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Abstract
Mentally imagining rather physically executing the motor behaviors is defined as motor imagery (MI). During MI, the mu 
rhythmical oscillation of cortical neurons is the event-related desynchronization (ERD) subserving the physiological basis of 
MI-based brain-computer interface. In our work, we investigated the specific brain network reconfiguration from rest idle to 
MI task states, and also probed the underlying relationship between the brain network reconfiguration and MI related ERD. 
Findings revealed that comparing to rest state, the MI showed the enhanced motor area related linkages and the deactivated 
activity of default mode network. In addition, the reconfigured network index was closely related to the ERDs, i.e., the higher 
the reconfigured network index was, the more obvious the ERDs were. These findings consistently implied that the recon-
figuration from rest to task states underlaid the reallocation of related brain resources, and the efficient brain reconfiguration 
corresponded to a better MI performance, which provided the new insights into understanding the mechanism of MI as well 
as the potential biomarker to evaluate the rehabilitation quality for those patients with deficits of motor function.
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Introduction

Motor imagery (MI) refers to the mental imagery of the 
required motor tasks without the physical motor output 
(Lotze and Halsband 2006; Sharma and Baron 2013), and it 
has been widely used in motor skills learning, neurological 

rehabilitation, and brain-computer interface (BCI) (Blank-
ertz et al. 2010; Burianová et al. 2013; Long et al. 2012; 
Miller et al. 2010; Mulder 2007). The MI-based BCI (MI-
BCI) is usually used to extend the healthy individual’s abil-
ity (Li et al. 2010; Yu et al. 2012), to provide the compensa-
tive assistance to disabled patients (Li et al. 2016b, 2013), 
and to avail the rehabilitation of motor function (Mulder 
2007; Sharma et al. 2006). During MI, the power decrease 
at mu rhythm occurs prominently over the contralateral sen-
sorimotor area, which is defined as the event-related desyn-
chronization (ERD) (Friedrich et al. 2009; Pfurtscheller and 
Da Silva 1999) subserving the useful feature corresponding 
to the movement volition (Pfurtscheller and Neuper 1997).

Multiple neuroimaging technologies including func-
tional magnetic resonance imaging (fMRI) and electro-
encephalography (EEG) are usually considered to capture 
the brain activity during MI. However, benefiting from its 
high temporal resolution, low cost, and easy operation, 
EEG is frequently adopted to probe the neural mechanism 
of MI (Li et al. 2018; Toppi et al. 2015; Zhang et al. 2015). 
In essence, the brain functions as a complex network, the 
information is processed between those specialized, spa-
tially distributed but functionally linked regions (Bullmore 
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and Sporns 2009; Iturria-Medina et al. 2008; Sharma and 
Baron 2013; Sporns et al. 2000; Stam and Van Straaten 
2012). The brain network analysis can be used to probe 
the underlying neural mechanism, and based on those 
brain networks, the measured inter-regional linkages can 
mark out the corresponding dynamic information process-
ing patterns (Friston et al. 2003; Li et al. 2016a; Toppi 
et al. 2015). In real applications, either anatomical tract, 
or functional connectivity measured by coherence, phase 
locking value, and etc. is usually considered to construct 
the brain networks (Li et al. 2015; Sakkalis 2011; Zhang 
et al. 2015).

Our brain is not idle, even at rest (Raichle et al. 2001); 
the spontaneous activity may reflect the brain’s poten-
tial ability to efficiently process the related information 
during tasks (Ramos-Loyo et al. 2004; van den Heuvel 
and Hulshoff Pol 2010; Zhang et al. 2016). Resting-state 
fMRI study shows that human intellectual performance is 
dependent on the efficiency of brain in integrating infor-
mation across distributed regions (van den Heuvel et al. 
2009); studies based on clinical diseases (i.e., epilepsy) 
prove the possibility of resting-state network in under-
standing the underlying pathophysiological mechanisms 
(Xu et al. 2014a, b; Yao et al. 2010; Zhang et al. 2011); 
and our previous study also demonstrates that the efficient 
brain at rest facilitates the subjects’ BCI performance 
(Zhang et al. 2015). Apart from the resting-state studies, 
the task-related MIs have been further investigated (Buri-
anová et al. 2013; Pilgramm et al. 2016), as well. Brain 
regions including premotor cortex (PMc), parietal areas, 
and supplemental motor area (SMA) are proved to be acti-
vated and involved in the information processing of MI 
(Miller et al. 2010; Sharma and Baron 2013).

