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Abstract
Accurate source localization of electroencephalographic (EEG) signals requires detailed information about the geometry and 
physical properties of head tissues. Indeed, these strongly influence the propagation of neural activity from the brain to the 
sensors. Finite difference methods (FDMs) are head modelling approaches relying on volumetric data information, which can 
be directly obtained using magnetic resonance (MR) imaging. The specific goal of this study is to develop a computation-
ally efficient FDM solution that can flexibly integrate voxel-wise conductivity and anisotropy information. Given the high 
computational complexity of FDMs, we pay particular attention to attain a very low numerical error, as evaluated using exact 
analytical solutions for spherical volume conductor models. We then demonstrate the computational efficiency of our FDM 
numerical solver, by comparing it with alternative solutions. Finally, we apply the developed head modelling tool to high-
resolution MR images from a real experimental subject, to demonstrate the potential added value of incorporating detailed 
voxel-wise conductivity and anisotropy information. Our results clearly show that the developed FDM can contribute to a 
more precise head modelling, and therefore to a more reliable use of EEG as a brain imaging tool.
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Introduction

New developments in brain imaging technology have ena-
bled substantial advances in our understanding of human 
brain function. In the last years, one of the brain imaging 
techniques that has attracted increasing interest in the neu-
roscientific community is electroencephalography (EEG). 
This technique permits studying neural dynamics with high 
temporal resolution, using electric potentials measured over 

the scalp. EEG has been widely used for basic and clinical 
neuroscience research. In most EEG studies, the analysis 
is conducted on task-induced or spontaneous signal modu-
lations at the sensor level. In some studies, however, it is 
necessary to reconstruct active sources in the brain from 
EEG signals (Michel and Murray 2012). This “source locali-
zation” or electrical source imaging (ESI) step requires the 
integration of detailed information about the geometry and 
physical properties of the head tissues that are between neu-
ral sources and EEG sensors (Grech et al. 2008; Castaño-
Candamil et al. 2015). In particular, ESI algorithms require 
as input a “leadfield” matrix expressing the relationship 
between dipolar currents in the brain and the corresponding 
electric potentials measured over the scalp (Sarvas 1987; 
Tadel et al. 2011; Salmelin and Baillet 2009; Vatta et al. 
2010; Akalin Acar et al. 2016; Vorwerk et al. 2014). The 
leadfield matrix can be obtained by solving the quasi-static 
approximation of Maxwell’s equations for any given current 
density distribution (Clark and Plonsey 1968; Sarvas 1987). 
Simplified head models using spherical geometries were 
initially used. In this case, solutions for Maxwell’s equa-
tions can be calculated both numerically and analytically 
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(Herrendorf et al. 2000; DeMunck 1988; Irimia and Brad-
shaw 2005).

Magnetic resonance (MR) and computed tomography 
(CT) are noninvasive imaging techniques that can provide 
detailed structural information. This can be used to build a 
more detailed and anatomically realistic head models. In 
particular, individual MR and CT images can be segmented 
into different tissue types, such as white and gray matter 
(WM/GM), cerebrospinal fluid (CSF), compact and spongy 
bone, and skin, among others. Recently, diffusion-weighted 
and diffusion-tensor imaging (DWI/DTI) has also been 
used to determine the anisotropy profile of brain structures 
based on the movement of water molecules (Le Bihan and 
Johansen-Berg 2012). DWI/DTI is particularly important for 
modelling anisotropic properties in the WM (Bashar et al. 
2008). Whereas anisotropy in the head can be estimated 
across voxels by combining information from DWI/DTI, 
it is still an open issue how to extract local conductivity 
information for head tissues. A commonly used approach 
is to assign specific conductivity values to each segmented 
tissue (Michel and Murray 2012; Liu et al. 2017). It is worth 
noting that the accuracy of EEG source localization strongly 
relies on the precision of the conductivity values used for the 
different tissues in the head model (Irimia et al. 2013a, b).

Notably, the calculation of the leadfield matrix for realis-
tic free-form head volumes is only possible by numerically 
solving Maxwell’s equations. To this end, different computa-
tional approaches have been proposed. The most commonly 
used are the boundary element methods (BEMs), primarily 
due to their low computational requirements. In BEMs, head 
compartments need to be nested and to have smooth bounda-
ries. Note that conventional BEM head models are built with 
brain, skull, and scalp as major tissues, without distinguish-
ing between GM and WM compartments. Additionally, the 
CSF is often not included, and the propagation of electric 
currents is assumed to be isotropic within any head tissue. 
These approximations limit the precision of head modelling 
using BEMs (Haueisen et al. 1997; Vorwerk et al. 2014).

