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Abstract
Multiscale entropy (MSE) model quantifies the complexity of brain functions by measuring the entropy across multiple 
time-scales. Although MSE model has been applied in children with Autism spectrum disorders (ASD) in previous studies, 
they were limited to distinguish children with ASD from those normally developed without corresponding severity level of 
their autistic features. Therefore, we aims  to explore and to identify the MSE features and patterns in children with mild 
and severe ASD by using a high dense 64-channel array EEG system. This study is a cross-sectional study, where 36 chil-
dren with ASD were recruited and classified into two groups: mild and severe ASD (18 children in each). Three calculated 
outcomes identified brain complexity of mild and severe ASD groups: averaged MSE values, MSE topographical cortical 
representation, and MSE curve plotting. Averaged MSE values of children with mild ASD were higher than averaged MSE 
value in children with severe ASD in right frontal (0.37 vs. 0.22, respectively, p = 0.022), right parietal (0.31 vs. 0.13, respec-
tively, p = 0.017), left parietal (0.37 vs. 0.17, respectively, p = 0.018), and central cortical area (0.36 vs. 0.21, respectively, 
p = 0.026). In addition, children with mild ASD showed a clear and more increase in sample entropy values over increasing 
values of scale factors than children with severe ASD. Obtained data showed different brain complexity (MSE) features, 
values and topographical representations in children with mild ASD compared with those with severe ASD. As a result of 
this, MSE could serve as a sensitive method for identifying the severity level of ASD.
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Introduction

Autism spectrum disorders (ASD) are a group of complex 
and heterogeneous developmental disorders involving mul-
tiple neural system dysfunctions that lead to social and 
communication impairments and restricted and stereotyped 

behaviors (Johnson and Myers 2007). Although electroen-
cephalography (EEG) has been used for almost a century to 
identify neural activities in humans, traditional quantitative 
EEG methods analysis using interpretation of multichannel 
recordings, frequency analyses, and graphic representations 
were limited in their ability to analyze the complexity, wide 
range and multivariate ASD-EEG brain data, as well it can 
only analyze short-range of temporal EEG dynamics (Liu 
et al. 2017). This is because EEG signals exhibit complex 
temporal features that reflect non-linear dynamical pro-
cesses (Abarbanel and Rabinovich 2001). The recent non-
linear approaches to characterize the EEG complex temporal 
dynamics have provided new insights into EEG dynamical 
complexity in mental disorders including ASD (Takahashi 
2013). One common EEG model for this purpose is the Mul-
tiscale entropy (MSE), which quantifies the complexity of a 
physiological signal by measuring the entropy across mul-
tiple time-scales, using a coarse-graining procedure (Costa 
et al. 2002, 2005).
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Although previous studies (Bosl et al. 2011; Catarino 
et al. 2011; Jamal et al. 2014; Ghanbari et al. 2015; Liu 
et al. 2017) applied the MSE model in children with ASD, 
MSE features comparison and differences limited between 
children with ASD and normally developed children with 
no any attention for the severity of autistic features in their 
recruited children with ASD. This is because previous 
research identifies ASD based on ASD—Diagnostic and 
Statistical Manual (DSM-4 or DSM-5). Although DSM is 
a golden standard to distinguish children with autism from 
those normally developed, previous studies showed that 
DSM criteria under-identifies children with mild ASD and 
recommended using more socio-behavioral scales such as 
childhood autism rating scale (CARS) (Mayes et al. 2014) 
or ATEC (Magiati et al. 2011), which are considered sensi-
tive to identify the severity of ASD.

On the other hand, there were only two studies have 
approached the aspect of severity degree in autism (Yousef 
et al. 2017; Chan et al. 2017). However, their results do 
not help in the understanding of the clinical differences of 
autistic features in terms of nonlinear dynamic analysis of 
the EEG signals. This is because their approach did not go 
beyond reporting EEG abnormalities without showing any 
specific EEG analysis approach or specific EEG outcome 
measures (Yousef et al. 2017), or the number of explored 
EEG channels was limited to three EEG channels only 
(Chan et al. 2017). Consequently, the nonlinear dynamic 
analysis of EEG signal in terms of MSE features and out-
comes measures in accordance with autistic features sever-
ity in children with ASD is still unclear.

