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Abstract
Autism spectrum disorder (ASD) involves aberrant organization and functioning of large-scale brain networks. The aim of 
this study was to examine whether the resting-state EEG microstate analysis could provide novel insights into the abnormal 
temporal and spatial properties of intrinsic brain activities in patients with ASD. To achieve this goal, EEG microstate analysis 
was conducted on the resting-state EEG datasets of 15 patients with ASD and 18 healthy controls from the Healthy Brain 
Network. The parameters (i.e., duration, occurrence rate, time coverage and topographical configuration) of four classical 
microstate classes (i.e., class A, B, C and D) were statistically tested between two groups. The results showed that: (1) the 
occurrence rate and time coverage of microstate class B in ASD group were significantly larger than those in control group; 
(2) the duration of microstate class A, the duration and time coverage of microstate class C were significantly smaller than 
those in control group; (3) the map configuration and occurrence rate differed significantly between two groups for microstate 
class D. These results suggested that EEG microstate analysis could be used to detect the deviant functions of large-scale 
cortical activities in ASD, and may provide indices that could be used in clinical researches of ASD.
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Introduction

Autism spectrum disorder (ASD) could affect the develop-
mental trajectory in several key cognitive and behavioral 
domains, such as social interaction and language abilities 
(Woolfenden et al. 2012). Recently, researchers have got 
a deep understanding of the biological mechanisms that 
underpin this disorder through neuroimaging of brain struc-
ture and of brain activity (Parellada et al. 2014). Studies 
suggested that brain abnormalities in ASD are not confined 
to any particular brain region, which has been revealed in 
numerous studies (Just et al. 2012). Abnormal brain activi-
ties more likely occur in distributed brain networks, such 
as the default mode network and language-related network 

(Jung et al. 2014; Just et al. 2004). Aberrant temporal and 
spatial properties of these brain networks are key character-
istics of ASD, which could interpret the diverse symptoms 
of ASD to some extent (Chen et al. 2017; Falahpour et al. 
2016). Instead of investigating the abnormal activities of 
specific cortical regions, studying the aberrant organization 
and functioning of large-scale neural networks should pro-
vide more insights regarding the neurobiology of ASD.

The functional magnetic resonance imaging (fMRI) 
can be used to detect the properties of large-scale cortical 
networks, due to its excellent spatial resolution. However, 
the temporal resolution of fMRI is too poor to assess the 
activation timing of these networks. The electroencepha-
logram (EEG) which has outstanding temporal resolution 
(~ 1 ms) can also be used to investigate the functions of 
large-scale cortical networks. Of all the quantitative EEG 
techniques, EEG microstate analysis is one of the whole-
brain imaging approaches that could characterize the spa-
tial organization and temporal dynamics of large-scale cor-
tical activities with high temporal resolution (Michel and 
Koenig 2018). The concept “EEG microstate” comes from 
the finding that broad-band spontaneous EEG activity at 
rest can be described by a limited number of scalp potential 
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topographies that remain quasi-stable for certain length of 
time (~ 60 to 120 ms) before rapidly changing into a new 
map configuration that remains stable again (Gao et al. 
2017). These quasi-stable periods, which occur at a rate 
compatible with the speed of human information processing, 
are called “microstates” (Van de Ville et al. 2010). Using 
modified pattern classification algorithms, four microstate 
classes (labeled as class A, B, C and D), which could explain 
about 80% of the total EEG data variance, have been con-
sistently identified in different studies with notable similar-
ity across subjects (Andreou et al. 2014; Van de Ville et al. 
2010). Britz et al. (2010) indicated that they were closely 
related with some large-scale resting-state networks obtained 
from the blood oxygen level dependent (BOLD) signal (Britz 
et al. 2010). Note that, although these two phenomena are 
closely linked, they may not reflect exactly the same kinds 
of cortical activities, which needs further investigation. Pre-
vious studies revealed that their parameters (e.g., duration, 
occurrence rate, and time coverage) were modulated by 
neuropsychiatric disorders, age, personality differences and 
cognitive manipulations (Koenig et al. 2002; Rieger et al. 
2016; Schlegel et al. 2012; Seitzman et al. 2017).

