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Abstract
A biophysical framework needed to interpret electrophysiological data recorded at multiple spatial scales of brain tissue is 
developed. Micro current sources at membrane surfaces produce local field potentials, electrocorticography, and electroen-
cephalography (EEG). We categorize multi-scale sources as genuine, equivalent, or representative. Genuine sources occur 
at the micro scale of cell surfaces. Equivalent sources provide identical experimental outcomes over a range of scales and 
applications. In contrast, each representative source distribution is just one of many possible source distributions that yield 
similar experimental outcomes. Macro sources (“dipoles”) may be defined at the macrocolumn (mm) scale and depend on 
several features of the micro sources—magnitudes, micro synchrony within columns, and distribution through the corti-
cal depths. These micro source properties are determined by brain dynamics and the columnar structure of cortical tissue. 
The number of representative sources underlying EEG data depends on the spatial scale of neural tissue under study. EEG 
inverse solutions (e.g. dipole localization) and high resolution estimates (e.g. Laplacian, dura imaging) have both strengths 
and limitations that depend on experimental conditions. The proposed theoretical framework informs studies of EEG source 
localization, source characterization, and low pass filtering. It also facilitates interpretations of brain dynamics and cognition, 
including measures of synchrony, functional connections between cortical locations, and other aspects of brain complexity.
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Introduction

Varying Interpretations of Brain “Sources”

This review of EEG source biophysics is partly motivated by 
a comprehensive report, International Federation of Clini-
cal Neurophysiology (IFCN) guidelines for topographic and 
frequency analysis of resting state electroencephalographic 
rhythms (Babiloni 2018), produced by a Working Group of 
15 EEG scientists (including author PLN). The report deals 

with various measures of neocortical dynamics, including 
source synchronization, functional connectivity, and vari-
ous other brain complexity measures. Relationships between 
recorded EEG data and the underlying “sources” were con-
sidered, and the discussion revealed a number of controver-
sies—to be expected when complex topics are considered. In 
particular, some disagreements apparently originated from 
divergent and/or poorly defined ideas of just what is actually 
meant by the tag “EEG sources”, which is the main topic 
of this paper. Minor misinterpretations of “sources” among 
experts may result in larger errors among novices.

Electric potentials are generated by brain sources; the 
central goal is to gain information about sources in rela-
tion to cognitive or clinical states. Such information might 
involve resting state EEG or event related potentials (ERP). 
Common measures include synchrony, functional con-
nectivity, and various other aspects of brain complexity in 
extended networks of sources. Despite wide recognition 
of the importance of brain source estimates, relationships 
between recorded data and the underlying sources are often 
obscure. Basic biophysical studies emphasize that brain 
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“sources” should be defined at scales that suitably match 
the chosen measurement scales (Plonsey 1968; Nunez 1981, 
1995, 2012; Malmuvino and Plonsey 1995; Srinivasan 1999; 
Nunez and Srinivasan 2006, 2014; Sporns 2011; Schomer 
and Lopes da Silva 2018). The practice of electrophysiol-
ogy requires many additional considerations, including ref-
erence electrode, head model, electrode density, noise, and 
artifact. But, here we mostly avoid these important topics in 
order to focus on a fundamental biophysical source frame-
work. While much future progress in electrophysiology, 
including new experimental, computational, and statistical 
developments, can be expected, the fundamentals of multi-
scale brain sources presented here should remain largely 
unchanged for the foreseeable future.

Non Uniqueness of Inverse Solutions

The study of inverse problems in various scientific fields 
dates back to the famous mid-nineteenth century work of 
Hermann von Helmholtz (Lübbig 1996). In particular, many 
studies of EEG “source” localization have been published, 
even though such inverse solutions are well-known to be 
non-unique and thereby subject to a range of interpretations 
(Nunez 1981; Scherg and von Cramon 1985; Dale and Ser-
eno 1993; Pascual-Marqui et al. 1994; Pascual-Marqui 1999; 
Nunez and Srinivasan 2006). This background raises basic 
questions of how to evaluate such source representations. 
In order to shed more light on this and related issues, we 
propose distinctions between genuine sources, equivalent 
sources, and representative sources. In our chosen terminol-
ogy, genuine sources consist of the current distributions at 
the micro scales of small (synaptic scale) parts of cell sur-
faces; most of this activity never reaches the scalp. Equiva-
lent sources provide identical outcomes in experiments car-
ried out over a range of scales and applications. In contrast, 
each representative source distribution provides just one 
of many possible configurations that could generate simi-
lar data at large scales, but might represent little more than 
a hypothesis. These source distinctions inform additional 
effects, including low pass filtering in ECoG versus EEG 
and different measures of functional connectivity between 
cortical locations, for example coherence (frequency domain 
correlations) and covariance (time domain correlations).

Multi‑Scale Source Estimates

Brain electric potentials are recorded over a broad range of 
spatial scales determined mostly by the size and location of 
the recording electrodes. This occurs because the experi-
mental data reflect potentials space-averaged over tissue vol-
umes equal to or larger than the volume of the electrode tip. 
In the case of scalp potentials, the tissue-averaging volume is 
much larger than the electrode volume because of the scalp 

electrode’s large distance from sources and the smearing 
effect of the intervening tissue, especially the skull. Poten-
tials recorded from the cortical surface with ECoG arrays are 
also space-averaged, but over much smaller volumes than 
scalp potentials. Thus, one may define four distinct record-
ing scales (Nunez 1995, 2012; Nunez and Srinivasan 2006; 
Schomer and Lopes da Silva 2018):

• Individual neurons: Micro scale recordings of surface or 
trans-membrane potentials.

• Local field potentials (LFPs): Small scale fields recorded 
within brain tissue (usually cortical), mostly reflecting 
current sources due to synaptic activity occurring within 
perhaps 0.1 to 1 mm of the recording electrodes; that is, 
within tissue volumes typically in the  10− 3 to 1  mm3 
range.

• Intermediate (meso) scale fields: The electrocorticogram 
(ECoG) is recorded from the cortical, pia, arachnoid, or 
dura surfaces: Depending on specific location and elec-
trode size, these potentials appear to reflect synaptic and 
other source activity occurring over some portion of the 
depth of local cortex (2 to 5 mm); that is, within tis-
sue volumes of perhaps 1–20 mm3. In addition, epilep-
tic patients may be implanted with intracranial depth 
(iEEG) electrodes to establish or refute the occurrence 
of seizure foci.

• Macro scale fields: Potentials recorded by the electro-
encephalogram (EEG) are obtained from the scalp; each 
electrode reflects synaptic source activity occurring 
within large parts of the underlying brain, something 
like 10 to 50 cm2 of the cortical sheet or cortical tis-
sue volumes approximately in the  103 to  104 mm3 range 
(Malmuvino and Plonsey 1995; Nunez 1995; Nunez and 
Srinivasan 2006). Thus, EEG typically represents the 
space-averaged source activity in tissue containing on 
the order of 100 million to a billion neurons.

Synaptic and action potentials at neural membranes cre-
ate micro current sources, the so-called generators of LFP, 
ECoG, and EEG signals. These same current sources also 
generate magnetic fields (MEG), which have different sen-
sitivity to specific source characteristics (Hamaleinen et al. 
1993; Malmuvino and Plonsey 1995; Srinivasan et al. 2007; 
Wadman and Lopes da Silva 2018). At the low frequen-
cies that are of interest in electrophysiology, the electric and 
magnetic fields are uncoupled; that is, each may be estimated 
without reference to the other (Plonsey 1968; Nunez and 
Srinivasan 2006, appendix B). For this reason, we avoid the 
label electromagnetic, which implies a single (coupled) field 
that generally exhibits more complicated dynamic behaviors.

While large-scale measures like EEG inform the big pic-
ture but provide almost no local details, small-scale meas-
ures like LFPs provide local detail but only sparse spatial 
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coverage. Furthermore, at the cellular level of randomly 
organized neurons, much genuine source activity will can-
cel in measured fields far from the sources. Just to cite one 
example—the so-called “shunting inhibition” due to the 
released neurotransmitter GABA consists of strong neuronal 
activity with very minimal electrical field production (Wad-
man and Lopes da Silva 2018). In general, much of the mem-
brane current from source regions remains in the local tissue 
and forms small, closed current loops that pass through the 
intracellular, membrane, and extracellular media (Nichol-
son 2001; Michael et al. 2013; Schomer and Lopes da Silva 
2018). Such local source activity may be recorded as LFP. 
In addition, some of the same source current may reach the 
cortical surface to be recorded as ECoG, and a little even 
gets as far as the scalp to be recorded as EEG. The manner in 
which source current spreads through brain, CSF, skull, and 
scalp tissue is labeled volume conduction; it is determined 
by the geometry (tissue surface boundaries) and electrical 
conductivity (or its inverse, resistivity) of these tissues. Thus, 
these measures, plus the intermediate-scale ECoG, provide 
complementary and largely independent measures of brain 
source activity at different spatial scales, and therefore must 
employ different levels of description. This independence 
arises partly because larger scale measures are selectively 
sensitive to the smaller scale synchronous source popula-
tions, whereas the asynchronous micro source potentials 
tend to cancel in larger scale measurements (Nunez 1995; 
Pfurtscheller and Lopes da Silva 1999; Nunez and Srini-
vasan 2006; Schomer and Lopes da Silva 2018).

Equivalent Sources in Physical Networks

Before exploring distinct categories of brain sources, we 
introduce similar ideas from physical networks in electri-
cal engineering applications. We show that, similar to brain 
sources, physical voltage or current sources may be con-
sidered genuine, equivalent, or representative. Figure 1A 
depicts a large network separated into two sub-networks L 
and E connected at the two ports a and b. Each network 
might consist of thousands of circuit elements—current 
sources, voltage sources, resistors, capacitors, and so forth. 
The sources may be independent or dependent on voltages 
or currents at other locations in the same sub-network. For 
our purposes, voltage measurements within networks L and 
E are analogous to LFP and EEG recordings, respectively, 
and are reflected by the cartoon head image. A technical 
aside—we assume the L network to be approximately linear 
to simplify the proposed analogy, whereas the E network 
may be nonlinear.