Even previous studies have probed the underlying 
mechanism that accounts for the variability of MI across 
individuals, based on either rest- or task-related studies, 
few of related studies have considered the relationship 
between the brain activity under these two types of states, 
meanwhile how the brain reorganizes from rest idle state 
to fulfill the needs of MI is still left unveiled. In fact, the 
brain at rest determines the degree of how brain can be 
reconfigured in following tasks, and the network update 
efficiency correlated with the individuals’ general intelli-
gence (Schultz and Cole 2016). Exploring how large-scale 
functional networks are reconfigured between task and rest 
can facilitate clarifying how the human brain responds to a 
specific task at the network level. Therefore, in this study, 
we assume that the brain reconfiguration from rest to task 
states may play important roles in the information process-
ing during MI, based on which we endeavor to probe how 
the brain reorganizes from rest idle to MI task states and 
also probe the relationship between the brain reorganiza-
tion and the MI.

Experimental Procedures

Participants

The experiment was approved by the Institution Research 
Ethics Board of the Key Laboratory of NeuroInformation 
of Ministry of Education at University of Electronic Sci-
ence and Technology of China and conformed to the princi-
ples of the Declaration of Helsinki. Before the experiment, 
all participants were asked to read and sign an informed 
consent form. 26 healthy postgraduates (9 females, aged 
22.23 ± 4.23 years, 2 left-handed) were paid for their time 
and effort to participate in our experiment. All participants 
had the normal or correct-to-normal vision. None of them 
had the habitual drug, alcohol consumption, cognitive 
impairments, and neurological disorders.

MI Experiments

The current MI experiment consisted of a 2-min eye-closed 
resting-state and the following left- or right-hand MIs. 
Between two adjacent experimental stages, a 2-min break 
was given to all subjects. And 4 runs of MIs were then per-
formed as the subjects were informed to perform the imagery 
of bouncing a ball by his/her left or right hand according to 
the instructions presented on the computer screen (Fig. 1). 
For each MI run, a total of 50 trials with 25 trials for left-
hand MIs (lMIs) and 25 trials for right-hand MIs (rMIs) 
were included. For each MI trial, the task would start with 
a 4-s rest; after that, 1-s yellow bar appeared on the left or 
right side of the screen to remind the subjects to fully pre-
pare to perform the MI task; and after the bar turned green, 
the subjects were given 5 s to perform the required MI task.

Data Acquisition

Using the Symtop amplifier (Symtop Instrument, Beijing, 
China), the rest and task EEG datasets with 15 Ag/AgCl 
electrodes from extended international 10–20 system were 
recorded. During online recording, the EEGs were band-
pass filtered with frequency band of 0.5–45 Hz, sampled 
with sampling rate of 1000 Hz. Electrode AFz served as the 
reference. And across the whole experiments, the impedance 
for each electrode was kept below 10 kΩ.

Data Analysis

In the present study, aiming to probe the underlying rela-
tionships between brain reconfiguration from rest to task 
states and subjects’ task performance (i.e., ERDs), we imple-
mented a series of processes based on the recorded scalp 
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Fig. 1   EEG experimental 
paradigm with the rest and task 
datasets recording. Each MI 
trial consisted of the follow-
ing periods: a 4-s rest period, 
represented by the gray bars 
presented at the both sides of 
computer screen; a 1-s cue, 
represented by the yellow bar 
presented at the left/right side 
of computer screen; and a 5-s 
motor imagery task, represented 
by the green bar presented at 
the left/right side of computer 
screen

Fig. 2   The processing procedures for the rest and task EEG datasets. a EEGs pre-processing, b ERD calculation, c ERD versus reconfigured 
network
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EEGs, which included the data pre-processing, ERD cal-
culation, and correlation analysis between ERD and brain 
reconfiguration parameters (Fig. 2). And the details for each 
process were further provided in following portions.