To our knowledge no study to date has attempt to inves-
tigate whether the EEG microstate analysis could provide 
biomarkers in ASD researches. The goal of the current study 
was to examine the EEG microstate properties in patients 
with ASD using the resting-state EEG datasets of the 
Healthy Brain Network (HBN), which is an ongoing initia-
tive focused on creating and sharing a biobank comprised 
of data from New York City area children and adolescents 
(Alexander et al. 2017). We hypothesized that the spatial and 
temporal properties of certain microstates (e.g., phonologi-
cal processing related class A and self-representation related 
class C) may be altered in patients with ASD.

Materials and Methods

Participants

The resting-state EEG data of 15 right-handed male patients 
with ASD (mean age = 11.6 years, SD = 4.4 years; aged from 
5 to 18 years) and 18 healthy male controls (mean age = 8.9 
years, SD = 2.4 years; aged from 5 to 15  years) were 
selected. The selection of participants is based on the fol-
lowing criteria: (1) aged between 5 and 18 years; (2) male; 
(3) right-handed according to the Edinburgh Handedness 
Inventory (Oldfield 1971); (4) they were willing to partici-
pate in the EEG recording; (5) the EEG recording was suc-
cessfully completed; (6) the EEG data have relatively high 
signal-to-noise ratio (SNR). The EEG signals were carefully 
inspected by two technicians who were familiar with EEG 
signals processing. The EEG datasets with too many bad 

channels (> 20) and large drift for most of the recording time 
(> 50%) were deemed as EEG datasets with low SNR; (7) 
the participants in the ASD group were diagnosed with ASD 
by clinical team based on computerized web-based version 
of the Schedule for Affective Disorders and Schizophrenia—
Children’s version (Kaufman et al. 1997) and Autism Diag-
nostic Observation Schedule (ADOS) (Lord et al. 2012). 
All these patients were high-function autism (i.e., IQ > 66). 
The difference between IQs of the two groups did not reach 
significant level (p > 0.05).

Participants with cognitive or behavioral impairments, 
history of certain neurological diseases, substance depend-
ence that could interfere with participation and confound 
brain-related findings have been excluded in EEG data 
recording (Alexander et al. 2017). For all the 15 patients 
with ASD, 2 patients were diagnosed with ASD for the first 
time (i.e., during the data collection of the HBN initiative). 
Participants taking stimulant medication were asked to dis-
continue their medication during the days of participation, 
as stimulants are known to have an effect on cognitive and 
behavioral testing, as well as functional brain mapping. 
None of the children in the ASD group has ever been diag-
nosed with the comorbidity of attention-deficit/hyperactivity 
disorder (ADHD).

The study was approved by the Chesapeake Institutional 
Review Board (https ://www.chesa peake irb.com/), and was 
conducted in accordance with the Declaration of Helsinki. 
Written consent were obtained from their legal guardians 
and written assent obtained from the participants.

EEG Recording

During EEG recording, the participants were asked to view 
a fixation cross in the center of computer screen, and were 
instructed to open or close their eyes at various time points.

About 5 min EEG data were recorded in a sound- and 
electrically-shielded room using a 128-channel Hydro-Cel 
Geodesic (EGI Inc., Eugene, Oregon, USA) system. EEG 
data were referenced to electrode Cz (vertex of the head). 
All electrode impedances were kept lower than 40 kΩ. Sig-
nals were amplified and digitized using a sampling rate of 
500 Hz, and band-pass filtered between 0.1 and 100 Hz dur-
ing recording.

EEG Data Preprocessing

EEG data were pre-processed using EEGLAB (Delorme 
and Makeig 2004). The EEG data preprocessing consisted 
of the following steps: (1) electrodes located on the neck/
face were removed; (2) data portions with large drift were 
removed; (3) channels with bad activation were interpolated 
using a spherical spline method; (4) continuous EEG data 
were band-pass filtered between 0.5 and 80 Hz; (5) a notch 
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filter was used to eliminate 60 Hz line noise; (6) data por-
tions contaminated by eye movements and blinks, electro-
myography, electrocardiography or any non-physiological 
artifacts were corrected using independent component analy-
sis (ICA); (7) the continuous EEG data were remontaged 
against average reference, and segmented into 2000 ms 
epochs; (8) EEG epochs with amplitude values exceeding 
± 80 µV at any electrode were rejected.