Figure 1B contains an ideal independent voltage source 
(battery or AC generator VT), and Fig. 1C contains an ideal 
independent current source IT. “Ideal independent” means 

that the magnitude of the voltage or current produced by 
each independent source is a fixed property and is not 
affected by other elements in the circuit. Here the symbol 
RT indicates impedance (for AC circuits) or just its real part 
(resistance) since the imaginary part of impedance (due to 
capacitive effects) is typically negligible in large tissue vol-
umes; however, none of our findings depend on this issue. 
Thevenin theorem of electrical engineering says that the net-
work of Fig. 1B, consisting of a voltage source VT in series 
with a resistor RT, is “equivalent” to network L (Fig. 1A) in 

Fig. 1  A Two electrical sub networks L and E are connected at the 
ports a, b. The background brain cartoon emphasizes the analogues, 
but does not influence the circuit discussions. B Thevenin equiva-
lent network. C Norton equivalent network. Networks B and C are 
“equivalent” to each other and to network A in the sense of producing 
exactly the same currents and voltages at all locations in network E 
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the following sense: All the currents and voltages in network 
E are unchanged, regardless of whether the terminals (a, b) 
are connected to network L or to the simple voltage source 
and series resistor of Fig. 1B. Similarly, network L may be 
replaced by the current source IT and parallel resistor RT 
shown in Fig. 1C, where the equivalent voltage source and 
equivalent current sources are simply related by VT = RT IT. 
The networks of Fig. 1B, C are called the Thevenin and 
Norton equivalent networks, respectively (Nilsson 1986, or 
nearly any other book on electric circuits).

If we are only interested in what happens inside network 
E, we can accurately replace network L by its Thevenin or 
Norton equivalents shown in Fig. 1B, C. However, the idea 
of source “equivalence” can be carried too far. For exam-
ple, what does perfect knowledge of the Norton equivalent 
source of Fig. 1C tell us about the actual internal voltages 
within network L? The answer is almost nothing except that 
one or more sources at unknown locations must be active 
within L. This inverse problem is non-unique—an infinite 
number of L networks, possibly containing millions of inde-
pendent and dependent sources, will produce the identical 
currents and voltages in E. If we are interested in what hap-
pens at various locations within network L, this network 
must be studied in its original form. Analogous arguments 
may be applied in brain tissue. For example, suppose we 
find the magnitude of a “macro source” in a cortical col-
umn (defined in “Macro Source Models” section). Each 
brain macro source consists of billions of synaptic scale 
micro sources acting at membrane surfaces (analogous to 
the sources in L). As in the case of the physical networks of 
Fig. 1, the macro sources can be labeled representative or for 
some limited purposes equivalent, but not genuine, because 
even perfect knowledge of the macro sources tells us little 
about the underlying micro source details.

Micro Sources at Membrane Surfaces

Monopole Sources

Any current source region in a volume conductor like brain 
tissue may be represented (modeled) as a sum of distributed 
point sources and sinks, as indicated in Fig. 2A. The poten-
tial due to N point (monopolar) sources In(t) in an ideal-
ized homogeneous and isotropic medium of conductivity σ 
is given by (Plonsey 1968; Nunez 1981, 2012; Malmuvino 
and Plonsey 1995; Nunez and Srinivasan 2006),

(1)V(t) =
1

4��

N
∑

n=1

In(t)

rn

Equation (1) follows directly from law of current con-
servation and Ohm’s “law.” Current conservation is a fun-
damental law; Ohm’s law not really a law, but is expected 
to provide good approximations to macro scale tissue vol-
umes (Plonsey 1968; Nunez 1981; Malmuvino and Plon-
sey 1995; Schomer and Lopes da Silva 2018; Nunez and 
Srinivasan 2006). A numerical example for brain tissue is 
thus—let a single current source In be 4� microamperes 
(µA), and let cortical resistivity (inverse of conductivity 
σ) be 3000 Ω mm. The predicted potential in the cortex 
on a spherical surface of r = 1 mm radius surrounding a 
single point source is then 3000 µV, assuming all other 
sources and sinks are located much farther away (but note 
the caveats below). In genuine neural tissue, however, such 
sources may be partly or mostly cancelled by nearby sinks 

Fig. 2  Monopole and dipole source distributions and the resulting 
potentials V(t). The filled and empty circles represent positive and 
negative point current sources, respectively. A Isolated monopolar 
sources, B simple dipole, C distributed point sources along a vertical 
axis
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resulting in much lower potentials. Equation (1) incor-
porates several idealizations and requires the following 
caveats:

• V(t) indicates the potential with respect to infinity, 
approximated with a “distant” (compared to the source 
region) reference electrode.

• All current sources must be balanced by current sinks 
somewhere in the volume conductor as required by cur-
rent conservation.

• There is a distinction between the point potential of 
Eq. (1) and the potential recorded with a real electrode 
of non-zero radius; that is, measured potentials represent 
space-averages over the electrode tip volume.

• The medium is assumed to be infinite with constant 
scalar conductivity σ; that is, no boundary or direction-
dependent tissue effects are present. Such idealizations 
provide only rough approximations to genuine tissue, 
which is generally both inhomogeneous and anisotropic.

In one example, the monopolar representation of Eq. (1) 
may be employed to estimate the extracellular potential fall-
off of the action potential. This extracellular potential may 
be represented by sub-millimeter monopolar source and 
sink regions using Eq. (1), approximately replicating the 
triphasic waveform of the action potential and forcing total 
membrane source current to equal total sink current (Nunez 
and Srinivasan 2006, Chap. 5). Distributed monopolar rather 
than dipolar source models are required because of the large 
(cm scale) source-sink separations of the triphasic action 
potential in myelinated axons. The resulting model predic-
tions provide a reasonable match to an experiment with the 
compound action potential of the frog sciatic nerve (Flick 
et al. 1977). Such representative source distributions can 
be expected qualify as equivalent for some limited experi-
mental measurements at macroscopic (cm) scales. However, 
genuine studies of action potential generation require smaller 
scale and more detailed studies of nonlinear membrane prop-
erties (Davis and No 1947; Hodgkin and Huxley 1952; Cole 
1968).

Dipole Sources

When many point sources are present, application of Eq. (1) 
can be quite cumbersome, as in the above example of action 
potential sources. However, in other cases, all sources and 
sinks may be confined to a region that is much smaller than 
the nearest distance to measurement points. If so, the dis-
tant potential generated by the source-sink region may be 
approximated by a dipole expression that is much simpler to 
use than Eq. (1). The idealized current dipole consists of a 
point source + I and a point sink – I, separated by a distance 
d, as shown in Fig. 2B. However, the word dipole has a 

more general and useful meaning, making the dipole concept 
applicable to a wide range of source-sink configurations. 
Nearly any source-sink region where the total source and 
sink currents are equal (local current conservation) will gen-
erate a predominantly dipole potential at distances that are 
large compared to the dimensions of the source-sink region. 
Thus, the collection of point sources and sinks shown in 
Fig. 2C produces an approximate dipole potential at dis-
tances r when r is large compared to d, in practice greater 
than perhaps 3d or 4d depending on desired accuracy. For 
this reason, cortical dipoles, and especially dipole layers 
(sheets) of various sizes, provide useful source models for 
potentials recorded on the scalp. If all the sources occur near 
the vertical axis, the potential due to either of the source dis-
tributions in Fig. 2B or C may be approximated by (Nunez 
and Srinivasan 2006; Nunez 2012),

Equation (2) involves only a single distance r between 
the measuring point and the center of the source-sink 
region, rather than Eq. (1), which might involve millions 
of distances rn. Here θ is the angle between the (vertical) 
dipole axis and the vector r to the point of measurement. 
The “effective pole separations” are given by the symbol d̄ , 
which accounts for the mixing of positive and negative point 
sources. In the case of the simple dipole of Fig. 2B, d̄ = d ; 
whereas d̄ < d for the distributed sources in Fig. 2C. For 
example, if a point source, perhaps simulating an inhibitory 
postsynaptic potential (IPSP) at a cell body, is combined 
with passive sinks distributed uniformly over a distance d 
along an idealized vertical dendrite (the passive return cur-
rent), the effective pole separation of the dipole is d̄ = d∕2 
so the generated potential at large distances is exactly half as 
large as in the simple dipole of Fig. 2B. The angular depend-
ence in Eq. (2) is strictly correct only if all sources lie on 
the vertical axis. However, Eq. (2) provides a reasonable 
approximation if the sources approximate a narrow cylindri-
cal region as shown on the right side of Fig. 2C, perhaps a 
small diameter cortical column.

Open and Closed Fields

As indicated above, when the average separation between 
point sources and sinks is reduced, the effective pole sepa-
ration and external potential also become smaller. The 
so-called closed field of electrophysiology corresponds to 
the limiting case d̄ → 0 , which occurs when positive and 
negative point sources are well-mixed, having small aver-
age separations. Interestingly, this means that the layered 
structure and synaptic distribution within mammalian cortex 
is critical to the production of scalp potentials—little or no 

(2)V(r, t) ≅
I(t)d̄ cos 𝜃

4𝜋𝜎r2
, r >> d
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recordable EEG would be expected if cortical neurons were 
randomly oriented or if excitatory and inhibitory synapses 
were fully mixed through cortical columns. Similarly, dipole 
magnitudes tend to be small if sources are asynchronous 
within the source region. In other words, excessive source 
activity within some local tissue volume need not produce 
a large dipole source if the underlying micro sources are 
mixed or asynchronous within the tissue voxel. This feature 
has implications for EEG/fMRI co-registration studies, sug-
gesting that large fMRI signals need not “match” large EEG 
sources in the same tissue volumes (Nunez and Silberstein 
2000). In our chosen terminology, the tag “genuine sources” 
refers to all synaptic scale transmembrane currents, regard-
less of whether or not they contribute to measurable EEG, 
MEG, fMRI, or PET activity.

Macro Source Models

Macro Sources in Cortical Columns

In classical electromagnetic theory, the importance of 
matching theoretical and experimental scales is widely 
appreciated (Plonsey 1968; Nunez 1981, 1995; Malmuvino 
and Plonsey 1995; Nunez and Srinivasan 2006). For exam-
ple, different micro and macro electric and magnetic fields 
are defined and appear in the distinct micro and macro ver-
sions of Maxwell’s equations (Jackson 1976). These equa-
tions govern the behaviors of electric and magnetic fields 
in all material media, including tissue. To cite one common 
case—when macroscopic charges are placed in a dielectric 
(insulating material), numerous atomic scale charges rear-
range themselves and create a complicated microscopic elec-
tric field pattern that strongly alters the macroscopic electric 
field. This example of micro scale charges in dielectrics is 
closely (in a mathematical sense) analogous to neural micro 
current sources in tissue, although the underlying physics is 
quite different. Macro scale tissue volumes behave mostly 
like conductors, but they also exhibit important dielectric 
properties. While some neuroscientists appear to view the 
issue of source spatial scale as a minor inconvenience, we 
suggest it is critical to many applications involving EEG and 
the interpretations of such data (Nunez 1981, 1995; Nunez 
and Srinivasan 2006, 2014).

