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Abstract
Adaptive minimum variance based beamformers (MVB) have been successfully applied to magnetoencephalogram (MEG) 
and electroencephalogram (EEG) data to localize brain activities. However, the performance of these beamformers falls down 
in situations where correlated or interference sources exist. To overcome this problem, we propose indirect dominant mode 
rejection (iDMR) beamformer application in brain source localization. This method by modifying measurement covariance 
matrix makes MVB applicable in source localization in the presence of correlated and interference sources. Numerical results 
on both EEG and MEG data demonstrate that presented approach accurately reconstructs time courses of active sources and 
localizes those sources with high spatial resolution. In addition, the results of real AEF data show the good performance 
of iDMR in empirical situations. Hence, iDMR can be reliably used for brain source localization especially when there are 
correlated and interference sources.

Keywords Brain source localization · Electroencephalography (EEG) · Indirect dominant mode rejection (iDMR) · 
Magnetoencephalography (MEG) · Minimum variance beamformer (MVB)

Introduction

Synchronous activations of tens of thousands neurons within 
the brain could generate magnetic field and electrical poten-
tial outside of the head that can be registered by an array of 
sensors of magnetoencephalography (MEG) and electroen-
cephalography (EEG), respectively. This population of neu-
rons, in most cases, can be modeled by an electrical dipole, 
also called a source, having parameters including position, 
orientation, and amplitude.

Estimating the output of sensors positioned near or on 
the scalp for a given electrical dipole parameters involves 
well-conditioned forward problem, the solution of which 
yields to the lead field matrix or also named gain matrix. 
Estimating the brain source parameters from measured data 
and consequently mapping brain activity at the source level 
requires solving a so-called inverse problem. In contrast to 

the forward problem, the inverse problem is ill-posed (Bail-
let et al. 2001; Greenblatt et al. 2005), since the number of 
candidates for source location in the brain (voxel) is much 
larger than the number of recording sensors, therefore many 
source distributions can be inferred for one measurement.

Various kinds of methodologies have been presented 
for solving the salient inverse problem such as minimum 
ℓ2-norm estimation (MNE) (Baillet et al. 2001; Dinh et al. 
2015; Dai et al. 2012), multiple signal classification (music) 
(Mosher and Leahy 1992, 1998, 1999; Shahbazi et al. 2015), 
minimum current estimation (MCE) (Uutela et al. 1999), 
minimum variance beamforming (MVB) (Greenblatt et al. 
2005; Sekihara and Nagarajan 2008; Veen et  al. 1997; 
Huang et al. 2004; Jonmohamadi et al. 2014; Moiseev and 
Herdman 2013; Haufe and Arne 2016; Mills et al. 2012), 
FOCUSS (Gorodnitsky et al. 1995), sLORETA (Pascual-
Marqui 2002; Chowdhury et al. 2015). Recursively applied 
and projected (RAP)-MUSIC is a subspace signal processing 
approach attempting to find the source locations by using a 
recursive procedure (Mosher and Leahy 1998). Although 
RAP-MUSIC shows good performance in source localizing 
even in the presence of highly correlated sources (Xu et al. 
2004), it cannot reconstruct time course of sources. Also, 
because of the mentioned drawback, Rap-MUSIC is not 

Handling Editor: Christoph M. Michel.

 * Babak Mohammadzadeh Asl 
 babakmsl@modares.ac.ir

1 Department of Electrical and Computer Engineering, Tarbiat 
Modares University, Tehran, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s10548-018-0645-8&domain=pdf


592 Brain Topography (2018) 31:591–607

1 3

able to map brain activity in every millisecond and has the 
temporal resolution in the order of a few hundred millisec-
onds (time of data that is used for computing measurement 
covariance matrix).

MVB is an adaptive spatial filter type method whose filter 
should reveal time course for a given location and elimi-
nate activities originated from other locations. The temporal 
resolution is of the order of millisecond and makes MVB 
suitable for applications dealing with time course. A variant 
of MVB is regularized MVB (RMVB) (Brookes et al. 2008; 
Tikhonov and Arsenin 1997) in which the data covariance 
matrix is diagonally loaded to ensure a statistically stable 
covariance matrix, to improve the robustness and to increase 
the output SNR. However, all these advantages come at the 
expense of a decreased spatial resolution. In publication by 
Sekihara et al. (2001), vector version of Borgiotti–Kaplan 
beamformer was developed and the derived spatial filter 
was projected onto the signal subspace. By doing so, the 
resulting beamformer produced higher output SNR as well 
as higher spatial resolution compared with the MVB. The 
performance of MVB, RMVB, and eigenspace-projection 
Borgiotti–Kaplan beamformer is deteriorated particularly in 
reconstructing time courses of sources at situations where 
highly correlated and interference sources exist.