Note that observing the activations, scalp map and power 
spectrum of each independent component (IC), we could 
find many artifacts-related ICs do not have any physiologi-
cal origin. One kind of “non-physiological artifacts” which 
could be found in many datasets has the following char-
acters: (1) during certain time segments we could observe 
large drift, whereas the amplitude of this component is very 
small over other time segments; (2) observing the scalp map 
of this IC, we could find that this IC is only closely associ-
ated with one certain channel.

For the ASD group, the numbers of eyes open epochs and 
eyes closed epochs (mean ± SD) are 40.4 ± 8 and 47.9 ± 15.3 
respectively. For the TD group, the numbers of eyes open 
epochs and eyes closed epochs (mean ± SD) are 41.9 ± 8.8 
and 43.2 ± 13.2 respectively. The number of remaining 
epochs (either eyes open epochs or eyes closed epochs) did 
not differ significantly between two groups (ps > 0.05).

EEG Microstate Analysis

Before microstate analysis, the remained EEG epochs were 
digitally band-pass filtered between 2 and 20 Hz as sug-
gested by previous studies (Lehmann et al. 2005; Schlegel 
et al. 2012). The microstate analysis was conducted on the 
whole EEG signals composed by mixed eye-open and eye-
closed time periods.

Here, the microstate analyses were based on the Topo-
graphic Atomize & Agglomerate Hierarchical Clustering 
(T-AAHC) algorithm. More information about this algo-
rithm can be found in other literatures (Brunet et al. 2010; 
Santarnecchi et al. 2017). Many approaches exist in the spa-
tial analysis of EEG/ERP signals. Apart from the T-AAHC 
method, the modified k-means clustering analysis, proposed 
by Pascual-Marqui et al. (1995), is a classical method that 
has been used in many studies (Pascual-Marqui et al. 1995). 
However, since this k-means clustering method is based on 
the random selection of topographies from the dataset being 
analyzed as seed clusters, its results can in principle vary 
from one run to the next, even though the same dataset is 
being analyzed. This can be solved through a high number 
of randomizations, which will drastically increase the com-
putational time. However, the T-AAHC which operates in a 
bottom-up manner wherein the number of clusters is initially 
large and progressively diminishes could drastically reduce 

the computational efforts (Brunet et al. 2010). For these rea-
sons, the T-AAHC algorithm is used in current study.

For the current datasets, the microstate analyses consist 
of the following steps. Firstly, the topographies of pre-
possessed EEG data of each subject are submitted to the 
T-AAHC algorithm, which could identify clusters with 
similar topographical configurations. Here, the polarity of 
each map is disregarded. Each of the resulting clusters rep-
resents one microstate class. Secondly, we used the criteria 
implemented in Cartool (i.e., Davies & Bouldin, Gamma, 
Silhouette, Dunn Robust, Point-Biserial, Krzanowski-Lai 
Index, and Cross-Validation) to determine the optimal 
number of clusters in the individual level and group level. 
The Cartool (https ://sites .googl e.com/site/carto olcom 
munit y/) is a free software which was developed by the 
Functional Brain Mapping Laboratory in University of 
Geneva and could be used to perform EEG/ERP micro-
state analysis (Brunet et al. 2010). The order of microstate 
classes was determined by the spatial correlation between 
the topographical maps of group-level microstate classes. 
Finally, each original map was assigned to one of the EEG 
microstates using maximum spatial correlation coeffi-
cient between the tested original map and the group-level 
microstate maps as a criterion. As a result, each epoch was 
re-expressed as an alternating sequence of microstates. 
During this procedure, a temporal smoothing (window 
half-size 30 ms), Besag factor of 10 and a rejection of 
small time frames (when < 30 ms) was applied (Murray 
et al. 2008). The microstate sequence of a representative 
epoch is shown in Fig. 1.

Microstate Parameters Computation

For the microstates of each participant, the following three 
parameters were computed: (1) the duration of a microstate, 
which was calculated as the time coverage (in ms) during 
which all successive original maps were labeled as the same 
microstate class, starting and ending halfway between the 
last original map of the preceding microstate and the first 
original map of the following microstate, respectively; (2) 
the occurrence rate of a microstate defined as the number 
of occurrences of a given microstate class per second; (3) 
the time coverage of a microstate computed as the percent-
age of occupied total analysis time for a given microstate 
class (Andreou et al. 2014; Khanna et al. 2014). These three 
parameters could assess the mean duration, occurrence fre-
quency per second and time coverage of certain underlying 
large-scale brain networks during resting-state respectively.