Each active synapse produces local active membrane cur-
rent plus passive return current from more distant membrane 
surfaces as required by current conservation. Excitatory 
synapses produce local sink regions and distributed posi-
tive sources at more distant membrane locations. Inhibitory 
synapses produce current in opposite directions, that is, local 
membrane sources and more distant distributed sinks. Given 
the extreme complexity of the billions of micro scale sources 
in each macro scale tissue volume, it is convenient to define 

a macro scale source measure to more conveniently charac-
terize EEG sources. Regardless of type of source, we may 
express source current per unit volume s(�,�, t) produced in 
a small (synaptic scale) tissue volume ΔW within the macro 
volume W by

The vector coordinate w locates each synaptic scale cur-
rent source (including passive return current) within a mac-
roscopic tissue volume W, which may or may not be a corti-
cal column. The vector coordinate r locates the center of the 
macro volume within the cortex, as shown in Fig. 3. P(r, t) is 
defined as the current dipole moment per unit volume, given 
by the following triple integral over the tissue volume W.

Local Current Conservation?

This mathematical formalism applied to conductive media 
is identical to that of charge dipole moment per unit volume 
defined in dielectrics (insulators) (Jackson 1976; Nunez and 
Srinivasan 2006), although the physical basis is quite differ-
ent (Technical point—both cases involve solutions to Pois-
son’s equation, which follows from Maxwell’s equations). 
The integral in Eq. (4) may be applied to brain tissue vol-
umes W of any size, including minicolumns, macrocolumns, 
or even the entire brain. However, for P(r, t) to be useful in 

(3)s(�,�, t) =
I(�,�, t)

ΔW

(4)�(�, t) =
1

W ∭
W

�s(�,�, t)dW(�)

Fig. 3  Micro sources s(�,�, t) in a neural mass W (e.g. a cortical col-
umn) produce macro sources P(r, t). The vectors w and r locate the 
micro sources and mass W, respectively
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the sense of providing genuine connections to EEG, several 
conditions must be met. First, the tissue volume W should be 
large enough to contain many micro sources s(r, w, t) due to 
local synaptic activity as well as the passive return currents. 
If, for example, the micro sources are defined at the scale of 
individual synapses, each (mm scale) macrocolumn would 
contain something like  1010 micro sources—a million neu-
rons, each with ten thousand synapses plus an equal number 
of synaptic-sized cell patches for return current. This condi-
tion suggests that the total strength of micro sources may 
be approximately balanced locally by an equal strength of 
micro sinks such that the monopole contribution of the tissue 
volume W is approximately zero, that is

Comparison of Eq. (5) with Eq. (4) shows that the macro 
source strength P(r, t) depends on the particular manner in 
which the micro sources are distributed through the depth of 
cortex. In equivalent mathematical terms, the micro source 
function in the integral in Eq. (4) is weighted by the location 
vector w. Thus, Eq. (4) is just a generalization of the simple 
dipole expression, Eq. (2). If the micro sources and sinks are 
randomly mixed or asynchronous within volume W, P(r, t) 
will be small or zero, even when the micro sources are large 
and numerous. While the local current conservation condi-
tion indicated by Eq. (5) seems quite plausible, there is no 
guarantee that it is fully accurate in local tissue volumes. 
Should this condition be inaccurate, the whole idea of macro 
scale cortical dipole sources would be called into question. 
If, for example, action potentials in white matter (myeli-
nated) axons, which may span cm scales, were to contribute 
substantially to EEG, the dipole model of Eq. (4) would fail 
as a predictor of scalp potentials. Addition potential pitfalls 
of assuming exclusively dipolar fields have also been con-
sidered (Riera et al. 2012; Reimann et al. 2013).

Implications for EEG Versus ECoG

For EEG purposes, a second restriction on the chosen vol-
ume size W is this—all internal source-sink separations 
should be much smaller than the distances between the vol-
umes W and the scalp. The maximum separation between 
upper and lower sources within a cortical column is about 
5 mm, and the shortest distance between the center of a 
column and the scalp is perhaps 1.5–2 cm. In the dipole 
approximation of Eq. (2), these estimates yield r/d = 3–4, 
suggesting that the dipole approximation is justified for 
rough approximations of cortical sources of EEG.

With these restrictions in place, scalp surface potentials 
may be calculated based on the genuine dipole macro source 

(5)∭
W

s(�,�, t)dW(�) ≅ 0

P(r, t), with monopole, quadrupole, and higher ordered pole 
contributions negligible at the scalp (Jackson 1976; Nunez 
and Srinivasan 2006; Nunez 2010a, 2012; Riera et al. 2012). 
However, in the case of ECoG, the electrodes are much too 
close to the cortical tissue W for the dipole approximation 
to be valid. Thus, any dipole source model, estimated only 
with EEG, provides severely distorted information about the 
sources associated with ECoG, which could be dominated 
by local monopolar sources in upper cortical layers. Perhaps 
more importantly, any local P(r, t) estimate based on scalp 
data will be influenced by nearby (or even distant) cortical 
activity. Thus, we conclude that EEG and ECoG are not 
expected to be simply related; they provide distinct and com-
plementary levels of description. This result emphasizes that 
the various common experimental measures of the brain’s 
dynamic behavior, including source localization and func-
tional connectivity cannot generally be viewed in absolute 
terms; such measures are expected to be scale-dependent. 
Such scale dependence is one of the main features of com-
plex systems, of which brains are typically considered the 
pre-eminent examples (Nunez 2016).

Selective Sensitivity of Recording Methods

For the reasons listed above, Eq. (4) appears to be most use-
ful in forward and inverse modeling of EEG when the chosen 
volume size W lies roughly between the minicolumn and 
macrocolumn scales. In either case, distances between corti-
cal micro sources are less than 5 mm so the dipole approxi-
mation holds approximately. If the macrocolumn scale is 
chosen in EEG applications, the  1014 or so synaptic sources 
in all of neocortex may be represented by about 10,000 to a 
100,000 or so cortical “dipoles” (macro sources) forming a 
large dipole sheet, spread over the entire cortex (in and out 
of cortical folds). Of course, many regions may make neg-
ligible contributions to scalp potentials, depending on brain 
state, distances between sources and electrodes, and can-
celling effects like macro sources active on opposite sides 
of cortical folds. In any case, neocortex may be treated as 
a continuum so that the macro source function P(r, t) is a 
continuous field variable forming a folded dipole sheet.

Figure 4 depicts neocortical sources forming dipole layers 
(dipole sheets) in and out of cortical fissures and sulci. Here 
each arrow indicates a macrocolumn scale source, a discrete 
representation of the function P(r, t) with strength and direc-
tion varying as a function of cortical location. EEG is most 
sensitive to the correlated dipole layer in gyri (regions a-b, 
d-e, g-h), less sensitive to the correlated dipole layer in one 
sulcus (region h-i), and relatively insensitive to the opposing 
dipole layer in sulci (regions b-c-d, e-f-g) and the layer with 
random dipole directions (region i-j-k-l-m). ECoG is expected 
to record mostly superficial sources in local gyri. MEG is most 
sensitive to the correlated and minimally apposed dipole layer 
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(h-i) and less sensitive to all other sources shown, which are 
opposing, random, or radial dipoles (Nunez 1995; Malmuvino 
and Plonsey 1995; Srinivasan et al. 2007). In “The Laplacian 
and High Resolution EEG” section, we argue that source selec-
tivity also applies to high resolution EEG (HR EEG), which 
is most sensitive to an intermediate scale between ECoG and 
EEG. In summary, EEG, HR EEG, ECoG, and MEG are all 
selectively sensitive to different sets of cortical source distri-
butions. There is no a priori reason to expect them to closely 
match each other, although substantial overlap may occur in 
many cases.

The macro source function P(r, t) has the units of current 
density—micro amps per square mm ( �A∕mm2 ). In ideal-
ized cases, for example a macrocolumn of diameter 2 mm 
with all the sources in the lower cortex and all the sinks in 
the superficial cortex, P(r, t) is essentially the diffuse cur-
rent density across the cortex (Nunez and Srinivasan 2006). 
More generally, sources and sinks are expected to be mixed 
across the depths of the macrocolumn. In summary, accord-
ing to Eq. (4), the magnitude of P(r, t) depends on: (1) the 
sizes of the source-sink separations as in the simple dipole 
of Eq. (2). (2) the micro synchrony of synaptic or action 
potential sources s(�,�, t) across the depth of columns—how 
closely they turn on and off together. (3) the numbers and 
magnitudes of the sources s(�,�, t) .

Low Pass Filtering in ECoG and EEG

Source‑Based Filtering of High Frequencies

It has long been appreciated that scalp recorded EEG 
amplitudes tend to fall off at frequencies above the upper 

alpha band (13 Hz); with the higher frequencies some-
times dismissed as “1/f noise”. On the other hand, more 
recent ECoG recordings from human cortex have revealed 
a wealth of information about the possible functional roles 
of cross-frequency coupling involving frequencies up to 
perhaps 150 Hz (Canolty et al. 2010; Canolty and Knight 
2010). Some implications of these results have been dis-
cussed by employing mathematical models of neocortical 
dynamics (Nunez 1989, 2010b, 2016; Nunez and Srini-
vasan 2010, 2014; Srinivasan et al. 2013). The differences 
between EEG and ECoG magnitudes at high frequencies 
are partly (or perhaps mainly) due to the fact that higher 
frequencies tend to be less synchronous over the cortex 
than lower frequencies. As a result, the volume conductor 
(especially skull and scalp) acts as an “electroencepha-
lographic averager”. Essentially, the temporal filtering 
observed at the scalp is a byproduct of spatial filtering 
caused by cortical dynamic behavior (DeLucchi et  al. 
1962; Cooper et al. 1965; Pfurtscheller and Cooper 1975; 
Nunez 1989, 1995; Nunez and Srinivasan 2006; Schomer 
and Lopes da Silva 2018).