Many algorithms have been developed in recent decade to 
solve this problem (Kimura et al. 2007; Brookes et al. 2007; 
Dalal et al. 2006; Popescu et al. 2008; Quraan and Cheyne 
2010; Hui et al. 2010). Kimura et al., at first step, estimated 
the brain activity covariance matrix by the minimum norm 
method, then sources were “decorrelated” by discarding the 
non-diagonal terms of that matrix. Finally, a new version of 
the measurement covariance matrix was generated and used 
in the beamformer analysis.

Popescu et al. used only sensors that were close enough 
to one of the correlated sources, or to use just one hemi-
sphere of the sensor array. By doing so, the contribution to 
the covariance from another source is greatly reduced. This 
is achieved at the cost of decreasing the signal to noise ratio 
(SNR) and the spatial resolution for non-coherent activa-
tions. This technique is used for bilateral activations and so 
needs a priori knowledge for a suitable performance.

In the approach taken by Brookes et al. (2007), the source 
correlations are incorporated into the lead field matrix. The 
new lead field matrix is composed as a linear combination 
of the dipolar forward solutions of participating sources. The 
most significant problem here is that the reconstructed time 
course is a linear combination of the time courses of the 
participating sources.

In publications by both Dalal et al. (2006) and by Hui 
et  al. (2010), additional constraints are imposed on the 
beamformer weights so that the beamformer gain from cer-
tain brain regions are (approximately) zero. Without a priori 
knowledge of the locations of likely interfering sources, this 

region is large and the decrease in SNR and spatial resolu-
tion may become significant.

In this paper, an approach for reconstructing spatio-tem-
poral source activity is proposed when highly correlated 
and interference sources exist. This method, which previ-
ously has been employed in wireless communications (San-
tos et al. 2007), can accurately reconstruct time courses of 
sources in both aspects of shape and amplitude, and thereby 
provide high spatial and temporal resolution and output 
SNR. New technique is indirect dominant mode rejection 
(iDMR). For implementing iDMR, at first, source locations 
and orientations are respectively found by RAP-MUSIC and 
by solving an eigenvalue problem (Sekihara and Nagarajan 
2008; Sekihara et al. 2004). RAP-MUSIC is exploited due to 
its capability in distinguishing the highly correlated sources. 
Then by using measurement and noise covariance matrices, 
lead field matrix and orientation vector of found sources, 
covariance matrix of sources is estimated. In the following, 
sources are “decorrelated” by discarding the non-diagonal 
terms of that matrix. New data covariance matrix is made 
based on the new covariance matrix of sources and replaced 
in MVB spatial filter. Finally, new spatial filter is employed 
for reconstructing spatio-temporal source activity.

The proposed scheme, as opposed to Popescu et al. uses 
all sensors thereby obtains suitable spatial resolution and 
output SNR. Unlike the proposed approach by Brookes et al., 
iDMR can easily find time course of each source. In works 
of Dalal et al. and of Hui et al., null constraints on some 
regions were applied which result in reduction of degrees of 
freedom, whereas zeroing off-diagonal elements of source 
covariance matrix is performed in iDMR which is a null 
constraint on interaction between sources not on gain matrix. 
Thus, iDMR preserves the degrees of freedom. Also, in this 
work, active source locations are found by RAP-MUSIC and 
hence, the problem of needing a priori knowledge regarding 
the location of interfering sources, in works of Dalal et al. 
and of Hui et al., is solved.

We compare iDMR approach with power-based multi-
ple pseudo-z score localizer technique (MPZ) developed by 
Moiseev and Herdman (Moiseev et al. 2011) using simu-
lated ERF data. This technique as with the iDMR employs a 
recursive search for finding active location. However, it uses 
a power based beamformer instead of RAP-MUSIC. Also, it 
attempts to find localized source time courses by applying a 
spatial filter which is designed to only pass activity of found 
sources and attenuate other undesired ones and noise.