Therefore, this study aimed to explore the MSE patterns 
in EEG-resting state signals of children with ASD based 
on their autistic severity levels (mild and severe ASD), 
and to explore the sensitivity of the MSE analysis model 
to identify the ASD severity levels in children with ASD.

Methods

Study Design

The present work consists of a cross-sectional study iden-
tifying and examining the MSE patterns in children with 
mild and severe ASD. All procedures performed in this 
study were in accordance with the ethical standards of 
the institutional research committee [Jordan University 
of Science and Technology/ Institutional Review Board 
(approval No.2015/8/5)] and with the 1964 Helsinki decla-
ration and its later amendments. Written informed consent 
obtained from all children parents before participation in 
the study.

Participants

A sample size of 36 children, with a formal medical diag-
nosis with ASD, have been recruited in this study from the 
local special education centers (aged between 3 and 13 years 
old). Recruited children had mild and severe ASD (the two 
groups, eighteen for each, matched in age and gender). 
CARS and ATEC scales had been used to determine the 
severity level of autistic features of the participated chil-
dren. Both scales were carried out by licensed medical prac-
titioners who were blinded about the purpose of this study 
(Table 1). All children were in stable medical condition for 
at least 3 weeks before entering the study and had no seizure 
or epilepsy.

EEG Recording

EEG data recorded at resting state, where all the children 
have been asked to sit quietly on a chair, using the 64 stand-
ard scalp electrodes placed following the 10–10 Interna-
tional EEG System (64 EEGo Sport system, ANT Neuro). 
A reference electrode was the CPz with ground electrode at 
the GND. The EEG recording session lasted 25 min under 
the supervision of the EEG technician, who made events 
marker for any disturbance actions or artifacts made by the 
child such as head movement, eye blinking, body movement, 
and crying. to be considered later in EEG analysis process. 
In addition, eye-movements were monitored using bi-polar 
channels with electrodes above and below the left eye (ver-
tical electro-oculogram) and 1 cm from the outer canthus 
of each eye (horizontal electro-oculogram). Impedances at 
all sites maintained below 5 ohms. EEG data obtained at a 
sampling frequency of 500 Hz, with a 0.3–200 Hz online 
band-pass filter and 50 Hz notch filter.

MSE Analysis

Consistent with previous MSE studies (Escudero et al. 2006; 
Takahashi et al. 2010), the data was not subjected to other 
pre-processing steps (i.e., filtering, artifact removal or data 
reconstruction algorithms) since this could distort the data 

Table 1   Demographic data—baseline

Table shows children’s demographic data including gender, age, 
CARS score and ATEC score for mild ASD and severe ASD groups

Sever ASD group Mild ASD group Items

18 (7.3 ± 2.1 years) 18 (7.7 ± 2.5 years) Number and (age)
17M/1F 17M/1F Gender
99.2 ± 17.1 71.8 ± 16.0 ATEC score
39.2 ± 4.0 29.4 ± 4.1 CARS score
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and influence the MSE analysis results. Instead, 30 s artifact-
free segments of data were chosen for analysis. MSE analy-
sis merely is done by computing the sample entropy (SE) 
at multiple time scales based on coarse-graining procedure 
(Costa et al. 2005), as explained below. The SE of raw EEG 
time series is defined as the negative of the logarithmic prob-
ability of two similar sequences of m consecutive data points 
with the condition that the point remains similar at the next 
point (m + 1) as given by the following equation:

where Cm(r) = (N −m)−1
∑N−m

i
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i
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of all probable pairs (i,j) with d < r times the time-series 
standard deviation. In general, the SE provides a measure of 
the self-similarity of the time series (Richman and Moorman 
2000). Whereas, the MSE analysis provides a measure of the 
time-series complexity, in which the complex dynamics 
reveal different structures over multiple time scales. In our 
case, we applied the MSE analysis to find out differences 
between the EEG in the autism population groups (mild vs., 
severe).