An additional filtering mechanism, separate from this 
tangential synchrony over the cortex, may act within corti-
cal columns, one which may also contribute to low pass 
temporal filtering at the scalp. Based on the classical cable 
theory of axons (Davis and No 1947; Cole 1968), typical 
source-sink separations depend on the capacitive-resistive 
properties of cell membranes, predicting smaller source-
sink separations ( ̄d small) at higher field frequencies. This 
implies a low pass frequency effect, reducing P(r, t) and 
as a result, lower scalp recorded EEG amplitudes at high 
frequencies (Nunez and Srinivasan 2006, Chap. 4). On the 
other hand, this low pass effect on scalp EEG magnitudes 
(due to reduced source-sink separations) might be much 
less important in ECoG recordings if ECoG potentials 
are mainly due to nearby monopolar sources in super-
ficial cortex, modeled by Eq. (1). This membrane scale 
capacitive-resistive influence on source-sink separations 
is quite different from the capacitive effects that might 
occur in large scale tissue volumes. The former (columnar) 
effect predicts amplitude reductions of EEG potentials at 
progressively higher frequencies caused by reduction in 
source-sink separations across the cortex. Simply put, the 
typical effective source separation d̄ in Eq. (2) or its gen-
eralization in Eq. (4) is reduced because of cell membrane 
behavior at high frequencies, thereby lowering P(r, t). By 
contrast, bulk tissue capacitive affects result only in phase 
shifts (typically very small in most experiments) between 
sources and potentials given by a (possibly) non-negligible 
imaginary part of the tissue impedance (Polk and Postow 
1986).

Fig. 4  Cortical dipole layers. The arrows represent a snapshot of the 
macro source function P(r, t), which is here assumed to be synchro-
nous and directed perpendicular to the local cortical surface over 
the extended region a–i. In contrast, P(r, t) has random directions in 
regions i–m
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Implanted Artificial Dipoles

To make this important distinction between separate capaci-
tive influences more clear, consider the following experi-
ment: An artificial dipole was implanted in cortex produc-
ing AC source current, a physical representation of P(r, t) 
(Pfurtscheller and Cooper 1975). The resulting magnitude of 
potential on the scalp was measured as a function of source 
frequency. If any measureable bulk capacitive effects were 
to occur, they would be observed as phase shifts between 
implanted source current and recorded potential. However, 
no amplitude change would be expected, and in fact no 
amplitude change was observed. Also, in various similar 
experiments, phase changes between sources and recorded 
potentials have been small or zero (Polk and Postow 1986; 
Nunez and Srinivasan 2006). To create amplitude reduc-
tions with an artificial dipole, one might employ adjust-
able pole separations in the artificial dipole. Similarly, the 
membrane scale capacitive-resistive effect outlined here 
involves a physiological reduction in all source-sink separa-
tions at higher frequencies, leading to a corresponding (low 
pass) reduction in P(r, t) and recorded EEG potential. This 
description is not accurate for ECoG, which is believed to 
record mainly local monopole sources; thus, we anticipate a 
reduced or perhaps zero low-pass columnar effect in cortical 
surface potentials.

Filtering by Macro Scale Cortical Asynchrony

This predicted low pass internal columnar effect (due to 
reduced source-sink separations) is quite distinct from the 
tangential influence of synchronous macro source regions 
P(r, t) over the cortical surface. Larger synchronous dipole 
sheets caused by neocortical dynamic interactions (shown 
in region a–i of Fig. 4), may have minimal effects on ECoG 
magnitudes, but are expected to result in much larger EEG 
magnitudes. Such large changes in EEG amplitudes that 
occur when brain state changes are believed to be due mostly 
to large scale tangential synchrony changes; thus EEG scien-
tists and clinicians have adopted the label desynchronization 
to indicate amplitude reductions, particularly in the case of 
alpha band rhythms, which seem to consist of mixtures of 
source regions of different sizes (Pfurtscheller and Lopes 
da Silva 1999; Schomer and Lopes da Silva 2018). “Syn-
chrony” may refer to several distinct phenomena, occurring 
in different directions over the cortical surface and at differ-
ent spatial scales. Source synchrony has been studied with 
both EEG data and volume conduction models, leading to 
several generalizations that appear to apply across a broad 
range data and head models (Nunez and Srinivasan 2006). 
For fixed source strength P(r, t), we expect modest changes 
in scalp potential magnitudes as a dipole sheet, composed of 
synchronous macro sources P(r, t), grows from the sub-mm 

scale (diameter) to several mm. This is expected because the 
source region remains essentially a single dipole over this 
separation range from the distant locations of scalp meas-
urements. As the dipole layer enlarges to diameters in the 
approximate range of about 1 to 10 cm, large increases in 
scalp potential magnitudes are expected as modeled below 
in “The Forward Problem: Scalp Potentials Due to Macro 
Sources” section. Scalp potential magnitudes may actually 
begin to decrease when dipole layer diameters become larger 
than about 20 cm due to the canceling effects of the curved 
head surface. Again, these arguments support the idea that 
dynamic measures of cortical function are generally scale-
dependent, and measures like functional connectivity cannot 
be interpreted in absolute terms.

The Forward Problem: Scalp Potentials Due 
to Macro Sources

Sources Confined to Cortex

The macro source function or dipole moment per unit vol-
ume P(r, t) may be viewed as a continuous function of 
cortical location r, measured in and out of cortical folds 
as shown in Fig. 4. P(r, t) generally forms a dipole sheet 
(dipole layer) covering the entire folded neocortical surface. 
Localized macro source activity is then just a special case 
of this general picture, occurring when P(r, t) is small or 
negligible at most cortical locations r due to any or all of the 
following properties of the micro sources s(r, w, t): (1) The 
micro sources are not sufficiently strong and/or not many 
are active. (2) The micro sources are asynchronous or ran-
domly mixed across the depths of columns (coordinate w). 
However, even when P(r, t) is large in local cortex, it may 
not appear in the recorded EEG due to the volume conduc-
tion effects outlined below. Most scalp EEG is believed to 
be generated in neocortex; in such cases, the potential V(x, 
t) at scalp locations x may be expressed as double integral 
over the entire cortical surface area A,

Here dA(�) is an element of cortical surface, and Eq. (6) 
is a generalization of the basic dipole formula of Eq. (2), but 
summed over many macro sources. The tissue boundaries 
and conductive properties of the head volume conductor are 
accounted for by the surface Green’s function G(x, r), which 
weighs the contribution of the macro source field P(r, t) 
according to macro source location r and the scalp recording 
point x (Jackson 1976; Nunez 1981; Malmuvino and Plon-
sey 1995; Nunez and Srinivasan 2006). When only a single 

(6)V(�, t) = ∬
A

�(�, �) ⋅ �(�, t)dA(�)



202 Brain Topography (2019) 32:193–214

1 3

isolated source occurs, P(r, t) is a delta (point) function, 
and G(x, r) is equal to the scalp potential due to that point 
source. The scalp potential due to many isolated sources 
or distributed sources is then just a sum (or integral) of all 
sources contributions, as given by Eq. (6).

Because of the columnar structure of neocortex (Szen-
tagothai 1978, 1987; Nunez 1995; Mountcastle 1998), we 
generally expect the vector P(r, t) to be pointed perpendicu-
lar to the local cortical surface (both folded and smooth), 
although Eq. (6) does not require this condition. The surface 
integral in Eq. (6) is a special case of the equivalent volume 
integral, the latter used when sub-cortical macro sources 
are included as possible inverse solutions (Nunez and Srini-
vasan 2006). In the more general case, the surface elements 
dA(�) are replaced by voxels of mostly arbitrary size; the 
spatial scale of possible representative sources might range 
from several  mm3 to 10 s of  cm3. However, as discussed in 
“Micro Sources at Membrane Surfaces” section, the dipole 
model is not valid for action potential sources in myelinated 
axons, which may partly account for the brainstem auditory 
evoked potential or other non-dipole phenomena (Nunez 
1995; Nunez and Srinivasan 2006; Riera et al. 2012; Rei-
mann et al. 2013).

Effects of Volume Conduction

The Green’s (weighting) function G(x, r) will be small when 
the electrical distance between scalp location x and macro 
source location r is large. In an infinite, homogeneous, and 
isotropic (direction independent) medium the electrical dis-
tance equals the physical distance. But, due to volume con-
duction in the head, the two distances can differ substantially 
because of current paths distorted by variable tissue con-
ductivities. Furthermore in anisotropic volume conductors, 
G(x, r) must also account for the fact that the conductivity 
of genuine tissue is direction dependent, resulting in a ten-
sor or matrix form for G(x, r). While the accuracies of even 
the most sophisticated computer methods are limited by our 
limited knowledge of tissue conductivities and boundaries, 
approximate solutions of Eq. (6) have proven to be quite 
useful in many EEG studies, mainly because many predicted 
qualitative and semi-quantitative effects are relatively insen-
sitive to head model errors (Nunez 1981; Malmuvino and 
Plonsey 1995; Nunez and Srinivasan 2006).

Contributions from different cortical regions may or may 
not be negligible in different clinical or cognitive studies. 
For example, source activity in large parts of mesial (under-
side) cortex and the longitudinal fissure (separating the brain 
hemispheres) may make negligible contributions to scalp 
potential in most brain states. Exceptions to this picture may 
occur in the case of mesial sources contributing to potentials 
at an ear or mastoid reference, an influence that has some-
times confounded clinical interpretations of EEG (Ebersole 

1997; Schomer and Lopes da Silva 2018). In theory, a small 
number of synchronous macrocolumns could possibly pro-
duce sufficiently large dipole moments to be scalp-recorded. 
However, even in epileptic patients, it appears that P(r, t) 
rarely, if ever, reaches such magnitudes. The usual rule of 
thumb in clinical work with spontaneous EEG is that some-
thing like 6–10 cm2 of contiguous tissue (about 200–300 
macrocolumns) must be synchronously active to be recorded 
as EEG (Delucchi et al. 1962; Cooper et al. 1965; Ebersole 
1997; Nunez and Srinivasan 2006; Schomer and Lopes da 
Silva 2018). These estimates do not necessarily apply when 
scalp data are averaged over multiple trials in evoked (EP) 
or event related potentials (ERP).

Incorrect Dipole Assumptions

One may choose to define a single “dipole” (macro source) 
as the source activity in cm scale tissue volumes W; how-
ever, such action violates the dipole assumption required in 
the forward solution of Eq. (6). In other words, it appears 
that any EEG signal recorded on the scalp can be auto-
matically excluded from the single (macrocolumn scale) 
dipole category unless its relative strength has been sub-
stantially enhanced by averaging over multiple stimulus 
trials. Thus, we conclude that isolated “dipole sources” 
found as solutions based on non-averaged scalp potentials 
should be regarded as representative rather than equivalent 
or genuine. Such representative sources are perhaps best 
viewed as data reduction tools, somewhat divorced from 
the real physiology of neural sources. Apparently, all non-
averaged EEG require extended dipole sheets of moderate 
to large sizes to be accepted as physiologically realistic. On 
the other hand, dipole localization algorithms that find the 
centers of extended dipole sheets can be useful, subject to 
proper interpretation. Another test of such algorithms is the 
predicted ratio of cortical to scalp potential. With a single 
macrocolumn scale dipole, this ratio should be large, per-
haps something like 50 to 100 or more as suggested below in 
“Modeling Scalp Potential Magnitudes with Head Models” 
section. In contrast, experimental ECoG/EEG comparisons 
find ratios typically in the 2 to 5 range in spontaneous EEG 
(Cooper et al. 1965; Pfurtscheller and Cooper 1975; Nunez 
1981; Nunez and Srinivasan 2006), again suggesting that 
(non-averaged) recordable EEG sources typically form large 
dipole sheets.