Since microstate parameters were evaluated for each 
epoch separately, the duration of the microstate at the begin-
ning and the end of an epoch was truncated on average of 
50%. Corrected duration was computed using the following 
equation (Schlegel et al. 2012):

https://sites.google.com/site/cartoolcommunity/
https://sites.google.com/site/cartoolcommunity/
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where durationcorrected and durationoriginal are the corrected 
and originally computed duration of a microstate class 
respectively, occurrence is the number of occurrences of 
this microstate class observed, and coverage is the fraction 
of time covered by this microstate.

Statistical Analysis

Separate two-way analyses of covariance (ANCOVAs) 
were performed for the three microstate parameters. Each 
ANCOVA contained one between-subject factor for group 
(ASD group and control group), one within-subject fac-
tor for microstate classes, and one covariate for age of two 
groups, since previous study suggested that these parameters 
may be modulated by age (Koenig et al. 2002). When the 
main effects or interaction were significant, post-hoc t tests 
with age as covariate were conducted. In order to minimize 
the risk of type I error, false discovery rate (FDR) correc-
tion was applied. The threshold for significance was p < 0.05 
for the ANCOVAs and the alpha value for FDR procedures 
was 0.05.

Topographical randomization test was used to test 
whether the spatial configuration of each microstate class 
was significantly altered in ASD group (Koenig et al. 1999). 
More details about this test can be seen in previous litera-
tures (Gao et al. 2017).

Durationcorrected =
durationoriginal × (occurrence + coverage)

occurence

In order to further valid the results of topographical ran-
domization tests, the source analysis of each microstate 
class was conducted separately. The source activities of 
each microstate class and each participant were estimated 
using the standardized low-resolution brain electromagnetic 
tomography (sLORETA), which could calculate the intrac-
erebral electrical source activities from the scalp electrical 
potentials measured at the electrode sites (Pascual-Marqui 
2002). Through the public available LORETA software 
(http://www.uzh.ch/keyin st/loret a.htm), the neuronal activi-
ties in current density (A/m2) of 6239 cortical gray mat-
ter voxels with 5 mm spatial resolution using the MNI152 
template were obtained for each microstate class and each 
participant (Hata et al. 2016). After the source activities of 
each microstate class and each participant were estimated, 
voxel-by-voxel permutation based t tests with multiple com-
parisons correction were conducted to assess the group dif-
ferences (ASD group vs. control group) regarding current 
density for each microstate class separately.

Results

We found that in the individual level, the number of optimal 
clusters varies from 4 to 7 (mean ± SD: 4.93 ± 0.96) for the 
ASD group, whereas the number of optimal clusters varies 
from 4 to 7 (mean ± SD: 5.33 ± 1.46) for the control group. 
In the group level, the optimal cluster number is 4 for both 
groups. In order to conduct further statistical tests on micro-
state parameters, microstate class number of each subject 
was determined to be 4. Here, the four microstate classes 

Fig. 1  The microstate sequence of a representative 2000  ms epoch. 
Fitting the four group-level microstate maps to the original maps 
revealed that each microstate class appeared repeatedly and domi-

nated during certain time segments, the ‘microstates’. These micro-
states are color-coded in the curve of GFP

http://www.uzh.ch/keyinst/loreta.htm
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accounted for a mean of 78.60% (SD = 2.67%) and 78.11% 
(SD = 3.08%) of the data variance across ASD and control 
group, respectively. The topographies of the four micro-
state classes of ASD group and control group, which highly 
resemble those obtained in previous researches, are dis-
played in Fig. 2 (Britz et al. 2014; Koenig et al. 2002). Thus 
they were labeled as microstate class A–D in accordance 
with these studies. Microstate class A, B, C and D exhibit 
left–right orientation, right–left orientation, anterior–poste-
rior orientation and fronto–central maximum respectively. 
The topographical randomization tests which could assess 
whether the spatial distribution of underlying sources was 
altered showed that the map configuration differed sig-
nificantly between the two groups for microstate class D 
(p < 0.001). Moreover, significant differences regarding the 
source activities between ASD and healthy controls were 
only observed for microstate class D (extreme p = 0.003), 
with patients exhibiting significantly higher activity than 
controls in right middle frontal gyrus and right superior 
frontal gyrus (see Table 1).