In MSE analysis, given an EEG time-series of length N, 
[x1,x2,…,xN], the signal was constructed into consecutive 
coarse-grained time series, yτ, associated with the scale fac-
tor, τ. First, the original time-series was divided into non-
overlapping windows of length τ; second, for each window, 
the average of the data points inside it was computed. Gener-
ally, each element of a coarse-grained time-series is calcu-
lated based on the following equation:

The coarse-graining procedure provides consecutive 
time-series, each of length equal to the length of the origi-
nal time series (N) divided by the scale factor (τ). Thus, for 
scale one; the time series represents the original EEG signal. 
Second, sample entropy value for each coarse-grained time-
series was computed producing sample entropy values plot 
as a function of scale factors. Previous literature has proved 
that the optimal parameter values for sample entropy to get 
a good statistical validity are m = 1 or 2, and 0.15 ≤ r ≤ 2.0 
times of standard deviation of the time series signal (Rich-
man et al. 2004). In this study, the m value set to 2; r was 
0.15 times of the signal standard deviation; N = 15,000 data 
points; and 15 scale factors (SFs, from 1 to 15) have been 
explored. The shortest coarse-grained time-series segment 
was, therefore, N/s = 15,000/15 = 1000 data points, which is 

SE(r, m,N) = − ln
Cm+1(r)

Cm(r)

y� =
1

�

j�∑

i=(j−1)�−1

xi, 1 ≤ j ≤ N∕j

reported previously to be enough to get a reliable estimation 
of the sample entropy value (Richman and Moorman 2000).

MSE Features

Two main features of MSE have been utilized to differenti-
ate between children with mild ASD and those with severe 
ASD: (1) regional averaged MSE and (2) profiles of the 
MSE curves.

To start with, regional averaged MSE values were cal-
culated by averaging the sample entropy values over the 15 
SFs for five electrodes’ clusters that represent five interested 
cortical regions; right frontal (Fp2, F4, F8, F2, F6), left fron-
tal (Fp1, F3, F1, F5, F7), right parietal (P2, P6, P4, P8, PO4, 
PO6, PO8), left parietal (P1, P3, P5, P7, PO3, PO5, PO7), 
and central (FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1, 
CP2, CP6, C5, C1, C2, C6, CP3, CP4, FC3, FCz, FC4). This 
choice was to reduce the number of statistical comparisons 
to facilitate viewing the group differences in terms of corti-
cal regions and in accordance with a previous study (Coben 
et al. 2008).

Finally, the profile of MSE curves plot, which is the curve 
resulting from plotting the sample entropy value of each 
scale factor, ranging from 1 to 15 scale factors. In addi-
tion, the difference in curve behavior serves as an index for 
measuring signal complexity as systems with higher com-
plexity will show a curve of higher values of sample entropy 
sustained over increasing values of the scale factor (Costa 
et al. 2005), for overall MSE calculations procedures, an 
explanation figure is presented (Fig. 1).

Statistical Analysis

The statistical analyses were carried out using SPSS Sta-
tistics (v20.0 software) for windows on core i5 Laptop. A 
Kolmogorov—Smirnov normality test was used to confirm 
the normal distribution of the calculated MSE values of each 
scale factors (totally 15 scale factors) at each EEG electrodes 
(totally 64 channels) for each child in both ASD groups 
(mild ASD and severe ASD, totally 36 children).

Once normal distribution was confirmed, a repeated-
measure ANOVA was applied to identify any potential dif-
ferences between the two groups as between subject-factors 
(mild ASD vs. severe ASD) in terms of the MSE values of 
15 scale factors, MSE values of 64 EEG channels, averaged 
MSE values of interested cortical regions (totally 5 regions; 
left/right frontal, left/right parietal, and central). Bonfer-
roni test for all post-hoc analysis, and Greenhouse–Geisser 
adjustment was applied to the degrees of freedom for all of 
the analyses. Values of P less than 0.05 were considered 
indicative of significant differences. This statistical process 
comes with previous MSE studies (Catarino et al. 2011; Liu 
et al. 2017).
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Results

Normal distribution of MSE outcomes measure was con-
firmed using the Kolmogorov–Smirnov normality test as 
well as by examination of skewness and kurtosis values, 
for each electrode of the 64 EEG channels of each group 
of mild and severe ASD.