EEG and MEG numerical experiments confirm that the 
proposed method outperforms the MVB, eigenspace-MVB 
and MPZ. The real AEF data results demonstrate the iDMR 
ability for empirical condition.

The rest of the paper is organized as follows. In the “Back-
ground” section data model is introduced, then MVB and 
power-based multiple source localizer (MPZ) for comparison 
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purpose and RAP-MUSIC because of using in iDMR are for-
mulated. We formulate and describe the proposed method in 
section “Proposed Method”. Experimental results using simu-
lated EEG/MEG and real MEG data are presented at “Perfor-
mance Evaluations” section, followed by “Discussion” section 
and a brief conclusion in “Conclusion” section.

Background

Data Model

With assuming linearity of the medium, post-stimu-
lus observed data � ∈ ℝM×1 by M sensors at time point 
t ∈ {1, 2, ...,K} generated by L dipoles is modeled as

where �l ∈ ℝ3×1 is unit-norm vector indicating lth dipole 
orientation, sl(t) is time course of the lth dipole, �l ∈ ℝ3×1 
is location of the lth dipole, �(�l) ∈ ℝM×3 is gain matrix the 
first column of which is equal to the measured data when 
there is no noise and the dipole has unit magnitude in x 
direction and zero magnitude in y and z directions; similarly 
the second and third columns are for y and z directions, 
respectively, and �(t) ∈ ℝM×1 represents noise vector. In this 
study, for simplicity we assume that each dipole has fixed 
orientation.

MVB Concept

One of the most popular beamformers is minimum variance 
beamformer that has widely been used in the sensor array 
signal processing especially reconstructing neural sources. 
The output of a MVB spatial filter (also called MVB weight 
matrix) for location �0 is

where � ∈ ℝM×3 is a column weight matrix and superscript 
“T” denotes the matrix transpose. The first column of ideal 
W assigns weights to x at time point t so that the weighted 
summation of measurements yields to the dipole activity in 
x direction at that time point; the second and third columns 
values are for revealing dipole activity in y and z directions, 
respectively. To this end, variance of the filter output tr(��) 
which is due to the noise and activity of other sources is 
minimized while still by imposing a linear constraint activity 
at desired location is preserved. This idea can be formulated 
as

(1)�(t) =

L∑

l=1

�(�l)�lsl(t) + �(t)

(2)�(t) = �T (q0)�(t)

(3)
min
�(�0)

tr(��) = min
�(�0)

tr[�T (�0)��(�0)]

subject to�T (�0)�(�0) = �3

where � ∈ ℝM×M is covariance matrix of observed data, �3 
is 3-dimentional identity matrix, and tr(.) denotes trace of 
matrix. When there are correlations between dipole activity 
in three directions x, y, z (this situation occurs in real data 
with high degree; in this paper because of using fixed ori-
entation dipoles the correlation coefficient is 1), the source 
localization and time course estimation can be disrupted, 
so linear constraint used in MVB can perfectly eliminate 
this intra-dipole correlation. The solution of constrained 
optimization problem using Lagrange multiplier method is 
obtained as

In practice, R is unknown and can be estimated by sample 
covariance matrix

The output power of spatial filter which is used for brain 
mapping is expressed as

Localizing data according to (6) results in too much mis-
placing, maxima of the power shifted toward to the center 
of the head. The reason for this inherent problem at beam-
former based methods has been addressed in Van Veen 
et al. (1997) in which the adverse effect of presence of noise 
covariance matrix Q in the data covariance matrix R has 
been shown. To overcome this problem, we use single source 
power pseudo-Z value:

where �max is the largest eigenvalue of the bracketed item 
and the time course of source positioned in �0 is given by

where m is dipole unit-norm vector orientation and can be 
found as

where vecmin is the eigenvector associated to the smallest 
eigenvalue of the bracketed item.

Power‑Based Multiple Source Localizer (MPZ)

In this subsection, we aim to formulate power-based multiple 
source localizer developed by Moiseev et al. (2011) which 

(4)�MVB(�0) = �−1�(�0)(�
T (�0)�

−1�(�0))
−1.

(5)� =
1

K

K∑

t=1

�(t)�(t)T .

(6)PMVB(�0) = tr(�T
MVB

(�0)��MVB(�0)).

(7)
PMVB

Z
(�0) = �max{�

T
MVB

(�0)��MVB(�0).

(�T
MVB

(�0)��MVB(�0))
−1}.