For more accurate head modelling, it may be more 
appropriate to use other approaches that rely on realistically 
shaped head tissue geometry, as well as anisotropy. These 
techniques can be divided into three main categories: finite 
element methods (FEMs) (Schimpf et al. 2002; Wolters et al. 
2006), finite difference methods (FDMs) (Hallez et al. 2005; 
Turovets et al. 2014) and finite volume methods (FVMs) 
(Cook and Koles 2006). FEMs are based on volumetric 
meshes (e.g., using tetrahedra), which can have arbitrary 
dimension. Their precision and computational demands can 
be adjusted by varying the mesh resolution (Vorwerk et al. 
2017; Ziegler et al. 2014). In contrast to FEMs, FDMs and 
FVMs partition the head volume in a homogeneous voxel 
grid. Thus, a typical element in the FDM/FVM grid is sur-
rounded by other elements that in general have anisotropic 

conductivity properties. According to the method of the fic-
titious domain (FD) (Turovets et al. 2014), extremely low 
conductivity values are assigned to regions outside the head, 
modelling the surrounding air, such that appropriate bound-
ary conditions are implicitly set for the current flow. Nota-
bly, the number of unknowns in FEMs, FDMs and FVMs 
is extremely high, leading to large but sparse linear equa-
tion systems. As such, iterative solvers need to be used to 
solve Maxwell’s equations. Most popular iterative solvers 
include the successive over-relaxation (SOR), conjugate gra-
dient method, algebraic multigrid, and biconjugate gradient 
(BiCG) methods (Hallez et al. 2005).

A fundamental feature of FDMs is its straightforward 
integration with structural imaging data (CT/MR and DWI/
DTI). Using FDMs, it would be possible to model anisotropy 
and across-voxel differences in conductivity without rely-
ing on any meshing step. However, no such FDM solution 
is currently available. In this study, our aim is to develop a 
computationally efficient FDM that can flexibly integrate 
across-voxel conductivity and anisotropy information.

Methods

Theory and Method Description

EEG Forward Problem

The EEG forward problem entails the calculation of the 
electric potentials � ∈ ℝ on the scalp surface ΓΩ ∈ ℝ

2 for 
each single source position within the head volume Ω ∈ ℝ

3 
(Panizo et al. 1977). Since the EEG spectrum largely con-
tains frequencies below 100 Hz, the quasi-static approxima-
tion of Maxwell’s equations is used. Mathematically, the 
solution of the forward problem requires the solution of the 
Poisson equation:

where J ∈ ℝ is the electric current density in the position 
(x�f , y�f , z�f ) ∈ Ω , (x, y, z) ∈ Ω are voxel positions within the 

head, and �(x, y, z) ∈ ℝ
3×3 is the local conductivity in a inho-

mogeneous anisotropic medium.
The solution of Eq. (1) can be found by imposing bound-

ary conditions between compartments having different con-
ductivity (Saleheen and Ng 1997). Broadly speaking, two 
conditions hold at the interface between two compartments. 
The first one relates to the inability to accumulate charge at 
the interface Γ�1,�2

 , which implies that all the charge leav-
ing one compartment must enter the second compartment 
(Neumann statement):

(1)

∇ ⋅ (�(x, y, z)∇�(x, y, z)) = −∇ ⋅ J(x�f , y�f , z�f ) on (x, y, z) ∈ Ω

(2)(�1∇�1) ⋅ ên = (�2∇�2) ⋅ ên
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where �1 and �2 are the conductivity of the first and second 
compartment, respectively, and ên is a vector normal to the 
interface surface Γ . As a special case, no current can flow 
outside the head volume due to the very low conductivity 
of the air. Therefore, the current density at the head surface 
boundary (scalp) ΓΩ becomes:

The second condition is only valid for interfaces that are 
not connected with air. By crossing an interface Γ�1,�2

 the 
potential cannot have discontinuities (Dirichlet boundary 
condition):

Anisotropic FDM (AFDM)

Considering an anisotropic symmetric conductivity tensor 
� ∈ ℝ

3×3 , Eq. (1) can be rewritten as follows (Sarvas 1987):

where �ij are the elements of the conductivity tensor � , and 
�f (x�f , y�f , z�f ) is a current dipole in the head volume Ω . The 

current source density in Eq. (1) can be defined as a func-
tion �f (x�f , y�f , z�f ) , representing a current dipole in the posi-

tion (x�f , y�f , z�f ) ∈ Ω (Hallez et al. 2007). For the solution of 

Poisson equation, we use the approach introduced in Hallez 
et al. (2005) and named finite difference method in aniso-
tropic media (AFDM). Following the AFDM approach, 
Eq. (5) is discretized in a 18-point stencil with 8 voxels 
sharing the same vertex �j