Modeling Scalp Potential Magnitudes with Head 
Models

These semi-quantitative arguments concerning the effects 
of synchronous dipole layer sizes on scalp potential magni-
tudes may be demonstrated with volume conductor models 
based on the general forward solution given by Eq. (6). The 
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standard head model employed here consists of four con-
centric spherical shells representing brain, CSF, skull, and 
scalp, typically labeled the “4-sphere” model (Nunez 1995; 
Nunez and Srinivasan 2006). In our simulations, sphere 
radii are (brain, CSF, skull, scalp) = (8.0, 8.1, 8.6, 9.2 cm). 
Brain and scalp are assumed to have equal conductivities; 
CSF conductivity is assumed to be five times larger than 
brain conductivity. Brain-to-skull conductivity ratios in the 
range 20–160 are plotted here for historical reasons, but a 
lower range (20–50) is now considered more realistic (Gon-
calves 2003; Lai et al. 2005). In any case, the main results 
reported here are relatively insensitive to model parameters. 
This is an important point since the 4-sphere model repre-
sents only a very approximate head model due mainly to 
our poor knowledge of tissue conductivities, especially their 
anisotropic properties (the off diagonal components of the 
conductivity matrix or tensor), blood vessels, and so forth 
(Fiederer et al. 2016). This ignorance also places important 
limitations on the more accurate geometric methods that 
employ finite element or boundary element models.

Figure 5 models scalp potential over the center of the 
spherical cap (located at the “north pole”) as a function 
of the sizes of cortical dipole layers modeled as spheri-
cal caps. These dipole layers are formed by macro sources 
P(r, t) of assumed constant strength in the 4-sphere head 
model (Nunez and Srinivasan 2006). The idealized sources 
are also assumed to be fully synchronous throughout the 
dipole layers and pointed perpendicular to the (assumed) 
spherical cortical surface. Thus, sources in cortical folds 

are idealized as absent and/or canceling on opposite sides of 
fissures and sulci. Our source distributions consist of radial 
dipole layers located 1.4 cm below the outer scalp surface 
and forming spherical caps, regions of the spherical cortex 
that lie above a given plane. For all skull conductivity ratios, 
the predicted scalp potential is shown to be maximum for 
cap radii between about 5 and 15 cm (synchronous dipole 
layer diameters in the 10 to 30 cm range). It is important 
to emphasize that this general qualitative result is largely 
independent of details of the volume conductor model, being 
largely a consequence of the large distance between cortical 
sources and scalp and the large skull resistivity relative to 
other tissues.

Plotted scalp potential over the center of the spherical 
caps (North pole) is expressed as a percentage of estimated 
transcortical potential rather than P(r, t) because the for-
mer is often measured in cortical depth. While actual scalp 
magnitudes depend on scalp to skull conductivity ratios, the 
peak plot locations indicated in Fig. 5 are insensitive to this 
parameter. In animal experiments employing depth record-
ings, transcortical potentials in the 200 µV range have often 
been reported, although such measures vary with experi-
mental conditions (reviewed in Nunez 1995). Thus, to the 
extent that these animal experiments pertain to human neo-
cortex, Fig. 5 suggests maximum human scalp potentials 
generated by large synchronous dipole layers in roughly the 
100 µV range. In contrast, small (mm scale) dipole layers 
are expected to generate scalp potentials less than a few µV. 
The important influence of the reference electrode is ignored 
in these simulations, but the general ideas apply to most 
reference choices.

Inhomogeneous Skull “Corrections”

Some have attempted to improve inverse solutions or high 
resolution EEG by using CT or MRI to image variations in 
skull thickness over its surface, but there is a serious prob-
lem with this idea. In a singled layered skull (homogeneous 
in directions normal to its local surface), the local resist-
ance of a skull plug is proportional to local thickness. Sev-
eral tests of this property were obtained by measuring the 
resistance of hydrated skull plugs of different thicknesses 
drilled from multiple surface locations (Law 1993; Nunez 
and Srinivasan 2006). It was found that skull plug resistance 
was uncorrelated or perhaps even negatively correlated with 
skull thickness. The apparent reason for this finding is that 
real skulls consist of three layers—two compact outer lay-
ers plus an inner layer of cancellous bone, which contains 
larger spaces to hold relatively low resistivity fluid. Resis-
tivity measurements on live human skull flaps indicate that 
resistivities of the outer compact layers generally differ from 
each other and are perhaps three to six times larger than the 
resistivity of the inner layer (Akhtari et al. 2000). Thicker 

Fig. 5  Normalized scalp potentials due to dipole layers of varying 
extent are plotted. The dipole layers form superficial spherical caps 
and are modeled with Eq. (6) using a “4-sphere” model of the head. 
Each curve (vertical axis) shows predicted scalp potential over the 
center of the spherical cap (North pole), expressed as a percentage 
of (constant) transcortical potential. The horizontal axis is cap radius, 
the dipole layer size as measured from the “north pole” along the 
spherical scalp surface. The various plots indicate different brain to 
skull conductivity ratios. Most recent estimates of this effective ratio 
are in the 20–50 range
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skulls tend to have much thicker cancellous layers, which 
may be largely absent in thin skull sections. For this reason, 
attempts to correct volume conduction models using only 
total skull thickness may actually reduce model accuracy.

Given that tissue boundaries and conductivities are 
known only approximately, impedance imaging methods 
based on scalp current injection have been implemented. 
In the classic EEG study, currents were injected into physi-
cal head models made of hydrated skulls and tissue sub-
stitutes (Rush and Driscoll 1969). The injected scalp cur-
rent splits between scalp and brain pathways in proportions 
determined mostly by injection electrode separations and 
skull resistance, resulting in an estimated overall average 
skull to brain (or scalp) resistivity ratio of 80 in the origi-
nal 3-sphere model. These same methods were employed in 
four living subjects; the estimated global conductivity ratio 
ranged from 33 to 93 with an average of 58 (Driscoll 1970). 
A modern approach employing a boundary element model 
with six human subjects, suggested a range of about 20 to 50 
(Goncalves et al. 2003). Similar current injection methods 
have been proposed to estimate skull resistance variations 
over the surface (Nunez 1987; Ferree et al. 2000; Nunez and 
Srinivasan 2006), but to the best of our knowledge, these 
methods are not yet fully developed. These and other stud-
ies cited here suggest large conductivity variations, both 
across subjects and over the surfaces of individual subjects. 
Unknown variations in skull resistance can be expected 
to limit the accuracies of source localization (“The EEG 
Inverse Problem” section) as well as proper interpretation of 
Laplacian skull sources (“The Laplacian and High Resolu-
tion EEG” section).

The EEG Inverse Problem

Restrictions on Inverse Solutions

The basic inverse problem in EEG is to employ measure-
ments of potential distribution on the scalp surface V(x, t) to 
“invert” Eq. (6); that is, to solve this integral equation for the 
macro scale function P(r, t) by employing a head model that 
provides the Green’s function G(x, r). Published descrip-
tions of the inverse problem often emphasize different com-
puter algorithms employed to produce approximate solutions 
based on different assumptions about brain physiology. But, 
none of these issues alter the physical fundamentals—a very 
large number of different source functions P(r, t) will yield 
the same surface potential distribution V(x, t) in any par-
ticular volume conductor. This is true whether or not the 
sources are assumed to be confined to neocortex as indicated 
by Eq. (6). The source indeterminacy in EEG (or MEG) is 
fundamental; that is, it does not result from imperfect head 
models, noise, or under sampling, but occurs whenever the 

available data are limited to surface potentials. Given the 
non-uniqueness of the inverse problem, any inverse solu-
tion must depend partly on added information, the solution 
constraints. The origins of these constraints in published 
works have included plausible physiology-based conjectures, 
independent information obtained from MRI, fMRI or PET 
data, hopeful assumptions, or combinations of constraints 
(Nunez and Srinivasan 2006); some of these are:

• The macro source function P(r, t) is assumed to be neg-
ligible at all but a few discrete locations. In other words, 
the sources are forced to consist of one or perhaps several 
isolated dipoles.

• All macro sources are assumed to be located in the 
crowns of cortical gyri, ignoring sources in cortical folds. 
Such solutions are expected to approximately match dura 
imaging or Laplacian estimates, discussed in “The Lapla-
cian and High Resolution EEG” section.

• Applying spatial smoothness criteria to the function 
P(r, t), or perhaps finding the inverse solution that “opti-
mizes” (in some sense) the smoothness of P(r, t) (Pas-
cual-Marqui et al. 1994; Pascual-Marqui 1999).

• Applying temporal smoothness criteria to the function 
P(r, t) (Scherg and von Cramon 1985). The possible jus-
tification is that sources are unlikely to turn on and off 
too abruptly.

In fairness, we admit to our limited experience with the 
more recent source localization methods, so this outline may 
be somewhat dated and biased in its discussion of specific 
computer methods. However, the relevant physical principles 
remain unchanged as new methods are developed. In sum-
mary, we cite a recent EEG study (Mahjoory et al. 2017) 
providing a comprehensive assessment of the consistency 
of EEG source localization and functional/effective connec-
tivity metrics across two anatomical templates (ICBM152 
and Colin27), three electrical models (BEM, FEM, and 
spherical harmonics expansions), three inverse methods 
(WMNE, eLORETA, and LCMV), and three software 
implementations (Brainstorm, Fieldtrip, plus the author’s 
own toolbox). Source localizations were found to be more 
stable across reconstruction procedures than subsequent 
estimates of functional connectivity, while effective con-
nectivity estimates were the least consistent. All results were 
relatively unaffected by the choice of head model, while the 
choice of the inverse method and source imaging package 
induced considerable variability. But, just how accurate are 
these head models, which may be similar to each other? To 
address this question, MRI based finite element models have 
been employed to estimate localization errors due to neglect 
of blood vessels, anisotropic tissue properties, and other 
details of genuine head volume conductors that are absent 
from most models (Fiederer et al. 2016).