Data Pre‑processing

Before network construction, the multiple pre-processing 
procedures were considered to exclude the contained arti-
facts, and the related procedures consisted of averaging re-
referencing, 0.5–30 Hz offline band-pass filtering, data seg-
mentation, and artifacts removal (± 75 uv as threshold). Since 
resting-state EEGs showed the spontaneous brain activity 
during the idle state, while the MI task EEGs recorded the 
event-related activity during required task, in the procedure 
of data segmentation, the distinct processes were performed 
to divide the whole length of EEGs into numbers of artifact-
free data segments. Meanwhile, since the designed MI task 
consisted of 4-s rest, 1-s cue, and 5-s task periods and the 
subjects only perform the MI task during the related 5-s task 
period, to promise the consistency of data analysis between 
rest and task states, the 5-s window is also applied to the 
resting-state EEG to divide it into segments for the further 
analysis.

Resting‑State EEG  For resting-state EEGs, during the process 
of data segmentation, the first and last 10  s of EEGs were 
excluded, while the remaining data was divided into numbers 
of 5-s segments. Afterwards, the coherence was adopted to 
construct the corresponding networks (i.e., adjacency matrix) 
for each 5-s segment. And finally, the adjacency matrix was 
averaged across all segments to estimate the individual rest-
ing-state connectivity matrix for each subject.

MI Task EEG  For MI task EEGs, relying on the time point 
recorded (i.e., the onset of bar turning green) where the sub-
jects started to perform the required lMIs or rMIs, the fol-
lowing 5-s length of EEGs for each MI trial were extracted. 
And after that, the similar procedure of network construc-
tion was also adopted to estimate the connectivity matrix for 
each MI trial, meanwhile based on which the average was 
performed to achieve the individual’s connectivity matrix 
of lMIs or rMIs.

Brain Network Analysis

After pre-processing, all of the artifact-free rest/task trials were 
used to construct the rest/task brain networks for each subject. 
The same coherence analysis (Zhang et al. 2015) was adopted 
in current study to measure the linkages between each pair of 
electrodes. Specifically, considering x(t) and y(t) in each MI 
trial, coherence is defined as

 where Pxy(f) is the cross-spectral density between x(t) and 
y(t) at the frequency f, Pxx(f) and Pyy(f) are the auto-spectral 
densities of x(t) and y(t) at the frequency f, respectively, 
and Cxy(f) is the frequency-dependent coherence. Then, the 
edge linkages were estimated by averaging the coherence 
value within the concerned frequency band, which led to 
the 15 × 15 weighted adjacency matrix for each artifact-free 
segment. For each subject, the final weighted network was 
obtained by averaging the connectivity matrices of those 
artifact-free segments.

Let wij and dij represent the coherence value and shortest 
path length between nodes i and j, respectively, n represent 
the node number, and Ψ represent the set of nodes. For each 
subject, the local electrode and global network parameters 
were then calculated by adopting the brain connectivity tool-
box (BCT, http://www.nitrc​.org/proje​cts/bct/) (Rubinov and 
Sporns 2010).

Clustering coefficient (CC) and local efficiency (LE) both 
relate to the estimation of the potential for functional segrega-
tion between brain areas, and consistently reflect the poten-
tial capacity of local information processing in the brain. The 
related CC and LE on each electrode (eCC and eLE) can be 
formulated as,

On the contrary, characteristic path length (CPL) and global 
efficiency (GE) estimate the potential for functional integration 
between brain regions, and consistently represent the brain 
efficiency of global information processing, therefore they can 
be calculated as follows,
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 Meanwhile, by averaging the calculated eCC and eLE across 
all concerned fifteen electrodes, the CC and LE are further 
calculated as,

Cortical Activity Measure: ERD

As illustrated, over the contralateral sensorimotor area, the 
related power decrease could be clearly found at specific 
rhythm (i.e., mu rhythm) when the subjects were required 
to perform the lMIs and rMIs (Friedrich et  al. 2009; 
Pfurtscheller and Da Silva 1999; Pfurtscheller and Neu-
per 1997). In the current study, for either lMIs or rMIs, the 
corresponding power spectrums on electrodes C3 and C4 
were firstly statistically compared by using paired t-test, 
and the related ERDs were then calculated for lMIs or 
rMIs of each subject.