0
 . This choice leads to a linear 

equation for the vertex j in the stencil Sj around �j

0
 (see 

Fig. 1) as follows:

where �j

i
∈ ℝ is the scalar-valued potential at the i-th 

neighbour voxel of the j-th node in the stencil Sj . �f ∈ ℝ 

(3)
(�∇�) ⋅ ên

||ΓΩ
= 0

(4)�1 = �2
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is the dipole current magnitude, and �j

i
∈ ℝ are the FDM 

coefficients (Saleheen and Ng 1998), which depend on the 
conductivity tensor � and the internode distance h ∈ ℝ 
(Fig. 1). Additionally, a transition layer is included, which 
removes the singularities in the spatial derivatives between 
two compartments with different conductivity (Saleheen and 
Ng 1998). This layer acts as a buffer that allows a smooth 
potential transition from one medium with conductivity �1 
to another with conductivity �2.

In all cases under consideration, the finite difference 
equations for the stencil (Fig. 1) can be expressed in a linear 
equation system as follows:

where � ∈ ℝ
N is a vector with N  unknown potentials, 

A ∈ ℝ
N×N is a non-singular coefficient matrix and �f ∈ ℝ

N 
is a right hand side vector representing single dipole sources. 
Thus, the coefficient matrix A is square, symmetrical and 
sparse, with only 19 non zero entries per row.

Coefficient Matrix Formulation

A stationary solver with SOR is typically used in FDMs 
(Hallez et al. 2005). With SOR, the information about the 
position of the 19 non-zero coefficients in the matrix A is 
not used, because the coefficients in each row are summed. 
However, the matrix A must be properly defined to use more 
efficient (non-stationary) solvers for the linear system. To 
address this problem, it has been suggested to define a 
FD as a full cubic or cuboidal space, in which the voxels 
around the head have very low conductivity (Turovets et al. 
2008). The presence of these additional voxels increases 

(7)A� = �f

Fig. 1  AFDM stencil structure. The 18-point stencil for the AFDM 
Saleheen formulation is shown, in which each node is surrounded by 
eight voxels with anisotropic, homogeneous conductivity properties
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the computational complexity and may also reduce the reli-
ability of the estimated leadfield matrix due to propagation 
errors in the linear equation system. In this study, we pro-
pose an approach for removing the voxels around the head 
from the linear equation system, and for building a coeffi-
cient matrix that only contains non-zero potentials (Fig. 2). 
To this end, an 18-node-three data structure is built, map-
ping the three-dimensional node positions in the coefficient 
matrix.

The volume conductor Ω is discretized in regular 
(sx, sy, sz) ∈ ℤ partitions in x , y and z , directions, with resolu-
tion hx , hy and hz respectively. In the FD, the coefficients 
cl,m ∈ ℝ in Eq. (6) are regularly ordered in a rectangular box, 
so that it is possible to write cl,m = −

∑
i∈Sj

�l
m

 , ∀l = m ; 
cl,m = �l

m
 , ∀(l ≠ m) ∈ Sl and cl,m = 0 , ∀l,m ∉ Sl where, 

l,m = 0, 1, 2,⋯ ,N − 1 ∈ ℤ . In the original domain (OD), 
we define the non-zero coefficients clN ,mN

 , ∀lr(xri , y
r
i
, zr

i
) ≠ 0 

as follows:

with lr,mr = 0, 1, 2,… ,NZ − 1 , where NZ is the number on 
non-zero valued elements.

In both cases under consideration, every row corresponds 
to a neighbour Sj , and each column is m-th position of the 
linear expansion over the spatial positions (xj

i
, y

j

i
, z

j

i
) for the 

coefficient matrix A.