(8)sMVB(�0, t) = �T (�0)�
T
MVB

(�0)�(t)

(9)
vecmin{�

T
MVB

(�0)��MVB(�0).

(�T
MVB

(�0)��MVB(�0))
−1}



594 Brain Topography (2018) 31:591–607

1 3

somewhat is similar to the iDMR and has none of the disad-
vantages counted for (Brookes et al. 2007; Dalal et al. 2006; 
Popescu et al. 2008; Quraan and Cheyne 2010; Hui et al. 
2010). Moiseev et al. derived several measures in which source 
location was determined by finding a global maximum of a 
localizer function defined on a parameter space of high dimen-
sion. To find global maxima for all sources, they developed an 
iterative algorithm. In this paper, we use MPZ localizer which 
is extended form of single pseudo-Z score and is employed for 
multiple sources localizing by a sequential procedure.

In a brief view, MPZ finds n sources by n times search 
over all the brain and in each time (or iteration) introduces 
location with maximum power as source location. In iteration 
k (k < n), spatial filter that is used for computing pseudo-Z 
score value for each location is orthogonal to the columns of 
the lead field matrix matrices of all the other sources found 
in previous k − 1 iterations. In each iteration, localized source 
orientation is estimated using generalized eigenvalue problem. 
The locations of earlier found sources do not change but spatial 
filter is updated. Spatial filter at iteration k contains weights of 
all detected sources therefore by applying it to the data time 
courses of all k localized sources are obtained. Since weight 
of each iteration is orthogonal to the columns of the lead field 
matrix of the other iteration sources, one can probably obtain 
true time course without cancellation.

Mathematical details are presented now. The algorithm 
starts with a single source power pseudo-Z value. The largest 
activation detected is designated as first source. The orienta-
tion of found source is determined using (9). On step k of 
the algorithm we fix coordinates of previously found (k − 1) 
sources and label these as “references”. The gain matrix H 
may be written as

where columns of a “reference” matrix �R are forward solu-
tions of already found sources and columns of matrix �k are 
the gain vectors for sources at �k . To find source k, vector 
�k is run over the entire brain and the largest eigenvalue λ of 
the following generalized eigenvalue problem is computed:

where

(10)
� = {�R, �k(�k)},

�k(�k) = �k(�k)�k,

(11)�(�k)�k = ��(�k)�k,

(12)

� = �kR(�RR)−1�RR(�RR)−1�Rk−

�kR(�RR)−1�RK − �kR(�RR)−1�Rk + �kk,

� = �kk − �kR(�RR)�Rk,

� = �T�
−1
��

−1
�,

� = �T�
−1
�.

Here, D and F are 3 × 3 matrix. For first iteration, the �max 
of (11) is the same as (7). Location of source k is one �k for 
which the maximum largest eigenvalue is derived. Then, uk 
for found source is obtained as eigenvector corresponding to 
the largest eigenvalue of (11). The spatial filter in iteration 
k is attained by:

By passing data through W, time courses of k found sources 
are reconstructed. For terminating the iteration, Moiseev et al. 
proposed monitoring single source power pseudo-Z values 
(7) of each new source. Iterations should be terminated when 
found source power becomes small and starts fluctuating 
around a baseline level.

RAP‑MUSIC

The multiple signal classification (MUSIC) is a subspace scan-
ning approach in which the lead field matrices of candidate 
locations throughout the brain are projected onto the signal 
subspace. Locations at which projection metric reaches to the 
local maxima are regarded as source locations. However, as 
stated by Mosher and Leahy, (Mosher and Leahy 1999) using 
the MUSIC often poses two problems. First, errors in esti-
mating the signal subspace can make it difficult to differenti-
ate “true” from “false” peaks in the MUSIC metric. Second, 
automatically finding several local maxima in the MUSIC 
metric becomes difficult as the dimension of the source space 
increases.

To overcome these problems, Mosher and Leahy intro-
duce the idea of using a sequential procedure called recur-
sively applied and projected (RAP)-MUSIC in which in each 
iteration one new source is found as global maximizer of cost 
function modified at that iteration. Modifying is carried out 
by projecting the gain matrix and signal subspace away from 
the subspace spanned by sources found in previous iterations.