Statistical analysis showed significant difference 
in MSE value based on severity groups, F (65, 474) = 
84.186; p < .0005; partial η2 = .135).

In terms of average MSE values, there were significant 
differences in averaged MSE values based on severity of 
ASD, in which averaged MSE values of children with mild 
ASD were higher than averaged MSE values in children 
with severe ASD in right frontal (0.37 vs. 0.22, respec-
tively, p = 0.022), right parietal (0.31 vs. 0.13, respec-
tively, p = 0.017), left parietal (0.37 vs. 0.17, respectively, 
p = 0.018), and central cortical area (0.36 vs. 0.21, respec-
tively, p = 0.026). However, although averaged MSE val-
ues of left frontal in children with mild ASD was slightly 
higher than those with severe, it showed no statistical dif-
ference (p = 0.138) (Figs. 2, 3).

In term of MSE curve plot, MSE curve plot data showed 
asymmetrical increasing patterns between children with 
mild ASD and those with severe ASD, where children with 
mild ASD showed a remarkable and noticeable increase 
in sample entropy values sustained over increasing values 

of scale factors, compared with children with severe ASD 
(Fig. 4).

Discussion

The primary aim of this work was to explore the MSE pat-
terns in EEG-resting state signals of children with ASD 
based on their autistic severity levels (mild and severe ASD), 
and to examine the sensitivity MSE analysis approach to 
identify the ASD severity levels in children with ASD.

Previous works that applied the MSE and nonlinear 
dynamic approaches in their EEG analysis tended to avoid 
the high complexity and heterogeneity of ASD, and limited 
to predict the existing of the autistic feature compared with 
normally developed children, or limited to study only the dif-
ferences in MSE patterns in response to different cognitive 
tasks, and ended with discrepant findings (Bosl et al. 2011; 
Catarino et al. 2011; Jamal et al. 2014; Ghanbari et al. 2015; 
Liu et al. 2017). For example, Bosl et al. (2011) reported a 
reduced complexity in infants with high risk of autism, par-
ticularly in the frontal regions of the brain. Catarino et al. 
(2011) then further reported a reduction of EEG signal com-
plexity within the temporo-parietal and occipital regions in 
an autistic group compared with the normal group. Ghanbari 
et al. (2015) then showed lower complexity in ASD in the 
frontal areas and the occipital-parietal regions. On the other 

Fig. 1   MSE curve plot. The coarse-graining procedures of MSE calculations and features utilized in this study. X represents the points in the 
original EEG signal, whereas Y is the output the of coarse-graining procedure
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hand, Liu et al. (2017) found notably descended EEG com-
plexity in individuals with autism in the right cortical area 
during observation task.

This discrepancy is expected because previous studies 
(Liu et al. 2017; Bosl et al. 2011; Catarino et al. 2011; 
Ghanbari et al. 2015) gave no attention to the severity of 
the autistic features of their participant children with ASD, 
as children recruitment based on the ASD—Diagnostic 

and Statistical Manual, Fourth or Fifth Edition (DSM-4 
or DSM-5, respectively), and explored/described the MSE 
pattern in response to a particular task. However, ASD 
consists of a group of complex and heterogeneous devel-
opmental disorders involving multiple neural system dys-
functions with significant variability in the severity of core 
deficits (Johnson and Myers 2007). In addition, a recent 
study showed that although DSM is the golden standard to 

Fig. 2   Brain complexity in 
ASD groups. A graph shows the 
comparison between the aver-
aged MSE values for children 
with mild ASD and children 
with severe ASD. * indicates 
significant difference at p < 
0.05, and # indicates difference 
is not significant at p > 0.05