In fact, ERD is a useful biomarker to explore the brain 
sensory, motor, and cognitive function under both the normal 
and pathological conditions, which has been widely used to 
measure the capacity of subjects’ MI ability (Graimann et al. 
2002; Lotze and Halsband 2006). In our present study, the 
corresponding ERDs (i.e., C3-ERD for rMIs and C4-ERD 
for lMIs) were formulated as,

 where χ denotes the ERDs of electrodes C3 for rMIs and 
C4 for lMIs, and β(⋅) denotes the sum of power spectrum at 
mu rhythm of rest or task state.

Reconfigured Network Index

In our present study, aiming to probe the possible relation-
ships between the reconfigured brain networks from rest to 
task and the MI related ERDs, based on the properties of 
rest and task networks, the new network parameter, recon-
figured network index (rCNI), defined as the subtraction of 
properties between rest and task networks was proposed to 
quantitatively measure the change of brain efficiency in task 
from that at rest, which was formulated in Eq. (9) as,

 where δ′ represents the reconfigured network index and δ(⋅) 
represents the properties of rest/task network.

(6)CC =

∑

i∈Ψ

eCCi

n

(7)LE =

∑

i∈Ψ

eLEi

n

(8)� =
�(task) − �(rest)

�(rest)

(9)�� = �(rest) − �(task)

Correlation Analysis

In this work, to probe how the brain reconfigures from rest 
idle state to meet the needs of MI and to uncover the rela-
tionships between MI related ERDs and reconfigured brain 
networks, we firstly measured the reorganized brain network 
topologies from rest to lMIs/rMIs by using the paired t-test 
and corrected by using false discovery rate (FDR). Then, 
based on the measured global network and local electrode 
parameters, the differences of related network parameters 
between two distinct states were also measured by paired 
t-test. Afterwards, the relationships of rest vs. task networks 
and ERD vs. reconfigured network were finally analyzed by 
Person’s Correlation analysis. Specially, in this work, we 
used the proposed rCNI to quantitatively evaluate the brain 
reconfiguration from rest to task states with its role in facili-
tating the information processing of MI.

Outlier Subjects Removing Strategy

When conducting correlation analysis between rCNI and 
ERDs, some obvious outliers that deviate from the data 
center would weaken the underlying relations. In the present 
study, in order to obtain the robust representative knowl-
edge that accounts for the brain reconfiguration from rest to 
task states, the outliers were selected based on an analysis 
of relationships between rCNI and ERDs. Afterwards, the 
subjects with the 10% largest Malahanobis distances (Zhang 
et al. 2015) to the data center were considered as the outliers, 
and further excluded from analysis of relationships between 
rCNI and ERDs.

Results

Reconfigured Networks in MI

Figure 3 reveals the reorganized network topologies from 
rest idle to lMIs/rMIs (p < 0.05, paired t-test, FDR correc-
tion). As revealed in Fig. 3, the significantly increased and 
decreased linkages in adjacent matrices could be obviously 
found when the brain switched from rest idle to MI task 
states. Specifically, when the subjects were required to per-
form lMIs or rMIs, the long-range network linkages that 
connected the frontal and parietal/occipital lobes decreased 
during brain reconfiguration process; in contrast, the link-
ages between bilateral motor areas (i.e., PMc and SMA) 
were enhanced during MI.