At first iteration, location of first source yields to global 
maxima of

where �j represents jth candidate location, �1 contains the 
left singular vectors of that location lead field matrix, and 
�max is the largest eigenvalue of the bracketed item. Signal 
subspace is �S = [�1, �2, ..., �D] where �i with i = 1,2,…,D 
are normalized eigenvectors of � corresponding to D domi-
nant eigenvalues where their energy is equal or more than a 
predefined threshold. In this paper, we consider the thresh-
old value about 95%. The orientation of first source �1 is 
computed using (9) since this method shows more accurate 

(13)�(�1,… , �k) =
�

−1
�

�T�
−1
�,

,�T� = �k.

(14)�1 = max
�

(�max{�
T
1
(�j)�S�

T
S
�1(�j)})
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result than the approach proposed by Mosher and Leahy 
(according to our simulation results).

In next step, the orthogonal projector for �1 = �(�1)�1 
that projects onto the left null space of �1 is defined as

Then second source is found as the global maximizer of 
the following projection metric

where �2 contains the left singular vectors of �⊥
�1
�(�j) , and 

�2S is equal to �⊥
�1
�S . The gain vector for the second source 

is �2 = �(�2)�2 , where again source orientation is deter-
mined by (9).

At rth iteration, orthogonal projector for the gain vectors 
found in previous iterations are obtained as

where,

And the rth recursion is performed by following modified 
cost function

where �r contains the left singular vectors of �⊥
�r−1

�(�j) , 

and �rS is equal to �⊥
�r−1

�S . The lead field matrix of rth 

source projected onto the left null space of previously found 
(r − 1) sources has the most correlation with signal subspace 
projected onto that left null space. The iterations are stopped 
when the subspace correlation achieved from (19), drops 
below a given threshold.

Because of good performance of RAP-MUSIC in resolv-
ability of highly correlated brain activity (at least in our 
simulations), it is exploited in iDMR and the threshold for 
terminating the iterations is selected to be 0.7.

Proposed Method

The MVB-based methods capability in reconstructing spa-
tio-temporal brain activity has been demonstrated in many 
publications (Sekihara and Nagarajan 2008; Veen et al. 
1997; Sekihara et al. 2001). However, their performance is 
degraded when dealing with the correlated activity or inter-
ference sources.

In this study, the application of indirect dominant mode 
rejection (iDMR) beamformer in reconstructing correlated 

(15)�⊥
�1

= �M − (�1�
T
1
)∕(�1�

T
1
).

(16)�2 = max
�

(�max{�
T
2
(�j)�2S�

T
2S
�2(�j)})

(17)�⊥
�r−1

= �M − (�r−1�
T
r−1

)∕(�r−1�
T
r−1

)

(18)�r−1 = [�1, �2, ..., �r−1].

(19)�r = max
�

(�max{�
T
r
(�j)�rS�

T
2S
�r(�j)})

neural activity in the presence of interference is investigated, 
by considering the fact that the performance of iDMR in 
improving the output SNR in wireless communications is 
demonstrated by Santos et al. (2007). The main idea of iDMR 
is to eliminate the cross correlation among the active sources 
by discarding the nondiagonal elements of source covariance 
matrix.

In the following the mathematical details of the proposed 
method are presented. Measurement formulated in (1) can be 
written as

where � = [�1, �2, ..., �L] with �i = �(�i)�(�i) ,  and 
�(t) = [s1(t), s2(t), ..., sL(t)]

T  . Then, the spatial correlation 
matrix of the measurement is formulated as

where �(s) is covariance matrix of sources, Q is covariance 
matrix of noise, �ns and �sn are correlation matrices of noise 
with sources and sources with noise. By assuming that noise 
exists in the null space of the sources, the above expression 
can be approximated as

Now simply the C(s) can be achieved

where † denotes the pseudo-inverse. In practice, � , esti-
mated in (5), is used instead of � . In the next step, only the 
diagonal entries of C(s) that are the variance of the sources 
are preserved and other entries are replaced with zero. By 
substituting the modified source covariance matrix �(x) in 
(22) the modified measurement covariance matrix is attained 
as

And substituting the �̂ into (4) gives the following weight 
expression for iDMR approach

As the final step, the iDMR beamformer is extended to an 
eigenspace projected beamformer by projecting the weight 
matrix expressed in (25) onto the signal subspace

Brain activity is visualized based on the spatial filter output 
power that is computed by

(20)�(t) = ��(t) + �(t)

(21)� = ��(s)�T + ��ns + �sn�
T +�

(22)� = ��(s)�T +�.