(8)clr ,mr
=

⎧
⎪⎪⎨⎪⎪⎩

−
18∑

mr∈Sr

�
lr
mr
, ∀lr = mr

�
lr
mr
, ∀(lr ≠ mr) ∈ Sr

0 ∀lr = 0

Numerical Solver and Preconditioning

Several iterative methods have been developed for solving 
linear equation systems. Yet, the choice of the solver 
depends mainly on two considerations: the convergence 
speed to achieve a given relative minimum residual and the 
computational complexity of each iteration. Notably, the 
numerical properties of the coefficient matrix highly influ-
ence the convergence rate of any solver. Indeed, the more 
ill-conditioned the system matrix, the slower the conver-
gence of the gradient descent method. The condition number 
of A , defined as C = ‖A‖���A

−1��� , generally measures the sen-

sitivity of a linear equation system solution to variations in 
the input data. As such, it can be used to estimate the con-
vergence of an iterative solver: the larger the conditional 
number, the slower the solver is expected to reach a desired 
minimal residual. In this regard, we used preconditioning to 
reduce the conditional number C ∈ ℝ , selecting an adequate 
non-singular matrix M such that the condition number of the 
product M−1

A remains low. Therefore, Eq. (7) can be rewrit-
ten as:

where M ∈ ℝ
N×N is the so-called preconditioner for the 

system matrix A ∈ ℝ
N×N , � ∈ ℝ

N is the vector of poten-
tials, and �f ∈ ℝ

N is the righthand side of the linear equation 
system (excitation). To properly balance convergence speed 
and estimation residuals in our proposed FDM approach, we 
combined a BiCG-stabilized solver with an incomplete LU 
(iLU) preconditioner (Cuartas et al. 2015).

(9)M
−1
A� = M

−1�f

Fig. 2  Original-domain (non-
zero) versus fictitious-domain. 
In the original domain, the vox-
els outside the head (white dots) 
are constrained to have zero 
potential and are not included in 
the FDM solution. The poten-
tials for the FD are regularly 
distributed in a domain span-
ning the whole MR image
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Reciprocity for the AFDM Method

The solution of the forward problem, if the same volumetric 
space defined by MRI data is used, may even have millions of 
unknowns. However, distributed source localization using EEG 
is usually performed at lower spatial resolution, such that the 
source space is modelled using a few thousand dipoles (Grech 
et al. 2008). Theoretically speaking, the forward problem 
should be solved for each of these dipoles. Importantly, it is pos-
sible to perform calculations for all pairs of electrodes over the 
scalp rather than for all dipole positions by using the reciproc-
ity theorem (Vanrumste et al. 2001). This theorem states that:

where UAB is the so-called leadpair potential between two 
scalp electrodes ( EA and EB ) produced for a single dipole 
Irx in the brain. In turn, IAB is the current flowing between 
the same pair of scalp electrodes, produced for the potential 
Vrx in the brain. The reciprocity theorem is widely used in 
the EEG forward methods, and also in our FDM. This per-
mits indeed to reduce the number of forward calculations to 
N − 1 , where N is the number of electrodes. Since our FDM 
also incorporates anisotropy information, we will refer to it 
as anisotropic finite difference reciprocity method-non zero 
(AFDRM-NZ).

Method Validation

Spherical Model

For the numerical validation of AFDRM-NZ, we gener-
ated a spherical head model with six concentric layers 
with the following radii (measured in [mm]): skin = 0.092, 
skull = 0.084, CSF = 0.076, brain gray matter (GM) = 0.068, 
brain white matter (WM) = 0.050, and thalamic inner 

(10)UABIAB = VrxIrx

sphere (TL) = 0.020 (Fig. 3). We fixed the conductivity 
values [S/m] based on the study by (Vorwerk et al. 2014): 
skin (scalp) = 0.43, skull = 0.0105, CSF = 1.79, GM = 0.33, 
WM = 0.14, and TL = 0.33. The WM was modelled as either 
isotropic or anisotropic. In the latter case, conductivity of 
WM voxels was set to have 9:1 radial/tangential ratio respec-
tively (Hallez et al. 2005). We positioned 112 electrodes in 
6 geodesic rings evenly distributed over the scalp surface 
(Turovets et al. 2014). For the source space, we randomly 
selected 300 sources within the GM (superficial) and the TL 
(deep) regions, with radial direction and variable distance 
from the electrodes (Stenroos and Sarvas 2012).

We tested the performance of OD–BiCG–iLU, the 
BiCG–iLU solver for the OD integrated into AFDRM-NZ, 
against that of other FDM solvers previously investigated 
by (Cuartas et  al. 2015). These solvers are: OD–SOR, 
FD–SOR, OD–BiCG–NP, FD–BiCG–NP, OD–BiCG–LU, 
FD–BiCG–iLU, FD BiCG Fourier–Jacobi. Calculations 
were stopped either after 1000 iterations or when the rela-
tive residual was below  10−13. The computation time was 
measured using a computer with Windows operating sys-
tem, a 2.7 GHz Intel Xeon processor, and 32 GB RAM. 
We also compared the conditional number obtained with the 
BiCG–iLU solver for the original and the FD, respectively.