Fig. 3   Brain 3D map for averaged MSE. Topographical distribution of averaged MSE in 3D brain map in children with mild ASD and children 
with severe ASD, where the main asymmetrical differences were in the right brain hemisphere
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diagnosis the autistic child or distinguish the autistic child 
from the normal child, the DSM under-identifies children 
with mild ASD (Mayes et al. 2014). Moreover, resting-
state EEG studies are used to monitor brain activity in the 
absence of overt task performance or sensory stimulation. 
These measurements can, therefore, identify abnormalities 
for which evoked potential MSE studies are not well-suited 
(Fox and Greicius 2010; Wang et al. 2013). This is because 
task-dependent changes in brain complexity (MSE) are dif-
ficult to interpret without fundamental knowledge of func-
tional differences in individuals with ASD at resting state 
(Wang et al. 2013), as well in task-based evoked potential 
studies, only time-locked neural responses to events of 
interest are studied, whereas all other spontaneous activity 

is typically considered background noise (Fox and Gre-
icius 2010).

On the other hand, there are very few number of stud-
ies that have approached the aspect of severity degree in 
autism, for example, Yousef et al. (2017) have analyzed the 
EEG abnormalities in relation to the level of severity, and 
they reported a statistically significant association between 
the abnormalities in EEG results and the severity of autism. 
However, their approach did not go beyond saying EEG 
abnormalities without showing any specific EEG analysis 
approach or specific EEG outcome measures hereby they 
reach to no complete or distinct classification parameters. In 
addition, Chan et al. (2017) have used the short windowed 
fourier transform and the genetic algorithm to classify and 

Fig. 4   MSE curve plot. EEG 
Schematic with sample entropy 
by scale factor (SF) graphs for 
representing channels, where 
sample entropy values in mild 
ASD increase remarkably over 
increasing in scale factors 
compared with sample entropy 
value increases over increases 
scale in factors in severe ASD. 
Full line—children with mild 
ASD, dashed line—children 
with severe ASD
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predict the different severity categories. However, the num-
ber of explored channels is so small and limited to three 
EEG channels (C3, C4, Cz), hereby their results do not help 
in the understanding of the clinical differences or the distri-
butions of the features.

Therefore, this study is innovative for three reasons; first, 
it is the first to explore the MSE patterns in EEG-resting 
state in children with ASD in terms of mild ASD and severe 
ASD using the highly dense array of 64 EEG system. Sec-
ond, it identified more MSE outcome measures and patterns 
such as the MSE topographical cortical representation in 
3D brain map besides the averaged MSE values and MSE 
curve plotting that reported in previous MSE works (Liu 
et al. 2017; Bosl et al. 2011; Catarino et al. 2011; Ghanbari 
et al. 2015). Third, it would provide a clear understanding 
of ASD and determine the sensitivity of EEG complexity 
(MSE) to identify the ASD severity besides its reported sen-
sitivity to distinguish autistic child from the normal child in 
previous studies (Liu et al. 2017; Bosl et al. 2011; Catarino 
et al. 2011; Ghanbari et al. 2015).

In terms of averaged MSE, there was a significant 
decrease in averaged MSE values in children with severe 
ASD compared with children with mild ASD. Brain com-
plexity (MSE) measures the extent to which interactions pro-
duce patterns of temporal correlations or functional connec-
tivity both within and across cortical areas, and this temporal 
correlation combines the dual requirements of functional 
segregation and integration (Sporns et al. 2000). In addition, 
it suggested that dysfunction or impaired temporal integra-
tion of information from spatially discrete brain areas would 
be the main root and the core of autistic deficits in social 
interaction, language, and repetitive and restrictive behav-
iors. In another word, changes in brain complexity indicate 
to some extent changes in the neural connectivity (Takahashi 
et al. 2010), and this associated with an atypical pattern of 
cortical functional connectivity (Ghanbari et al. 2015), and 
such atypical patterns are related to autistic deficits (Wass 
2011). Another interpretation of biological complexity is 
that it reflects a system’ s ability to adapt quickly and func-
tion in a changing environment (Costa et al. 2005). Brain 
complexity was found in one study (Kulisek et al. 2008) to 
be associated with the ability to attend to a task and to adapt 
to new cognitive tasks as well it reflects the synchroniza-
tion functioning between the different cortical regions, and 
all of these functions were found to be involved in children 
with ASD.