(23)�(s) = �†(� −�)�T†

(24)�̂ = ��(x)�T +�

(25)�iDMR(�0) = �̂−1�(�0)
(
�T (�0)�̂

−1�(�0)
)−1

(26)�eiDMR(�0) = �S�
T
S
�iDMR(�0).

(27)
PiDMR

Z
(�0) = �max{�

T
iDMR

(�0)��iDMR(�0).

(�T
iDMR

(�0)��iDMR(�0))
−1}.



596 Brain Topography (2018) 31:591–607

1 3

The matrix A is derived using RAP-MUSIC method 
such that for L diploes matrix A is equal to �L in (18). The 
Table 1 outlines the iDMR algorithm.

iDMR technique requires knowledge the noise covariance 
matrix. Q may be estimated from data that is known to be 
source free, such as pre-stimulus data.

In the next section, by suitable simulations is attempted 
to as complete as possible evaluations regarding the perfor-
mance of the iDMR are presented.

Performance Evaluations

Numerical Experiments

We explored the performance of iDMR on both EEG and 
MEG data. Forward solution was computed for both types 
of data by Brainstorm software.1 For EEG case, the brain 
volume extracted from Colin27 MRI was segmented into 
15,002 vertices with 2–5 mm resolution. Herein, we used 
a HydroCel Geodesic Sensor Net (HCGSN) with N = 256 
electrodes and represented head volume conductor by three 
shell spherical head model (Mosher and Leahy 1999; Berg 
and Scherg 1994). Spheres were centered at [x, y, z] = [1.76, 
1.19, 53.83] mm when the outer, middle, and inner shells 
radiuses were 97.4, 80.84, and 75.97 mm, respectively. 
The conductivities of three shells were set to [0.33, 0.0042, 
0.33] S/m. For MEG case, we used the subject anatomy 
related to the data that was used for evaluation and is avail-
able in Brainstorm toolbox. Gain matrix for 15,016 vertices 
and with “overlapping sphere” head model was calculated. 
All spatial coordinates in this paper are expressed in CTF 
coordinate system whose origin is midway on the line join-
ing left pre-auricular point2 (LPA) and right pre-auricular 
point (RPA) and the x-, y-, and z axes are oriented along 

the back–front, right–left, and bottom–top directions, 
respectively.

Some preliminary definitions are required to proceed. 
We define the simulated data SNR and correlation between 
sources as follows

where matrix As is equal to 
L∑
i=1

�(�i)�(�i)s(�i) for all time 

points, s1 and s2 are time course of sources 1 and 2, respec-
tively, n is noise matrix for all time points, ⟨, ⟩ denotes inner 
product, and ‖.‖2 represents Euclidean norm. Notice that we 
take into account the interference source in the SNR 
definition.

Comparative Performance Evaluations

In the following, we aim firstly to explore the ability of the 
iDMR with/without source covariance diagonalization and 
with/without signal space projection in comparison to con-
ventional MVB. Then, iDMR performance in comparison to 
MPZ is evaluated in a difficult scenario. Finally, proposed 
method is applied on the real AEF data containing highly 
correlated sources.

For simulation data and for iDMR method, activity map 
on the cortex is derived by putting a threshold on maximum 
power of this method. This threshold value is considered 
0.9, meaning vertices with more than 0.9 Pmax activity are 
shown with red color.

In all scenarios, we computed � across all trials from post 
stimulus period. For time course reconstruction, we applied 
weight matrix to post stimulus data averaged across trials 
because it had high SNR and averaging acts as a low pass 
filter.

Evaluation of iDMR Performance in a Z-Plane

Before comparing iDMR with MPZ, in this section, we 
plane to compare iDMR performance with a few other 
beamformers and find the main reason for its success. 
MVB and eigenspace-projection MVB (eMVB) are two 
of those methods. In eMVB, the spatial filter computed 
using (4) is projected onto signal subspace by production 
of EsE

T
s
 with �MVB and then projected �eMVB is used for 

source localization and time course reconstruction. By 
comparing MVB and eMVB, we can understand the role of 

(28)SNR = 10 log

(
tr(�T

s
�s)

tr(�T�)

)