For microstate occurrence rate, the ANCOVA found 
that (1) the main effect of microstate class was not sig-
nificant, F(3, 90) = 4.02, p > 0.05, �2

p
= 0.12; (2) the main 

effect of group was not significant, F(1, 30) = 1.70, p > 0.05, 
�
2
p
= 0.05; (3) the interaction effect was significant, F(3, 

90) = 7.67, p < 0.001, �2
p
= 0.20. Post-hoc tests found that 

class B and D were significantly more frequent in ASD 
group compared to control group after FDR correction 
(Table 2).

The ANCOVA on microstate duration yielded a signifi-
cant interaction effect, F(3, 90) = 6.10, p < 0.01, �2

p
= 0.17. 

Post-hoc tests revealed that the durations of class A and class 

C in control group were significantly longer than those in 
ASD group (Table 2). There were no significant main effects 
(Fs < 2, p > 0.05).

For microstate time coverage, the main effect of micro-
state class was not significant (F(3, 90) = 2.63, p > 0.05, 
�
2
p
= 0.08 ). The main effect of group was significant (F(1, 

30) = 4.21, p < 0.05, �2
p
= 0.12 ). The interaction between 

these two factors was significant (F(3, 90) = 7.16, p < 0.001, 
�
2
p
= 0.19 ). Follow-up t tests indicated significant differences 

in the time coverage of class B and C for control group com-
pared to ASD group after FDR correction (Table 2).

Fig. 2  The group-level maps of the four microstate classes (a–d) in the ASD group (n = 15) and control group (n = 18)

Table 1  The MNI coordinates of voxels with significant group effect 
(ASD group > control group) for microstate class D and the cortical 
structures they belong to

x y z Brod-
mann 
area

Lobe Structure

35 30 35 9 Frontal lobe Middle frontal gyrus
35 35 35 9 Frontal lobe Superior frontal gyrus
40 30 35 9 Frontal lobe Middle frontal gyrus
40 35 35 9 Frontal lobe Superior frontal gyrus
45 35 35 9 Frontal lobe Middle frontal gyrus
35 30 40 9 Frontal lobe Middle frontal gyrus
35 35 40 9 Frontal lobe Middle frontal gyrus
40 30 40 9 Frontal lobe Middle frontal gyrus
40 35 40 9 Frontal lobe Superior frontal gyrus
45 30 40 9 Frontal lobe Middle frontal gyrus
40 30 45 9 Frontal lobe Middle frontal gyrus
35 25 35 9 Frontal lobe Middle frontal gyrus
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Discussion

The present study aimed to investigate resting-state EEG 
microstates in patients with ASD compared to healthy con-
trols, which may provide some insights into the aberrant 
intrinsic activities in autistic brain. Consistent with our 
hypothesis, the spatial and temporal properties of certain 
microstate classes were found to be altered in our patient 
sample. Although this is only a preliminary study, it clearly 
indicates that the resting-state EEG microstate analysis may 
provide indices that can be used in the ASD researches.

The Functional Significance of EEG Microstate Class

The functional significance of these microstate classes have 
been explored for decades, and some consensuses have been 
reached (Britz et al. 2010; Khanna et al. 2014; Michel and 
Koenig 2017). Microstate class A was found correlated with 
negative BOLD activations in bilateral superior and middle 
temporal gyri which were crucial in phonological process-
ing (Britz et al. 2010). Microstate class B was suggested 
to reflect the visual resting state networks and involved in 
imagery thoughts (Britz et al. 2010; Lehmann et al. 1998). 
Although the physiological basis of microstate class C is 
still highly debated, this microstate class was believed to be 
associated with the anterior default mode network, which 
could integrate interoceptive information with emotional 
salience in order to form a subjective representation of the 
own body (Michel and Koenig 2018; Taylor et al. 2009). The 
last microstate class (class D) is associated with activities 

in lateralized dorsal and ventral areas of frontal and pari-
etal cortex, which were part of the dorsal attention network 
(Britz et al. 2010).