Besides the differences of brain topologies in Figs. 3, 4 
further shows the related comparison (p < 0.05, FDR cor-
rection) of global network and local electrode parameters 
between rest and task networks. As provided in Fig. 4, the 
decreased global network properties of lMIs/rMIs deviating 
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from rest state could be found (Fig. 4a). Specifically, the 
decreased local clustering coefficients were revealed for both 
lMIs and rMIs, since some electrodes (i.e., F3, F4, FC3, 
FC4, P3, P4, O1, O2, and Cz) showed the significantly 
decreased local network parameters (Fig. 4b), which was 
similar to the decreased DMN presented in Fig. 3. Unfor-
tunately, although the enhanced motor area related linkages 
were observed in Fig. 3, the brain topographies in Fig. 4 did 
not show similar patterns, as no significantly enhanced local 
clustering coefficients on motor-related electrodes, such as 
C3, C4, C5, and C6, were observed.

Since the local clustering coefficients showed the similar 
reconfigured brain pattern with the network topologies, as 
well as the global network properties, our subsequent analy-
sis would then concentrate on the four properties (i.e., CC, 

CPL, GE, and LE) to uncover the corresponding relation-
ships between concerned parameters (i.e., rest properties vs. 
task properties and rCNI vs. ERDs). Below Table 1 then 
gives the relationships of properties between these two types 
of networks, which reveals that both lMIs and rMIs network 
are significantly positively correlated (p < 0.05, FDR correc-
tion) with that of rest network. In other words, the subject 
who had efficient rest network would have the efficient task 
network in his/her lMIs or rMIs.

ERD Versus Reconfigured Network

Figure 5 shows the distinct changes of power spectrum on 
electrodes C3 and C4 for lMIs and rMIs across all subjects, 
which mainly shows the significant differences of power 

Fig. 3   The reorganized brain network topologies from rest to lMIs/
rMIs. The subfigures in first and second row represent the reorgan-
ized network topologies of lMIs and rMIs, respectively. The matri-
ces in first column show the reorganized (i.e., increased/decreased) 

adjacent matrices from rest to task states; the subfigures in second 
and third column show the corresponding decreased and increased 
brain network topologies for lMIs/rMIs deviating from rest idle state, 
respectively
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spectrum at the mu rhythm. Specifically, when the subjects 
performed the required lMIs, comparing to that on electrode 
C3, Fig. 5a shows the significantly (p < 0.05) decreased 
power spectrum on electrode C4 at the mu rhythm; in con-
trast, for the subjects’ rMIs, electrode C3 showed the cor-
responding significantly decreased power spectrum.

When the outlier subjects were removed, Fig.  6 fur-
ther reveals the relationships (uncorrected) between ERDs 
and rCNI in both lMIs and rMIs. Specifically, the positive 

correlations can be observed between ERD and characteris-
tic path length (lMIs: r = 0.464, p = 0.023; rMIs: r = 0.290, 
p = 0.170), whereas clustering coefficient (lMIs: r = − 0.397, 
p = 0.055; rMIs: r = − 0.286, p = 0.176), global efficiency 
(lMIs: r = − 0.466, p = 0.022; rMIs: r = − 0.290, p = 0.170) 
and local efficiency (lMIs: r = − 0.420, p = 0.041; rMIs: 
r = − 0.295, p = 0.162) are negatively correlated with ERDs.

Discussion

In our previous study, we probed the efficient brain at rest 
facilitating the subjects’ BCI performance (Zhang et al. 
2015), which implied that the efficiently organized brain 
at rest provides the physiological possibility for the effi-
cient information processing during MI. Other studies also 
proved the involvements of large-scale brain networks dur-
ing certain tasks (i.e., MI) (Sharma and Baron 2013; Yan 
et al. 2013), as well as the functional connectivity updates 
from rest to task states (Cole et al. 2014; Kaufmann et al. 

Fig. 4   The statistical differences 
of global network and local 
electrode parameters between 
rest idle and task states for lMIs 
and rMIs. a The statistical histo-
grams of global network proper-
ties between rest and lMIs/
rMIs, and b The topographical 
distributions of reconfigured 
clustering coefficients on each 
electrode from rest to task states 
for lMIs and rMIs. The blue 
denotes the decreased clustering 
coefficients with p < 0.05, and 
the white denotes no significant 
difference between the two 
brain states

Table 1   Correlations of properties between rest and task networks for 
lMIs and rMIs

*P < 0.05, FDR correction

lMIs rMIs

Clustering coefficient 0.527* 0.524*
Characteristic path length 0.550* 0.547*
Global efficiency 0.581* 0.575*
Local efficiency 0.543* 0.538*
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2017; Krienen et al. 2014; Schultz and Cole 2016). Inspired 
by these findings, in this work, we endeavored to probe the 
relationships between rest and lMIs/rMIs networks, and to 
probe the correlations between the degree of brain recon-
figuration (i.e., rCNI) and ERDs to decode how our brain 
reorganizes from rest idle to task states to fulfill the needs 
of MI information processing.