To quantify the precision of the leadfield matrix produced 
by AFDRM-NZ, we compared it with the one obtained using 
an analytical solution (DeMunck 1988) using two different 
measures: the logarithmic magnitude (lnMAG) (Güllmar 
et al. 2010) and the relative difference measure (RDM) 
(Meijs et al. 1989). These were defined as follows:

where L denotes a leadfield matrix, the norm is the l2 norm 
and subscripts 1 and 2 correspond to the reference and test 
head models, respectively. To better assess the performance 
of AFDRM-NZ, we also created a leadfield matrix using a 
9-layer isotropic FEM with hexahedral meshing (Vorwerk 
2018) and 3-layer BEM with scalp, skull and brain com-
partments (Oostenveld et al. 2011). Both FEM and BEM 
are integrated in the FieldTrip toolbox (http://www.field 
tript oolbo x.org). We calculated MAG, RDM and com-
putation time for FEM and BEM, as previously done for 
AFDRM-NZ.

(11)lnMAG(L1, L2) = ln

(‖‖L1‖‖
‖‖L2‖‖

)

(12)RDM(L1, L2) =
‖‖‖‖‖

L2
‖‖L2‖‖

−
L1

‖‖L1‖‖
‖‖‖‖‖

Fig. 3  Spherical head model. We built a 6-layer spherical head 
model, to be used as a volume conductor for both numerical and ana-
lytical solutions. This model includes anisotropy in the WM and also 
an inner thalamic area to represent deep sources surrounded by aniso-
tropic WM tissue

http://www.fieldtriptoolbox.org
http://www.fieldtriptoolbox.org
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Realistic Head Model

We also used AFDRM-NZ to model the head of a real 
experimental subject. To this end, we acquired struc-
tural MR images using a General Electric Sigma HDxt 
3.0 T MR scanner with a body coil for proton excitation 
and an 8-channel head coil for signal detection. We used 
a 3DT1w Spoiled Gradient Recalled (SPGR) sequence 
with TR = 8.7 ms, TE = 3.2 ms, TI = 400 ms, NEX = 1, 
FOV = 260 mm, matrix = 320 × 160, resolution 1 × 1 × 1 mm, 
flip angle = 12°; a diffusion weighted imaging (DWI) 
sequence with TR = 9200 ms, TE = 83.8 ms, TI = 0 ms, 
NEX = 1, acquisition FOV = 240 mm, matrix = 100 × 100, 
flip angle = 90°, directions = 45, thickness = 2 mm; an itera-
tive decomposition of water and fat with echo asymmetry 
and least-squares estimation (IDEAL) T2 sequence with 
TR = 3000 ms, TE = 81.9 ms, NEX = 6, FOV = 260 mm, 
matrix 320 × 160, flip angle 90°; a time of flight (TOF) 
sequence consisting of 8 volumes with 6 slices overlap with 
TR = 20 ms, TE = 2.1 ms, NEX = 1, FOV = 224 mm, matrix 
224 × 224, flip angle 15°.

DWI, IDEAL, and TOF data were initially aligned to 
the T1-w image with a similarity-based affine registration 
procedure to correct for image orientation differences and 
geometrical distortions. DWI data were processed to cal-
culate diffusion tensors that were resampled to have the 
same resolution as the T1-w data. Afterward, a segmenta-
tion of the T1w image in 9 compartments was performed 
with Freesurfer (https ://surfe r.nmr.mgh.harva rd.edu), inte-
grating information also from IDEAL and TOF images. 
Conductivity values [S/m] were set as follows: skin = 0.43, 
muscle = 0.355, fat = 0.0573, eyeballs = 1.55, vessels = 0.28, 
skull = 0.0105, CSF = 1.79, GM = 0.33, WM = 0.14 (with 9:1 
radial/tangential anisotropic ratio). A 5-layer segmentation 
was derived from the 9-layer segmentation, by incorporating 

muscle, fat, eyeballs, vessels within the skin compartment. 
Finally, a 128-channel EEG montage was spatially aligned 
to the skin surface (see Fig. 4).

As a final test, we analyzed the dipole estimation errors 
due to not include multiple tissue compartments with vary-
ing conductivities in the realistic forward modeling. Within 
this framework, pairwise dipole parameters (r, d) for a given 
source configuration were estimated by calculating the elec-
trode potentials vtest ∈ ℝ that minimize the following equation 
(Hallez et al. 2009):

where vref
(
r, d

)
 are the electrode potentials of the reference 

model and vtest(r, d) are the those estimated in the test model. 
The term c(r) is a penalization parameter that is set to be 
very large for dipole positions outside the GM. The notation 
‖⋅‖ stands for the Euclidean norm.