Altered Temporal and Spatial Properties in Patients 
with ASD

Firstly, we found that the durations of phonological process-
ing related class A and self-representation related class C in 
ASD group were significantly shorter than those in control 
group. One of the key characteristics in ASD is impairments 
in social communicative development (Amaral et al. 2008). 
Moreover, impairments in phonological processing ability 
and atypical neural representation of the self could result in 
the communication deficits in patients with ASD and are 
keys to understanding the nature of ASD (Anderson et al. 
2010; Eyler et al. 2012). The current study highlighted that 
these impairments may be caused by the fact that the pho-
nological processing and self-representation related cogni-
tive processes might terminate prematurely in patients with 
ASD, thus these patients do not have enough time so as to 
adequately process related external or internal information.

Secondly, we found that the occurrence rate and time cov-
erage of the visual network related class B in ASD group 
were significantly larger than those in control group. A com-
monly observed associated feature of the autistic phenotype 
is atypical perceptual processing ability, often manifested 
as enhanced perceptual performance (Samson et al. 2012). 
To account for these findings, the enhanced perceptual 
functioning model (EPFM) proposes that enhanced autistic 

Table 2  Microstate parameters 
of the patients with ASD 
(n = 15) and healthy controls 
(n = 18)

Bold values indicate statistical significance after FDR control

Microstate classes

A B C D

Mean SD Mean SD Mean SD Mean SD

Occurrence/s
 ASD 3.61 0.54 3.74 0.36 3.46 0.50 3.99 0.55
 Control 3.56 0.49 3.19 0.48 3.50 0.44 3.55 0.35
 t (df = 31) − 0.162 − 3.538 0.622 − 2.633
 p 0.873 0.001 0.539 0.013

Duration (ms)
 ASD 71.85 7.64 73.76 9.39 71.75 9.17 76.69 8.23
 Control 79.57 6.25 74.20 7.26 82.01 8.20 79.93 11.33
 t (df = 31) 2.960 0.017 3.295 0.652
 p 0.006 0.986 0.002 0.519

Coverage (%)
 ASD 23.86 3.12 25.33 3.46 22.89 3.27 27.91 3.48
 Control 25.84 3.27 21.91 3.81 26.21 4.06 26.04 4.75
 t (df = 31) 1.708 − 2.688 2.821 − 1.403
 p 0.098 0.012 0.008 0.171
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performance in basic perceptual tasks results from stronger 
engagement of sensory processing mechanisms, a situation 
that may facilitate an atypically prominent role for percep-
tual mechanisms in supporting cognition (Mottron et al. 
2006). We found that this visual processing related network 
occurred more frequently and occupied more time in patients 
with ASD, even during task-free resting state. Thus, our 
findings could be seen as evidence in support of the EPFM.

Thirdly, as for microstate class D, the occurrence rate 
in ASD group was significantly larger than that in control 
group. Furthermore, the map configuration of microstate 
class D in ASD group was significantly different from that 
in control group, which suggested that the underlying brain 
network of class D of ASD group was different from that 
of controls. Further source analysis revealed that the areas 
exhibiting significant group differences (ASD group > con-
trol group) for microstate class D located in right frontal 
lobe, especially right middle frontal gyrus. This region is 
considered to be part of the ventral attention network (VAN), 
and is involved in different aspects of bottom-up attention 
(e.g., reorienting to unexpected stimuli) (Shulman et al. 
2010). This is consistent with the functional significance 
of microstate class D, and previous studies which revealed 
that functional abnormality in the frontal regions was central 
in autism and its abnormality could contribute to the dys-
function in individuals’ behavior development (Li and Yu 
2016; Shalom 2009). Thus, such a result confirmed again the 
importance of the right frontal regions in ASD.

With respect to the results of the current study, at least 
three points need to be mentioned. Firstly, most previous 
studies in the field of EEG microstate analysis used eye-
closed resting-state EEG signals. However, in the current 
study, the EEG signals have mixed eye-open and eye-closed 
time periods. It has been well known that many EEG meas-
ures (including the microstate temporal parameters) could be 
significantly altered in eye-open condition, compared with 
those in eye-closed condition. Secondly, the mean duration 
and time coverage of microstate class C of control group 
were larger than those of the other microstate classes. The 
pattern of control group is similar to that reported in previ-
ous studies using EEG datasets of participants in childhood 
and adolescence (Tomescu et al. 2018). Note that, this trend 
is absent in ASD group. This puzzling result may be caused 
by the following reasons: (1) the EEG signals being inves-
tigated had mixed eye-open and eye-closed time periods; 
(2) the neuropathological condition (i.e., ASD) may signifi-
cantly influence the main effects of the temporal parameters 
of four microstate classes. Thirdly, the ages of participants in 
control group were much younger than those of participants 
in ASD group. Previous studies revealed that the temporal 
parameters could be significantly influenced by the age of 
participants, e.g., prolong duration of microstate class C 
from childhood to adolescence (Tomescu et al. 2018). Note 