As brain at rest serves as a fundamental biomarker to 
infer the information processing during the following tasks, 
it is interesting to uncover how our brain reorganizes when 

switching from rest idle to task states, and to probe the rela-
tionship between brain reconfiguration and MI. The high 
correlation coefficients of four properties between two types 
of networks in Table 1 revealed that the subjects with an 
efficient brain at rest can evoke the corresponding efficient 
brain networks during related MI tasks. When referring to 
the related brain structure, Fig. 3 then shows that when the 
subjects performed the required lMIs or rMIs, the necessary 
brain reconfiguration from rest to task states was accom-
panied, since Fig.  3 revealed the decreased long-range 

Fig. 5   The power spectrum on 
electrodes C3 and C4 for lMIs 
and rMIs across all subjects. 
Subfigure (a) denotes the power 
spectrum for required lMIs on 
electrodes C3 and C4, subfigure 
(b) denotes the power spectrum 
for required rMIs on electrodes 
C3 and C4, and black filled rec-
tangles in (a) and (b) denote the 
differences of power spectrum 
between C3 and C4 for lMIs 
and rMIs under the significance 
level of 0.05

Fig. 6   Pearson correlations 
between ERD and rCNI in 
both the lMIs and rMIs. The 
red filled circles denote the 
subjects’ lMIs, the blue filled 
circles denote the subjects’ 
rMIs, the grey filled circles 
denote the excluded subjects’ 
lMIs, and the black filled circles 
denote the excluded subjects’ 
rMIs. The red and blue solid 
lines are the regression of ERD 
to the reconfigured network 
measurements for the subjects’ 
lMIs and rMIs, respectively
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edges and reconfigured interactions in motor area for 
both lMIs and rMIs. Moreover, the statistical differences 
of local electrode parameters (i.e., clustering coefficients) 
in Fig. 4 further demonstrated the similar trend with the 
significantly decreased local parameters on electrodes F3, 
F4, P3, P4, and O1,etc observed. In fact, MI relies on the 
similar neural structures and processes of motor execution, 
which involves the contralateral BA4, PMc, parietal areas, 
and SMA (Sharma and Baron 2013). During MI, multiple 
brain regions work together in network sense to fulfill the 
needs during task, which contributes to the subjects’ perfor-
mance (Burianová et al. 2013). In our present study, after 
2-min rest, all subjects were instructed to perform the lMIs/
rMIs, thereafter, the task-specified brain regions would be 
activated and accompanied by the necessary brain reorgani-
zation (i.e., the resource reconfiguration). As depicted, the 
desynchronizing process (i.e., ERD) of cortical neurons in 
the brain will contribute to the subjects’ MI performance 
(Graimann et al. 2002). In our present study, as shown in 
Figs. 3 and 4, the underlying mechanism might be that the 
limited brain resources were reconfigured, in which the 
related linkage strengths of less important long-range edges 
decreased while the important connections among task-
related brain areas (i.e., PMc and SMA) were enhanced to 
fulfill the needs of the information processing of MI. Moreo-
ver, the decreased linkage pattern in Fig. 3 was very close to 
the default mode network (DMN) of EEG (Chen et al. 2008). 
Various studies had proved that DMN is negatively corre-
lated with task (Fransson 2006; Singh and Fawcett 2008), 
i.e., DMN is deactivated in tasks. The decreased topological 
pattern in current work may also infer the negative correla-
tion of DMN with MI tasks.