205Brain Topography (2019) 32:193–214 

1 3

More on Source Constraints

In practice, many spatial patterns of EEG can be approxi-
mately fit by a few dipoles. Other than in cases where the 
experimenter has independent evidence for isolated dipoles, 
perhaps early sensory evoked potentials, “equivalent 
dipoles” are more likely to be more accurately characterized 
as “representative dipoles”. For example, dipole solutions 
may reflect centers of complex patterns of distributed corti-
cal activity. Such representative information can be valuable, 
perhaps by informing epilepsy surgeons where to place the 
centers of cortical surface or depth arrays. More accurate 
source information may then be obtained with ECoG or 
iEEG.

Inverse EEG and MEG solutions involving single 
implanted dipoles in both physical head models and liv-
ing human brains have successfully located these artificial 
sources within about 1–2 cm (Cuffin et al. 1991; Cohen et al. 
1990; Leahy et al. 1998). However, when the sources are 
not known in advance to be exclusively isolated, inverse 
solutions face severe challenges because distributed corti-
cal sources cannot normally be distinguished from isolated 
sources based only on scalp potential data (Nunez and Srini-
vasan 2006). For this reason, many applications assume that 
all sources are cortical so that Eq. (6) applies. This approach 
seeks distributed solutions by using thousands of dipole 
sources whose positions and orientations are fixed by the 
folded cortical surface. The problem is then to solve this 
under-constrained problem of determining the strengths of 
the dipole sources (Russell et al. 1998, 2005). But, this lim-
ited constraint does not, by itself, allow one to distinguish 
sources in cortical folds from source distributions in nearby 
cortical gyri that produce identical potentials on the dura 
and scalp surfaces. These two source categories are “equiva-
lent” only in the limited sense of producing identical surface 
potentials.

This practical case of distinguishing sources in folds 
from gyri sources is easily explained. Any source distri-
bution in a cortical fold will produce some potential dis-
tribution on the dura surface. In the absence of source 
constraints, one can easily find some extended source 
distribution in nearby cortical gyri that matches the 
dura potential due only to the deeper source region. For 
example, if we stick with assumed cortical sources nor-
mal to the dura surface, the resulting dura surface map 
will be expected to closely match the gyri source map. 
Since there are no sources located between the dura and 
scalp surfaces, the scalp potential is then uniquely deter-
mined by Laplace’s equation given the dura potential 
(lower boundary condition). Additional information, per-
haps obtained with MEG recordings, may allow the two 
kinds of source distributions to be distinguished. Another 
approach is to apply some spatial smoothness constraint 

to sources confined to the cortical tissue (Pascual-Marqui 
and Gonzalez-Andino 1988; Pascual-Marqui et al. 1994; 
Pascual-Marqui 1999); the resulting accuracy will, of 
course, depend on how well genuine sources conform to 
this constraint. Aside from uniqueness and source con-
straint issues, all inverse solution accuracies are limited 
by our imperfect knowledge of head volume conduction 
expressed by the Green’s function G(x, r) in Eq. (6).

Combining EEG, MEG, MRI, and fMRI

Multimodal functional neuroimaging employs some 
combination of EEG, MEG, MRI, and fMRI data. Such 
methods have received significant attention over the past 
20 years or so, potentially advancing our understanding 
of the spatiotemporal patterns of brain activation and con-
nectivity underlying perception, motion and cognition (Liu 
et al. 2006). For example, integration of fMRI with EEG/
MEG (co-registration) enjoys a plausible physiological 
basis, but may discount the possible electrical sources 
missing in fMRI, or that fMRI active regions may produce 
no observable EEG or MEG signals as discussed briefly in 
“Open and Closed Fields” section (Nunez and Silberstein 
2000). Review of the extensive literature on multimodal 
imaging is beyond the scope of this paper; however, we 
here outline one early sophisticated approach to source 
imaging based on combining EEG and MEG data with 
anatomical constraints derived from MRI images (Dale 
and Sereno 1993). With this method, the inverse prob-
lem of estimating the distribution of dipole strengths over 
the cortical surface remains underdetermined. However, 
more realistic solutions are expected as a consequence of 
incorporating local cortical orientation from MRI plus 
the spatial covariance of sensors observed over extended 
time periods. With the anatomical constraint, calculated 
dipole sources are forced to lie perpendicular to local cor-
tical surface, a property based largely on the columnar 
structure of neocortex (Szentagothai 1978, 1987; Nunez 
1995; Mountcastle 1998). The cortical sheet is divided 
into small patches such that each dipole is located at the 
center of the local patch, essentially the volume element W 
shown in Fig. 3. Observed statistical relationships between 
sensors are employed to further constrain source solu-
tions. No prior assumption about the number of dipoles 
is required, and the method seems well suited to cases of 
multiple correlated dipoles. It is not clear to us, however, 
how well extended source regions are represented. This 
and other essential questions of the accuracies of various 
approaches to multimodal imaging over a range of brain 
states is beyond the scope of our paper; however, we again 
note one recent comprehensive comparison of different 
methods based on EEG (Mahjoory et al. 2017).
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The Laplacian and High Resolution EEG

Why Adopt the Spline Laplacian?

The label “high-resolution EEG” refers to computer methods 
that spatially filter scalp-recorded EEG. Two widely-tested 
examples are the spline Laplacian (SL) and dura imaging. Here 
we emphasize SL, which provides estimates of local skull cur-
rent sources and dura potential. Such skull sources may or may 
not be simply related to genuine cortical sources; however, 
skull sources still provide useful information about relatively 
large-scale neocortical dynamics, for example functional con-
nectivity between cortical lobes or hemispheres as a function 
of mental state. Some (or perhaps many) EEG scientists appar-
ently view SL methods as passé, not state of the art in the 
developing field of source localization. When judged mainly 
on the basis of mathematical sophistication, this viewpoint is 
probably correct; however, when judged in a broader practical 
context, we suggest a more nuanced view. In fairness to this 
discussion, we again offer a disclaimer—we have far more 
experience with SL than with source localization methods so 
our SL presentation is necessarily biased. However, we pro-
mote SL as a means to supplement, not to entirely replace, 
other methods of analysis, including source localization. Fur-
thermore, we note that many labs don’t enjoy experimental 
access to MEG or MRI, which are not required by SL.

Our SL promotion is based on the following beneficial fea-
tures of SL: (1) Independent of the assumed source model 
(e.g. dipole, dipole layer, or distributed monopolar sources). 
(2) Independent of reference electrode. (3) Independent of the 
(poorly known) brain tissue conductivity tensor employed by 
inverse solutions. SL does depend on local skull resistance, 
which is also poorly known, meaning that SL “hot spots” 
(local skull sources) might occur due either to local cortical 
sources or to local skull current shunting. However, in many 
cases these two phenomena can be distinguished by manipula-
tion of brain dynamics (eyes open/closed, mental tasks, etc.). 
(4) Yields local skull source current estimates that provide 
important information about brain dynamics, including meas-
ures of relatively large scale functional connectivity between 
different brain regions, e.g. coherence or covariance between 
cortical lobes or hemispheres. (5) Provides useful large-scale 
information when the underlying brain dynamics consists of 
both localized and widely distributed sources as often occurs 
in EEG, including the resting state alpha band as discussed 
in “Mixtures of Localized and Distributed Sources” section.

The Laplacian as a Spatial Filter

Volume conduction removes the high spatial frequencies 
occurring in the cortex, and these high spatial frequencies 
cannot be recovered at the scalp. SL algorithms remove 

the scalp’s low spatial frequencies that occur due to some 
unknown combination of volume conduction and genuine 
source dynamics, leaving only the intermediate spatial fre-
quencies in the scalp data. The SL goal is to obtain more 
accurate estimates of the underlying dura potential rather 
than actual neural source localization. However, we argue 
that SL may also be viewed as a method of finding and char-
acterizing representative cortical sources, which in cases 
of high electrode density, may be just as close to equiva-
lent sources as the representative sources revealed by the 
inverse solutions of Eq. (6). Our arguments are based on the 
underlying biophysics, not the specific computer algorithms 
employed. We confine the description to SL methods, which 
are largely independent of head model, as opposed to model-
dependent dura imaging. Our discussion is also confined to 
methods with moderate to high accuracy—SL with at least 
64 (preferably 128+) electrodes. While nearest-neighbor 
Laplacian algorithms (Hjorth 1975; Nunez 1981, 2011; 
Nunez and Srinivasan 2006) can be useful in a very limited 
number of applications, our conclusions and recommenda-
tions apply only to spline Laplacians obtained with dense 
electrode arrays. We also avoid the label “current source 
density (CSD)” in connection to SL, which suggests a mis-
leading connection to second derivative estimates in cortical 
depth recordings. In contrast to CSD studies, SL accuracy 
depends on the presence of high resistivity skull layers that 
tend to focus currents perpendicular local skull tissue.

What Does the Laplacian Measure?

Laplacian methods provide reference-independent estimates 
of local skull sources and dura surface potential based on 
scalp potential distribution. In contrast to inverse solutions, 
the relationship between dura and scalp potentials is unique, 
provided there are no sources located in between the two 
surfaces, and perfect knowledge of potential on an entire 
outer closed surface is obtained. While the latter idealistic 
condition does not hold in practice, the analytic scalp sur-
face Laplacian has been shown to satisfy an approximate 
relationship to dura (or inner skull) potential that is entirely 
independent of reference electrode and mostly independent 
of head model (Nunez and Srinivasan 2006). Let subscripts 
be as follows: (C, inner skull), (K, outer skull), and (S, outer 
scalp). The analytic scalp Laplacian (Lap) is approximately 
proportional to the potential difference between outer and 
inner skull surfaces

(

VK − VC

)

,

Here dK and dS are skull and scalp thicknesses, respec-
tively, each roughly in the range 0.5 to 1 cm. rC and rK are 
radii of curvature of the inner and outer skull surfaces, 

(7)Lap ≈
1

dKdS

(

rC

rK

)(

�K

�S

)

(

VK − VC

)
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in spherical models the ratio is about 7/8, and is weakly 
dependent on head shape. �K and �S are the conductivities 
of skull and scalp tissues; historical estimates of effective 
scalp to skull conductivity ratios have typically been in the 
30 to 80 range, but a lower range (20–50) now appears more 
realistic (Goncalves et al. 2003; Lai et al. 2005). The caveat 
“effective” accounts for corrections due to missing tissue 
layers or other approximations used in various head models. 
Such models predict only small potential changes through 
the scalp thickness (since scalp current is mostly tangential); 
thus, VK is approximately equal to scalp surface potential. 
Models containing single dipoles also predict that the poten-
tial on the inner surface of the skull VC is something like 50 
to a 100 or more times larger than the potential on the outer 
surface of the skull VK. Thus, in the case of single dipoles 
(or small dipole layers), the magnitude of the outer skull 
surface potential VK is negligible in comparison to the inner 
skull surface potential VC. It then follows from Eq. (7) that, 
in the case of localized cortical source regions, the (nega-
tive) surface Laplacian (Lap) is proportional to the potential 
on the inner surface of the skull VC. In cases of a thin CSF, 
dura potential is believed to be approximately equal to VC.