On the other hand, based on CARS scale, children 
with mild ASD manifested less deficits in social inter-
action, language and repetitive and restrictive behavior 
than those with severe ASD (Magiati et al. 2011). There-
fore, we assumed that our children with severe ASD had 
more behavioral, language and social deficits, hereby had 
less temporal integration and correlation of discrete brain 

areas. As a result of this, they had less brain complexity 
and averaged MSE values than children with mild ASD 
in most of the cortical regions. This assumption is sup-
ported by the findings of MSE curves plot profile that 
serves as an index for brain complexity (Costa et al. 2005), 
and previous study (Bosl et al. 2011) reported that nor-
mally developed children showed increasing in the sam-
ple entropy values as the scale factors increase comparing 
with children with ASD, hereby normally developed child 
had more brain complexity than those with ASD. In the 
current study, MSE curve plot data showed asymmetrical 
increases patterns between children with mild ASD and 
those with severe ASD, where children with mild ASD 
showed remarkable and noticeable increasing in sample 
entropy values of sample entropy sustained over increas-
ing values of scale factor, compared with children with 
severe ASD.

In terms of cortical regions and hemisphere lateraliza-
tion, children with mild ASD demonstrated higher averaged 
MSE values in right frontal, right parietal, central and left 
parietal cortical areas compared with those of severe ASD. 
The dominancy of right hemisphere over left hemisphere in 
this study could be explained by the findings of a resting-
state fMRI that conducted a comprehensive investigation 
of hemispheric asymmetry in adolescents with ASD, and 
reported atypical rightward asymmetry that spreading out 
through brain organization in ASD, and such asymmetry 
affecting sensorimotor, visual and audio processing, as well 
as higher cognitive functions (Cardinale et al. 2013).

On the other hand, available researches have suggested 
that dysfunctional mirror neurons may explain and contrib-
ute to the major deficits characteristics and features observed 
in ASD including impaired social interaction and restricted 
behavior (Iacoboni and Dapretto 2006; Oberman and 
Ramachandran 2007; Rizzolatti and Fabbri-Destro 2010). 
A single cortical area does not represent the mirror neurons, 
instead, mirror neurons is a neural network that includes dor-
solateral prefrontal cortex, premotor, supplementary motor, 
primary motor and primary somatosensory areas (Oberman 
et al. 2005), which interestingly all represented by the cen-
tral and parietal EEG electrodes in our studies. Therefore, 
this study data would infer that differences in averaged MSE 
values that were dominant in central, left and right parietal 
areas would be an indication of a possible dysfunction in the 
mirror neurons in children with ASD. However, although 
this assumption would come with other studies findings (Liu 
et al. 2017; Cardinale et al. 2013), further studies are needed.

Limitation, this study showed the differences in MSE out-
come measures and features between the two autistic groups 
(mild ASD vs. severe ASD), which helps to fill in the gaps of 
the existing MSE literature that lacks the complete EEG tool 
and analysis approach to classify the different ASD sever-
ity degrees. However, a further study that includes MSE 
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outcome measures comparisons between children with dif-
ferent autistic levels with normally developed children is 
needed.

Conclusion

This study introduced the new application of MSE-EEG 
analysis methods to characterize and identify the differences 
in the brain complexity features in children with ASD in 
accordance to their autistic feature severity levels. Our data 
showed that children with mild ASD had more brain com-
plexity patterns compared with children with severe ASD, 
and there was rightward lateralization dominancy in central, 
and parietal areas. This study finding would support the the-
ory of dysfunctional mirror neurons in children with ASD, 
as well as the sensitivity of MSE-EEG analysis method as a 
predictor EEG analysis tools to identify the autistic features 
severity levels.
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