Afterwards, Fig. 5 shows that during MI, electrodes C4 
and C3 could be obviously observed with the significant 
power decrease at mu rhythm for lMIs and rMIs, respec-
tively. Being a mental process, MI requires the subjects to 
mentally imagine the motor behaviors, which leads to the 
localized power decreases (desynchronizing process) of the 
rhythmic activity (i.e., mu rhythm) (Pfurtscheller 2001) and 
further contributes to information processing of MI. In this 
work, the alerting cues (yellow bars) allowed the subjects to 
fully prepare for the MIs, and after the bars turned green, the 
subjects started to perform the imagery of bouncing a ball by 
his/her left or right hand, which consistently enhanced the 
neuronal excitability and further led to the power decreases 
of the mu rhythmic activity during MI.

Since ERD indicates the power bias from the baseline 
state, we assumed that the rCNI representing the network 
bias from the resting-state may be physiologically cor-
related with ERD. The plots in Fig. 6 indeed provided the 
corresponding evidences that those subjects with smaller 
ERDs had higher deviated rCNI from rest idle state for 
both lMIs and rMIs. As illustrated, multiple cognitive 

brain functions, such as intelligence, are closely related to 
the efficiency of information processing in the brain, and a 
more efficient brain network contributes to the better cog-
nition ability (i.e., higher intelligence) (Douw et al. 2011; 
van den Heuvel et al. 2009; Zhou et al. 2012), as well as 
the more efficient brain updates (i.e., functional connectiv-
ity) from rest idle to task states (Cole et al. 2014; Krienen 
et al. 2014; Schultz and Cole 2016). The deviated rCNI 
from rest idle state in Fig. 6, that indexes the efficiency 
of brain updates from rest idle to MI task states, dem-
onstrated the close relationships (uncorrected) with the 
desynchronizing process during MI; this further implied 
that the efficient brain reconfiguration when switching 
from rest idle to task states can promise the brain at task to 
reallocate the physiological resources to form the efficient 
networks for processing the MI related information, which 
ultimately influenced the BCI performance, i.e., the ERDs 
in current work. In other words, the more efficient brain 
reconfiguration is, the more obvious ERD will be (i.e., 
the more obvious ERD indicates the more bias from the 
baseline state). Since most of the involved subjects were 
the right-handedness, when they were required to per-
form rMIs, the much smaller inter-individual variability 
of ERDs existed compared to that in lMIs (i.e., the subjects 
could evoke the relatively stable ERDs for the right MI). 
At the same time, for the right-handed subjects, the left MI 
will involve more reconfiguration of networks compared to 
the right MI (i.e., left MI needs the more brain resources 
for information processing than right MI). Therefore, the 
relatively stronger relationships are revealed in Fig. 6 for 
the left MI. Moreover, due to some other factors like the 
relatively small subject number, no significant relation-
ships between rCNI and ERDs for rMIs were revealed in 
current study.

As MI has been regarded as an effective way widely used 
in the motor function rehabilitation, our proposed index 
(i.e., rCNI) can thereby be a potential feedback biomarker to 
establish the rehabilitation system to perform the effectively 
training for those patients with the deficit of motor function, 
and is helpful to establish the effective strategy for the train-
ing of MI-BCI users. One possible limitation might be that 
the present study mainly focused on the network reconfigu-
ration at the mu rhythm (8 ~ 13 Hz) band without consider-
ing the different network patterns in other EEG frequency 
bands, which is worthwhile to be probed in future work. 
Due to the volume conduction on scalp EEG, the performed 
network analysis in current study may introduce some arti-
ficial linkages even if the scalp EEG is sparsely recorded 
over scalp. Theoretically, the network analysis combined 
with EEG source localization may be a more meaningful 
way to alleviate the effect of volume conduction, which will 
be a promising alternative approach for the reliable network 
analysis.
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Conclusion

In the present study, our findings mainly implied that the 
subjects with efficient rest networks showed more efficient 
brain reconfiguration during MI. In other words, the effi-
cient brain reconfiguration from rest idle to task states 
guaranteed the brain to efficiently process the information 
of the required MI tasks (i.e., lMIs or rMIs), where the 
higher degree the network is reconfigured, the more obvi-
ous ERDs (larger bias from baseline) will be.
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