Whereas this analysis is based mainly on physical argu-
ments and computer simulations (Nunez 1981, 2011; Nunez 
et al. 1994; Nunez and Srinivasan 2006), its moderate to 
high accuracy in predicting dura potential distributions has 
been confirmed in more detailed mathematical and simula-
tion studies (Perrin et al. 1987, 1989; Pascual-Marqui et al. 
1988; Nunez et al. 1991; Law et al. 1993; Babiloni et al. 
1996; Kramer and Szeri 2004; Nunez and Srinivasan 2006; 
Kayser and Tenke 2015). Furthermore, the realistic scalp 
geometry obtained from MRI has been incorporated in sur-
face Laplacian estimates that take into account local scalp 
curvature (Deng et al. 2012). The spline Laplacian (SL) 
provides estimates of the analytic Laplacian (Lap); accu-
racy depends mainly on electrode density, noise, and time 
averaging methods. For example, Fourier transform of a two 
second data epoch typically involves averages over perhaps 
200 time slices. A coherence estimate based on 1 min of 
data may involve 6000 time slices. These time averages are 
expected to substantially reduce noise errors. Our reference 
to SL “accuracy” indicates only that the proportionality indi-
cated in Eq. (7) holds approximately; no claim is made that 
the actual dura potential (measured in µV) can be estimated 
accurately with SL (measured in µV/cm2). The effective 
scalp to skull conductivity ratio (�S∕�K) is poorly known; it 
probably varies over the scalp surface of individual subjects, 
across subjects, and more (Goncalves et al. 2003; Lai et al. 
2005). However, in some applications we are mainly inter-
ested in the cortical locations of SL peaks and not especially 
interested in their actual peak magnitudes. Also, coherence 
estimates are normalized measures, largely independent 
of magnitudes. This same limitation concerning absolute 

strengths applies to all inverse solutions and high resolution 
methods; predicted source magnitudes are sensitive to the 
scalp to skull conductivity ratio, which may be uncertain 
by a factor of two or more (Akhtari et al. 2000; Goncalves 
et al. 2003; Lai et al. 2005; Nunez and Srinivasan 2006), as 
discussed in “Inhomogeneous Skull “Corrections”” section.

Simulated Laplacians and Cortical Potentials

A simple analytic Laplacian simulation, based on the 
4-sphere head model, is shown in Fig. 6 (Nunez and Srini-
vasan 2006). Two radial dipoles P(r, t) are located at a depth 
of 1.4 cm below the scalp surface, corresponding to sources 
in cortical gyri. One radial dipole is oriented with the posi-
tive pole up (solid contour lines) and the other radial dipole 
has the negative pole up (dashed contour lines). The third 
dipole is tangential, as indicated by the positive (+) and 
negative (−) poles, and located at a depth of 2.2 cm below 
the scalp, simulating an isolated dipole in a sulcal wall. The 
three examples (a–c) correspond to increasing tangential 
dipole strengths—(a) the three strengths are equal, (b) the 
tangential dipole is twice as strong as the radial dipoles, (c) 
the tangential dipole is four times as strong. In case (a), the 
two radial dipoles provide a much stronger contribution to 
surface potential than the tangential dipole, with only a weak 
positive region evident over the right side of the map. The 
potential generated by the negative radial dipole appears to 
fall off with tangential distance more slowly than the positive 
dipole and have larger magnitude due to the influence of the 
tangential dipole.

The surface Laplacian and cortical potential maps are 
nearly identical as predicted by Eq. (7), revealing positive 
and negative radial dipoles with nearly equal magnitudes, 
but these maps do not reveal the tangential dipole. In case 
(b), the broad field of the stronger tangential dipole becomes 
evident on the right side of the potential map, while a com-
plex distribution appears over the left side, reflecting a mix-
ture of contributions from both radial and tangential dipoles. 
The surface Laplacian and cortical potential again identify 
the two radial sources with magnitude unaffected by the 
tangential dipole. In case (c), the potential distribution is 
dominated by the single tangential dipole. The Laplacian 
again reveals the two radial dipoles, but also detects a much 
smaller field associated with the tangential dipole.

The effect of dipole layer size on sensitivity to the Lapla-
cian is also estimated with the 4-sphere head model as 
indicated in Fig. 7. The dipole layers are identical to those 
shown in Fig. 5, which indicates the sensitivity of unpro-
cessed scalp potential to dipole layer size. The implications 
of these plots may be demonstrated with a thought experi-
ment in which cortical synchrony slowly spreads uniformly 
in all directions from some isolated cortical region, e.g. a 
mm size patch at the north pole of the model sphere. The 
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small isolated cortical patch produces a scalp potential that is 
probably too small to measure, at least without averaging. As 
the region of synchronous sources (the dipole layer) expands 
to something like the 1 cm scale, the Laplacian over the 
center of the layer grows rapidly, whereas the unprocessed 
potential is likely to remain masked by distant sources and 
artifact. As indicated in Fig. 7, as the diameter of the region 
of synchrony expands beyond the 10 cm scale (cap radius 
of 5 cm), the Laplacian magnitude falls off sharply, whereas 
the unprocessed potential (Fig. 5) continues to increase with 
spreading synchrony until the dipole layer diameter expands 
to approximately the 15 cm range.

The simulations of Figs. 5, 6 and 7 indicate that the 
unprocessed potential and Laplacian are selectively sensi-
tive to synchronous cortical regions of different sizes; they 
provide complementary, but partly overlapping measures 
of cortical dynamics. In particular, the effectiveness of the 
surface Laplacian as a tool to identify EEG sources depends 
strongly on the spatial properties (depth and orientation) 

Fig. 6  Simulated scalp poten-
tial, Laplacian, and cortical 
potential due to three dipoles 
P(r, t), two radial, one tan-
gential, in a four sphere head 
model. The ratios of tangential 
to radial dipole strengths are A 
one, B two, C four. Reproduced 
with permission from Nunez 
and Srinivasan 2006

Fig. 7  The scalp Laplacian is modeled as a function of dipole layer 
size. The same spherical caps used in Fig. 5 are employed here. The 
Laplacian (vertical axis) is expressed as a percentage of transcortical 
potential
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of the sources. If localized and superficial radial sources 
are not the primary contributors to any particular EEG sig-
nal, the surface Laplacian will tend to filter out much of the 
signal.

Mixtures of Localized and Distributed Sources

When EEG consists of mixtures of localized and distrib-
uted sources, SL can illuminate such complex dynamics 
by emphasizing local sources and filtering out distributed 
source distributions. One example of such phenomena is 
ordinary, eyes closed alpha band activity. Extensive ECoG/
EEG studies by pioneers Grey Walter, Wilder Penfield, and 
Herbert Jasper (circa 1940–1970) showed that the so-called 
human “alpha rhythm” is actually a complex process con-
sisting of multiple rhythms, generated at different cortical 
locations, in different sized synchronized cortical areas, and 
exhibiting different reactivity to eyes open/closed, motor, 
and mental activity. Alpha rhythms recorded on the scalp 
were shown to represent only the most synchronized pro-
cesses over the largest cortical areas (Jasper and Penfield 
1949; Walter 1950; Penfield and Jasper 1954; Delucchi et al. 
1962; Cooper et al. 1965), a general picture confirmed by 
many more recent studies of EEG/ECoG (Nunez 1974, 1981; 
Pfurtscheller and Cooper 1975; Andrew and Pfurtscheller 
1997; Pfurtscheller and Lopes da Silva 1999; Andrew 2000). 
MEG studies have also indicated mixtures of localized and 
distributed cortical sources of alpha activity (Salmelin and 
Hari 1994; Ciulla et al. 1999); however, as indicated in 
Fig. 4, MEG “hot spots” may indicate genuine local sources 
or, alternately, edges of extended dipole layers (Malmuvino 
and Plonsey 1995; Uutela et al. 1999; Srinivasan et al. 2007). 
The multiple alpha rhythms may or may not overlap in fre-
quency within the alpha band. One modern study employing 
128 electrodes (Nunez and Srinivasan 2006; Nunez et al. 
2015) suggested widely distributed source regions over the 
entire electrode array in the unprocessed potential map. In 
contrast, SL (based on 111 electrodes, excluding the edges) 
revealed local skull sources in occipital and motor cortices 
in addition to the genuine widely distributed source regions. 
In similar studies, large and repeatable changes in SL coher-
ence patterns occurred with mental activity, and coherence 
patterns were shown to be scale-dependent.

In still another SL study revealing clear distinctions 
between local and global alpha rhythms, EEG was recorded 
in children aged 6 to 11 and young adults (Srinivasan 1999). 
The SL algorithm was employed to obtain power and coher-
ence estimates at a scale smaller than the raw EEG. Power 
and coherence characterized the spatial structures of the 
alpha rhythm at the two distinct spatial scales. In adults, the 
alpha rhythm was characterized by high coherence between 
distant electrodes in both measures, that is, a clear indication 
of global alpha. The children had reduced anterior power 

and reduced coherence of raw EEG between anterior and 
posterior electrodes at the peak alpha frequency in compari-
son to adults. Also, the children’s SL alpha rhythm showed 
much higher power than adults at both anterior and posterior 
electrodes, but was weakly correlated across the scalp. In 
other words, children produced strong local alpha at multiple 
locations and, at the same time, weak global alpha compared 
to adults, apparently due to immature cortico-cortical axon 
myelination (Nunez et al. 2015).