The dipole localization error (DLE) for a reference 
(
r, d

)
 

and a test (r, d) source configuration was computed as the 
Euclidean norm of their difference:

We used the DLE to examine the importance of correctly 
modelling the conductivity of the different tissues for the 
calculation of an accurate leadfield matrix. To this end, we 
used the parametric inverse solution with the anisotropic 
9-layer model as the reference model, and compared it 
with the solution obtained by using the anisotropic 5-layer 
model.

(13)(r, d) = min
r,d

⎧
⎪⎨⎪⎩

���vref
�
r̄, d̄

�
− vtest(r, d)

���
2

���vref
�
r̄, d̄

����
2

+ c(r)

⎫
⎪⎬⎪⎭

(14)DLE = ‖‖r − r‖‖

Fig. 4  Realistic head model. 
The segmented MR images used 
for the AFDRM-NZ validation 
are shown, along with a legend 
indicating the identified com-
partments. A 128-channel EEG 
montage is aligned over the 
outer compartment (skin), for 
the calculation of a lead-field 
solution using AFDRM-NZ

https://surfer.nmr.mgh.harvard.edu
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Results

Computational Performance of FDM Solvers

We tested the computational performance of several linear 
solvers for the OD and the FD. Our results showed that the 
stationary solver SOR had the worse convergence rate and a 
final relative error larger than  10−8 even after 1000 iterations. 
Generally speaking, the use of a suitable preconditioning sub-
stantially increased the convergence rate of the BiCG solvers 
and led to lower residual errors, both for the original and the 
FD. The most efficient solver in terms of convergence rate 
was the BiCG OD–LU, which reached a target residual value 
of  10−13 just after two iterations. Additionally, the version 
with Fourier–Jacobi preconditioning (FD–FJ) had a high 
convergence rate. However, this solver initially had a high 
residual error value (around  101), and the minimum resid-
ual error reached was around  10−10. Only the OD–LU and 
OD–iLU reached the target residual error of  10−13 (Fig. 5).

We also examined the computational time for the differ-
ent solver implementations under consideration (Table 1). 
As expected, the LU preconditioning required considerably 
more computational time than the other preconditioners 
(Fourier–Jacobi and iLU). Overall, the original-domain 
BiCG–iLU yielded the lowest total computation time. The 
FD with Fourier–Jacobi preconditioning was also computa-
tionally efficient, but relatively slower than OD–iLU.

Validation of AFDRM‑NZ Using an Analytical 
Solution

We assessed the numerical solution obtained using AFDRM-
NZ for the 6-layer spherical head model against the ana-
lytical solution (DeMunck 1988). We observed a very close 
correspondence between the leadfield matrices, in both iso-
tropic and anisotropic conditions.

We calculated MAG and RDM measures to quantify this 
correspondence. The results of this analysis confirmed the 
reliability of the solution obtained with AFDRM-NZ for all 
dipole positions and orientations in GM and TL regions. 
In contrast, BEM and FEM had an altered distribution of 

Fig. 5  Comparison of different solvers with respect to convergence 
rate and minimal residual. The dashed red line stands indicate the 
target minimal residual, equal to  10−13. OD original domain, FD 
fictitious domain, SOR successive over-relaxation method, BiCG 
biconjugate gradient stabilized method, NP no preconditioning, LU 
factorization preconditioning, iLU incomplete LU preconditioning, FJ 
Fourier Jacobi preconditioning

Table 1  Accuracy and 
computational time (in seconds) 
for different FDM solver 
implementations

The FDM solver implementation with the lowest total time is indicated in bold

Iterations Min residual Iteration time Solver time Precondi-
tioner time

Total time

OD–SOR 750 3.07 × 10−9 0.0049 3.6622 – 3.6622
FD–SOR 740 1.87 × 10−6 0.0111 8.2405 – 8.2405
OD-notP 797 3.89 × 10−13 0.0062 4.9626 – 4.9626
FD-notP 800 5.51 × 10−10 0.0131 10.4476 – 10.4476
OD–LU 2 5.82 × 10−14 6.2081 12.4162 1460.8 1473.21
OD–iLU 158 9.53 × 10−14 0.0189 2.9917 0.0428 3.0345
FD–iLU 257 9.2 × 10−14 0.0355 9.1287 0.0561 9.1848
FD–FJ 78 1.19 × 10−10 0.0414 3.2314 0.2978 3.5292

Fig. 6  Correspondence between electrode potentials for AFDRM-NZ, 
BEM, FEM and analytical (DeMunck) solutions, employing a single 
dipole in the GM with normal orientation with respect to the spheri-
cal surface. Potentials were normalized to facilitate visual compari-
sons between methods
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electric potentials across recording channels (Figs. 6, 7). 
Overall, we found the AFDRM-NZ to have lower computa-
tion time and more efficient memory use than FEM, but not 
BEM (Table 2).

