial correlation in purple to high correlation in yellow)
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will not produce representative cluster solutions. In fact, there 
was considerable variability in the similarity of adjacent volt-
age maps at moments when GFP was lower. Common topo-
graphic patterns may therefore still be identified based on 
clustering applied to other moments of the EEG time series.

In line with other studies examining the limitations of 
common methods for segmenting EEG into microstates 
(Dinov and Leech 2017; Mishra et al. 2020), the present find-
ings demonstrate some of the variability and uncertainty in 
microstate labeling and clustering. Indeed, many samples in 
the EEG, including those selected at the local GFP maxima, 
had a low spatial correlation with one the five microstate 
configurations identified in the present study. Clustering of 
topographic patterns into microstate configurations is funda-
mentally a process of data reduction that seeks to identify the 
optimal number of topographic patterns present in the EEG 
that are shared within or between individuals. These clusters 
of voltage maps may be more continuous than assumed by a 
discrete model of microstates (Mishra et al. 2020), leading 
to uncertain categorization of EEG samples. Alternatively, 
clustering solutions commonly limit the number of micro-
states to four configurations, which may fail to adequately 
capture the range of discrete microstate clusters present in 
the EEG (Michel and Koenig 2018). Finally, the microstate 
model assumes that residual variance in the fit of microstates 
primarily results from noise. It will be important for studies 
to attempt to quantify how much noise might contribute to 
variability in the fit of microstates, perhaps by simulating the 
contribution of transiently oscillating sources in the presence 
of differing levels of noise. Future studies should continue 
to evaluate these and other assumptions of the microstate 
model, as well as developing more probabilistic approaches 
for microstate categorization that can better account for 
uncertainty in assignment (cf. Dinov and Leech 2017).

In total, the present findings provide strong empirical sup-
port for the proposal that periods of topographic stability can 
be identified in the time series succession of voltage maps 
corresponding to common microstate configurations, and 
that moments of high field strength are optimal representa-
tions of quasi-stable electric field topography. The activ-
ity of phase-synchronized neuronal networks thus persists 
in a coherent topographic configuration for brief moments 
before quickly transitioning to different configurations. This 
agrees with the premise underlying microstate segmentation 
that ongoing brain activity can be parsed into sequences of 
coordinated brain states (Lehmann et al. 1987). Topographic 
stability during moments of high field strength therefore 
appears to be a basic property of the spontaneous spatiotem-
poral dynamics of the neuroelectric field.
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