that, the mean age of ASD participants was larger than that 
of controls, and the mean duration of microstate class C was 
shorter in ASDs, which suggested that the results observed 
here should not be produced by the age difference between 
two groups, and may indicate some kinds of developmental 
lag which have been proved by dozens of studies (Schover 
and Newsom 1976; Williams et al. 2013).

Comparison with Other Diseases

Ever since the development of EEG microstate technique, 
it has been applied to numerous studies, which investigated 
the alterations of EEG microstate parameters in patients with 
neuropsychiatric diseases (Andreou et al. 2014; Gao et al. 
2017; Michel and Koenig 2018; Rieger et al. 2016). Perhaps, 
the most frequently investigated disorder using this method 
is schizophrenia. A meta-analysis on studies of recent years 
confirmed that the temporal parameters of microstate class 
C and D are closely associated with schizophrenia, i.e., 
patients with schizophrenia exhibited significantly larger 
occurrence rate of microstate class C and shorter duration 
of microstate class D (Rieger et al. 2016). Moreover, the 
altered microstate parameters can be used to detect the vul-
nerability of patients at risk for schizophrenia and the effects 
of treatment (Kikuchi et al. 2007; Tomescu et al. 2015). In 
the current study, we found that in ASD group, the duration 
of class C was significantly shorter and the occurrence rate 
of class D was significantly larger. These results suggest 
that although both diseases (i.e., schizophrenia and ASD) 
could modulate the temporal parameters of microstate class 
C and D, they may influence distinct aspects of underlying 
cortical networks.

In this study, altered temporal parameters were also 
observed for microstate class A and class B. Investigation 
on some other diseases (e.g., multiple sclerosis, narcolepsy 
and spastic diplegia) also revealed significantly class A 
and B temporal parameters (Drissi et al. 2016; Gao et al. 
2017; Gschwind et al. 2016), which indicated that lower-
order sensory networks were affected in these disorders. It’s 
interesting that both lower-order sensory networks (reflected 
by microstate class A and B) and higher-level cognitive net-
works (reflected by microstate class C and D) were modu-
lated by ASD.

Limitations of the Current Study

Although the current study suggested that resting-state EEG 
microstate analysis could provide important measures that 
could be used in ASD researches, it at least has the follow-
ing two limitations. As has been illustrated above, the first 
limitation is that the EEG signals being investigated have 
mixed eye-open and eye-closed time periods. The microstate 
parameters may be significantly altered in eye-open condition, 
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compared with those in eye-closed condition. We did not con-
duct microstate analysis on eyes open epochs and eyes closed 
epochs respectively, since this will result in noisy topographi-
cal maps of microstate classes with low SNR which may be 
caused by the relatively small number of both kinds of epochs. 
We believed that the paradigm used in current study (i.e., rest-
ing state EEG recording with alternating eyes open and eyes 
closed periods) was more convenient for ASD researches, 
since those patients with ASD were unwilling to keep eyes 
open or eyes closed for a relatively long time (e.g., 5 min). 
For these practical reasons, we decided to conduct microstate 
analysis on both kinds of epochs. The second limitation of the 
current study is that the age range (i.e., from 5 to 18 years old) 
is relatively large. In the future, we should enlarge the sam-
ple size, and investigate whether some demographic variables 
(e.g., age, sex and comorbidities) could modulate the spatial 
and temporal microstate parameters in patient with ASD.

Conclusions

Here, the aberrant intrinsic brain activity in patients with ASD 
was investigated using parameters of resting-state microstate 
classes, which provided new insights into the neuropathologi-
cal mechanisms in ASD. The occurrence rate and time cover-
age of visual network related microstate class B, the dura-
tion of phonological processing related microstate class A, 
the duration and time coverage of self-representation related 
microstate class C, and the map configuration and occurrence 
rate of the dorsal attention network related microstate class D 
were significantly altered in ASD group. This study clearly 
indicated that the resting-state EEG microstate analysis may 
provide biomarkers that can be used in clinical researches of 
ASD.
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