Realistic Head Modelling with AFDRM‑NZ

As a last validation step, we used AFDRM-NZ to create ani-
sotropic realistic head models. First of all, we measured the 
computational time required for the calculation of a single 
lead-pair, which was 279.31 s for a fully isotropic model and 
347.55 s when anisotropy information was included.

To qualitatively appreciate the impact of modelling 
WM anisotropy, we then examined the equipotential lines 
(forward potentials) for a single dipole source laying in 
the GM, with normal orientation with respect to the corti-
cal surface. When anisotropy information was not used, 
equipotential lines were smooth and crossed the bounda-
ries between head tissues with minor distortion effects 

(Fig. 8). In the anisotropic case, instead, the lines tended 
to locally align with the major white matter tracts.

Finally, we examined the DLE when using the 5-layer 
head model against the more precise 9-layer model. The 
results of this analysis revealed that localization errors 
associated with a less precise definition of head tissues 
could lead to large localization errors, being up to 2 cm 
in deeper brain regions (Fig. 9).

Discussion

In this study, we have introduced a novel finite-difference 
method (AFDRM-NZ) for solving the forward problem in 
EEG source analysis. The electromagnetic field solver inte-
grated in AFDRM-NZ has superior computational perfor-
mance and reliability compared with alternative finite-dif-
ference solvers. Most importantly, AFDRM-NZ is designed 
to flexibly incorporate whole-brain conductivity information 
without head compartment tessellations, and can therefore 
optimally integrate information from structural MR imag-
ing. Furthermore, our FDM method is intrinsically built 
to consider conductivity anisotropy, which is important to 
ensure correct modelling of current flow in the head. In the 
next section, we will more extensively discuss the aspects 
highlighted here above.

Computational Performance

AFDRM-NZ is based on the use of an iLU preconditioner 
and BiCG-stabilized solver, in combination with the Sale-
heen coefficients for FDM computations in the original-
domain (non-zero). These technological solutions were 
specifically conceived to achieve very high computational 
performance, for a standard level of reconstruction error. 
First of all, our results show a sharp reduction of com-
putational times of the BiCG-stabilized solver with iLU 

Fig. 7  Quantitative comparison between numerical and analytical 
solutions. For AFDRM-NZ and FEM, the distribution of lnMAG and 
RDM values is shown using box plots. We compared the isotropic 
analytical solution against isotropic ANFDRM-NZ and FEM. Then, 
we compared the anisotropic analytical solution against the isotropic 
FEM and the anisotropic AFDRM-NZ

Table 2  Analysis of 
computational performance 
for AFDRM-NZ, FEM, and 
BEM, assessed on the creation 
of a leadfield matrix for the 
spherical head model

–: not applicable

Parameters AFDRM-NZ FEM BEM

Stiffness matrix size [3342701 × 3342701] [3342701 × 3342701] –
Stiffness isotropic memory (MB) 380.07 728.51 823.97
Stiffness anisotropic memory (MB) 628.31 – –
Mesh size – [8 × 3262312] [3 × 6000]
Mesh memory (MB) – 300.53 1.24
Leadfield size [111 × 3342701] [112 × 3342701]
Leadfield memory (MB) 2830.81 2856.31 –
Total isotropic memory (MB) 3210.88 3885.35 825.21
Total anisotropic memory (MB) 3459.12 – –
Isotropic total time (s) 12,091 27,555 258.17
Anisotropic total time (s) 23,841 – –
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preconditioning against the commonly used SOR solver 
(Hallez et al. 2005) (Fig. 5). The use of the Saleheen coef-
ficients in the coefficient matrix A , in combination with the 
iLU preconditioner, strongly increased the convergence rate 
and the numerical smoothness of the BiCG solver, such that 
very small residual errors could be reached (Table 1). Impor-
tantly, the original-domain (non-zero) solution permitted a 
reduction in the computational complexity of the precondi-
tioning by about three times with respect to the FD solution 
(Turovets et al. 2014). This is because the voxels surround-
ing the head, which are assumed to have zero potential, are 
not included in the linear equation system for FDM.