Dura imaging, Comparison with Laplacians

Dura imaging algorithms provide inner continuation solu-
tions. In contrast to the non-unique inverse problem, dura 
imaging is based on the unique relationship between poten-
tials on any two closed surfaces in a volume conductor when 
no sources are located in between the surfaces (Cadusch 
et al. 1992; Nunez et al. 1994). How do such dura image 
results compare with SL estimates of dura potential maps? 
The answer depends on electrode density and head model 
accuracy. Laplacians are mostly independent of head model, 
but rely on dense electrode arrays. Accurate head models, 
if actually achieved, could possibly allow dura imaging 
to provide accurate estimates of dura potential with lower 
electrode density. We are aware of only one set of studies 
directly comparing SL and dura imaging methods (Nunez 
et al. 2001; Wingeier 2004; Nunez and Srinivasan 2006, 
Chap. 8). With 64 electrodes, correlations between the New 
Orleans spline Laplacian (SL) and Melbourne dura imag-
ing were found to be in the 0.8 range in both recorded EEG 
and simulations. In similar studies with 131 electrodes, 
correlations were in the 0.95 range in both recorded EEG 
and simulations. The EEG was standard eyes closed alpha 
rhythm. The simulations involved 100 different source pat-
terns, each consisting of 3602 cortical dipoles P(r, t) in a 
three-concentric spheres head model. The two high resolu-
tion methods agreed even though dura imaging was based 
on average reference recordings, whereas the Laplacian was 
entirely reference free.

The above cited correspondence between Laplacian and 
dura potential is not strictly valid if the cortical sources are 
too broadly distributed because in such cases  VK and  VC 
are in the same general range. For very large dipole sheets, 
 VC may be only 2 to 5 times as large as  VK, a ratio range 
consistent with much spontaneous EEG data (Cooper et al. 
1965; Nunez 1981, 1995; Nunez and Srinivasan 2006). In 
summary, SL provides plausible semi-quantitative estimates 
of dura surface potential when the underlying source regions 
are relatively localized, with diameters smaller than perhaps 
10 cm. By contrast, very broadly distributed source distri-
butions (dipole layers) cause the SL to underestimate dura 
surface potentials. Expressed another way, SL is relatively 
insensitive to very low spatial frequency source activity. It 



210 Brain Topography (2019) 32:193–214

1 3

tends to filter out such sources, along with low spatial fre-
quency potentials due only to volume conduction.

Source Localization Versus Laplacian Estimates

This selective sensitivity of the surface Laplacian to local-
ized source regions can be very useful either in isolation 
or as supplement to neural source localization, as in the 
example of focal epilepsy (Ebersole 1997; Schomer and 
Lopes da Silva 2018). SL is independent of reference elec-
trode choice or a priori assumptions about sources. It is also 
largely independent of volume conductor model, other than 
the assumption of low conductivity skull layers. In practice, 
the accuracy of SL estimates is limited by noise, under sam-
pling, and inhomogeneous skull properties; however, most 
indications suggest that it reliably distinguishes isolated 
cortical sources from broadly distributed source patterns. 
Thus, we suggest that when high density electrode arrays are 
employed (64 to 128+), attempts at source localization based 
on recorded scalp potential distribution might begin with SL 
estimates. In the general use of EEG data in cognitive and 
clinical studies, SL provides a spatial filtering of the EEG 
that limits electrode sensitivity to “local” sources (within a 
few cm of each electrode), thereby revealing source dynam-
ics at smaller spatial scales than scalp potentials (Nunez 
1995; Nunez et al. 1997, 1999; Nunez and Srinivasan 2006; 
Srinivasan 1999; Srinivasan et al. 2007). However, if the 
surface potential patterns of interest (perhaps broad peaks 
of potential) disappear when SL is applied, this outcome 
provides evidence that the potential patterns are generated 
by widely distributed and/or non-superficial sources (e.g., in 
cortical folds), not localized gyri sources. Any inverse solu-
tion algorithm that “finds” local superficial cortical sources 
in such a case would be suspect; such solutions should be 
viewed as representative, not genuine or even equivalent.

Conclusions

Source Interpretations of Brain Patterns

Brains exhibit multiscale dynamic source patterns, essen-
tially the electrical signatures of mental states. Source infor-
mation may include ERP magnitude changes and latencies 
from sensory stimuli or changes in EEG oscillation frequen-
cies in extended networks. Mental signatures also include 
various kinds of correlations between different parts of the 
brain—coherence, covariance, Granger causality, functional 
connectivity, and so forth (Sporns 2011). Any measured cor-
relation between a pair of signals is likely to be sensitive to 
the chosen correlation measure. For example, two signals 
can exhibit quite different coherence in different frequency 
bands as demonstrated by alpha rhythms and other data 

(Nunez 1995; Nunez et al. 1997, 1999, 2015; Srinivasan 
et al. 2007). Or, a pair of ERP signals recorded at differ-
ent locations and associated with some task can show quite 
a different covariance depending on the lag times between 
scalp locations (Gevins et al. 1994, 1997). This general out-
come emphasizes that source networks can act locally in 
some ways, but at the same time, act globally in other ways, 
thereby directly addressing the binding problem of brain 
science (Nunez 1989, 2012; Nunez and Srinivasan 2006, 
2014). In other words, signals and their source networks may 
be “functionally connected” in some ways, but at the same 
time, “functionally disconnected” by other measures. This 
result should not surprise us if we accept the idea that brains 
are genuine complex systems (Nunez 2016). In essence, dif-
ferent parts of the brain do different things, but these sub 
systems also act together in healthy brains to produce an 
integrated consciousness (Silberstein 1995; Edelman and 
Tononi 2000).

Micro and Macro Sources

The conceptual framework proposed here is aimed at elec-
trophysiological studies of brain source activity recorded 
and interpreted at distinct tissue scales, including LEP and 
ECoG, but with emphasis on EEG. Our purpose is to facili-
tate proper interpretations of recorded potentials in terms of 
the underlying sources. At smaller scales, electric potentials 
are generated by micro scale current sources s(r, w, t). For 
large scale EEG studies, macro sources P(r, t) are defined 
for tissue volumes containing many micro sources s(r, w, t). 
When defined at the mm scale of cortical macrocolumns, 
P(r, t) is essentially the “effective” (diffuse) current density 
across the local cortex. P(r, t) may be treated as a continu-
ous field variable that generally forms a dipole layer (sheet) 
over the entire (folded) cortex. Localized cortical activity is 
then just a special case, occurring when P(r, t) is negligible 
or small at most locations. Technical point—this theoretical 
treatment of tissue current sources is closely analogous to 
the classical electromagnetic theory of physical materials 
(dielectrics) involving both micro and macro scale charge 
sources and fields.

The inverse problem is non-unique—many P(r, t) pat-
terns and locations can produce the same surface potential 
distribution. Thus, in practice, inverse solutions must involve 
constraints; that is, assumptions or additional information 
imposed on solutions. One may constrain solutions to cor-
tex, but this limited constraint does not, by itself, allow one 
to distinguish sources in cortical folds from source distri-
butions in nearby cortical gyri that may produce identical 
potentials on the dura and scalp surfaces. These two source 
categories are “equivalent” only in the limited sense of 
producing identical surface potentials. With such issues in 
mind, we emphasized distinctions between genuine sources, 
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equivalent sources, and representative sources. In practice, 
many spatial patterns of EEG can be approximately fit by a 
few “dipoles,” meaning the macro sources P(r, t). Other than 
in cases where independent evidence for isolated sources 
is known, so-called equivalent dipoles are more accurately 
characterized as representative dipoles. For example, even 
the most accurate inverse dipole solutions may reflect cent-
ers of complex patterns of distributed cortical activity.

Experimental and Computational Strategies

What are the “best” methods to record, analyze, and inter-
pret EEG data in terms of the underlying brain sources? 
All methods are subject to several important issues mostly 
avoided here: artifact, reference, electrode density, head 
model, algorithm, and noise errors, but here is short list of 
several possible experimental strategies:

• The classical approach Spatial transformation is limited 
to re-referencing, often the common average reference 
(Nunez and Srinivasan 2006; Nunez 2010a; Schomer and 
Lopes da Silva 2018). In the past, some have viewed this 
approach as locating source regions, with one so-called 
“source” under each electrode, but such representative 
sources are generally not even equivalent, much less 
genuine.

• Constrained inverse solutions estimating P(r, t) Accu-
racy is limited by the chosen constraints and head model. 
Simulations employing localized and distributed sources 
over a range of head models can provide some idea of 
when the methods work and when they break down. In 
such simulations, the test head model should differ in 
varying degrees from the head model used to obtain the 
inverse solutions.

• High resolution EEG based on Laplacians or dura imag-
ing The Laplacian enjoys the major advantages of being 
entirely independent of reference electrode and mostly 
independent of head model, but moderate to high accu-
racy requires dense electrode arrays (64–128+). Dura 
imaging relies on a head model, but might require fewer 
electrodes. The resulting dura potential estimates can 
be viewed as representative gyri sources, which can be 
equivalent only when all other sources, including those 
in cortical folds, can be neglected.

• Combined dura imaging and Laplacian methods Both 
methods provide estimates of dura potential patterns, but 
are mostly independent of each other. Their magnitudes 
cannot be compared directly since they have different 
units; however, normalized comparisons indicate close 
agreement with both actual and simulated EEG when 
dense electrode arrays are employed (Wingeier 2004; 
Nunez and Srinivasan 2006).

• Combined classical and Laplacian approaches The 
surface Laplacian provides spatial band pass filter-
ing of EEG that limits electrode sensitivity to “local” 
sources, thereby revealing source dynamics at smaller 
spatial scales than raw scalp potentials. Maximum scalp 
potentials occur with synchronous dipole layers having 
diameters roughly in the 10 to 20 cm range, whereas 
Laplacians are most sensitive to dipole layers approxi-
mately in the 1 to 6 cm range as indicated in Figs. 5 and 
7 (Nunez and Srinivasan 2006). By analyzing both meas-
ures in the same data sets, one can obtain complemen-
tary information about neocortical dynamics at different 
scales (Nunez 1995; Andrew and Pfurtscheller 1997; 
Andrew 2000; Wingeier 2004; Nunez et al. 2015). In 
this manner, estimates of distinct multi-scale coherence 
patterns can be obtained (Srinivasan et al. 2007; Nunez 
et al. 1997, 1999; Nunez and Srinivasan 2006). Multi-
scale coherence differences between adults and children 
with implications for white matter maturation/coherence 
effects provide just one example (Srinivasan et al. 1999; 
Nunez and Srinivasan 2014; Nunez et al. 2015).

• Combined inverse solutions and Laplacian approaches 
Attempts at source localization may benefit from prior 
Laplacian estimates. If the surface potential patterns of 
interest (perhaps broad peaks of potential) disappear 
when the Laplacian is applied, such outcome provides 
evidence that the potential patterns are generated by 
non-superficial and/or widely distributed sources, not 
localized gyri sources. Any algorithm that “finds” local 
cortical sources in gyri in such case would be suspect; 
such inverse solutions are likely to be representative, not 
genuine or even equivalent.
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