It is not straightforward to compare AFDRM-NZ with a 
non-FDM solution, since the use of different software imple-
mentations and different input parameters may strongly drive 
the results. When we examined the computational efficiency 
of AFDRM-NZ with respect to FEM and BEM solutions 
incorporated into FieldTrip, we found that our method 
requires less allocated memory to be allocated than FEM, 
and also has shorter computation times. On the other hand, 
by using BEM, we generated a leadfield matrix in shorter 
times and using less memory (Table 2). It should be noted 
that these comparisons in terms of memory and computa-
tion times were conducted without considering differences 
in reconstruction errors across methods.

Reliability of the Leadfield Matrix Solution

The validation conducted using a spherical head model 
revealed a high correspondence between the potentials calcu-
lated using AFDRM-NZ and the analytic approach (Fig. 6). 
This finding was corroborated by the fact that lnMAG and 
RDM metrics had a median value close to zero at a very low 
dispersion (Fig. 7). In the realistic head model, we observed 
the equipotential lines to show a smooth transition at the inter-
face between different conductivity tissues in the brain (Fig. 8), 
following the general Neumann boundary condition. When the 
WM was modelled as an anisotropic medium, the equipotential 
lines were qualitatively different with respect when conductiv-
ity in the WM was considered to be isotropic. In particular, 
the equipotential lines tended to locally align to WM tracts 
(Wolters et al. 2006; Turovets et al. 2014; Hallez et al. 2009).

Impact on Electrical Source Imaging

Besides the computational efficiency of AFDRM-NZ, its usa-
bility and potential impact for ESI should also be considered. 
The AFDRM-NZ solution was indeed developed to perfectly 
integrate with structural imaging data available from MRI, 
which is defined in a homogeneous volumetric space. First 
of all, anisotropy information can be extracted from diffusion 

Fig. 8  Equipotential lines for a single dipole with isotropic and aniso-
tropic WM conductivity, respectively. The current distribution, which 
was calculated for a 5-layer realistic head model, is shown in sagittal 
and coronal sections

Fig. 9  Spatial distribution of 
dipole localization errors for a 
simplified 5-layer head model, 
as compared to a 9-layer head 
model
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MR imaging data and directly provided in the form of a dif-
fusion tensor to AFDRM-NZ. A classical approach for the 
incorporation of conductivity information, which is used in 
FDMs but also BEMs and FEMs, relies on the segmentation 
of T1-weighted MR images in multiple head compartments. 
A conductivity value for each compartment is either extracted 
from the literature or non-invasively estimated using electri-
cal impedance tomography. It has been suggested that simul-
taneous EEG/MEG measurements can be used to calibrate the 
conductivity values, aiming at maximizing the correspondence 
between source localizations from EEG and MEG data, respec-
tively (Aydin et al. 2014). Another emerging approach that is 
attracting increasing interest in the brain imaging community 
is the use of MR imaging for low-frequency conductivity map-
ping (Michel et al. 2016). This may permit to obtain volumetric 
images of head conductivity, which is particularly important in 
the case of patient populations. AFDRM-NZ is the first head 
modelling method that can take advantage of this new devel-
opment in the field of MR imaging. Accordingly, the use of 
AFDRM-NZ in combination with MR conductivity and dif-
fusion images may yield superior source localization precision 
for EEG data collected not only in healthy volunteers but also 
neurological and psychiatric patients.

Limitations and Future Directions

AFDRM-NZ has been developed to ensure maximum flex-
ibility of use, as well as high computational speed. However, 
even though AFDRM-NZ is relatively faster than several 
other FDM implementations, it overall requires relatively 
large computation time. From this standpoint, future efforts 
may be dedicated to an implementation of AFDRM-NZ that 
has parallel processing capabilities. If at least as many pro-
cessing cores are available as the number of EEG electrodes, 
full parallelization can in principle be achieved, bringing a 
full AFDRM-NZ calculation in less than 5 min.

Conclusion

We have introduced AFDRM-NZ, a computationally-efficient 
FDM that can flexibly integrate across-voxel conductivity and 
anisotropy information to solve the EEG forward problem. 
Our results clearly show that AFDRM-NZ can contribute to 
more precise head modelling, which is essential for using 
EEG as a brain imaging tool (Michel and Murray 2012). In 
future studies, AFDRM-NZ could also be employed for stud-
ying the effects of conductivity uncertainty on source locali-
zation accuracy (Irimia et al. 2013a, b), and for the modelling 
of currents injected in the brain by means of transcranial cur-
rent stimulation (Truong et al. 2013).
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