(29)corr =
⟨��, ��⟩

������2������2

Table 1  Outline of the iDMR algorithm

i Estimate matrix � using Eq. (5) and use it instead of �
ii Estimate matrix A using RAP-MUSIC
iii Estimate noise covariance matrix Q
iv Compute �(x) = diag(�†(� −�)�T†)

v Compute �̂ = ��(x)�T +�

vi
Compute 

�iDMR(�0) = �̂−1�(�
0
)
(
�T (�

0
)�̂−1�(�

0
)
)−1

1 BrainStorm, Matlab Toolbox. http://neuro image .usc.edu/brain storm 
/2017.
2 A point of the posterior root of the zygomatic arch lying immedi-
ately in front of the upper end of the tragus.

http://neuroimage.usc.edu/brainstorm/2017
http://neuroimage.usc.edu/brainstorm/2017
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eigenspace-projection on MVB performance. By comparing 
MVB with proposed method, one can observe the effect of 
iDMR covariance matrix on MVB results. For a detailed 
exploration, we also run simulation for “undiagonal iDMR” 
method in which everything is the same as iDMR but the dif-
ference is that we keep all elements of the source covariance 
matrix (not decorrelated). Comparison between iDMR and 
undiagonal iDMR can better show and highlight the sig-
nificance of modified source covariance matrix. One maybe 
wants to see the effect eigenspace-projection on iDMR per-
formance, so we consider the eiDMR as fourth method for 
comparison.

In this section, an EEG simulation is implemented. Our 
reconstruction area was a z-plane: z = 90 mm to be better 
shown the spatial resolution. This plane was defined by 
− 5 cm ⩽ x ⩽ 5 cm and − 5 cm ⩽ y ⩽ 5 cm the reconstruc-
tion interval was 1 mm in the x and y directions, totally 
10,201 candidate locations. Two highly correlated sources 
(corr = 0.9) were positioned at [− 26, 1, 90] mm and [24, 1, 
90] mm and interference source was activated at [− 1, − 33, 
90] mm. All three sources had equal orientation unit-norm 
vectors, [1, 1, 1]/

√
3 . Totally, 300 trials were generated 

each of which at a 1-ms interval from − 1 to 1 s. Each trial 
comprises 1 s of rest (pre-stimulus) followed by 1 s activity 
(post-stimulus). Pre-stimulus contains noise to which inter-
est and interference activities were added in post-stimulus. 
In this study, we used the method of Yeung et al. (2004) 
to generate the trials noise (not using simple white noise). 
Noise component n(r,j) on the jth channel at rth trial, which 
was added to the temporal file of the active sources, was gen-
erated by summation of 50 sinusoidal signals with increasing 
frequencies as follows:

where fi = fi−1 + frand with f0 = 0Hz and frand is a random 
variable uniformly distributed between 0 and 2.5, �n,i is a 
random phase uniformly distributed between 0 and 2π radi-
ans, and Afi

 represents amplitude of sinusoid signals decreas-
ing exponentially with frequency and is given by

where ⌊fi⌋ represents fi rounded down to the nearest integer.
Our signal is an event related potential (ERP) type the 

SNR of which is usually in the range of 3–5 dB, thus we 
defined amplitude of noise so that the ERP SNR became 
4 dB. The ERP signal is shown in Fig. 1d. The Q was com-
puted across all trials from pre stimulus period.

The cross-section of the source activities on the line 
y = 1 mm and y = − 33 mm computed by eiDMR, iDMR, 
undiagonal iDMR, eMVB, and MVB are illustrated in 
Fig. 1a–c. If we define mean of the full-width–half-maximum 

(30)n(r, j) =

50∑

i=1

Afi
sin

(
2�kfi

fs
+ �n,i

)

(31)Afi
= exp(−⌊fi⌋∕25)

(FWHM) for two correlated sources as a metric for assess-
ing the spatial resolution, the values of which for eiDMR, 
iDMR, eMVB are 7, 7, and 42 mm, respectively. This metric 
for MVB and undiaginal iDMR is not computable because, 
as can be seen from Fig. 1c, their output powers never reach 
to their half-maximum value. Based on Fig. 1c, the eMVB 
gives better spatial resolution but less output SNR, in com-
parison to MVB and undiagonal iDMR. However, the more 
output SNR of MVB and undiagonal iDMR is the result of 
more noise in their spatial filter output. Based on Fig. 1a, 
c, proposed method outperforms the others in both aspects 
spatial resolution and output SNR. These superiorities are 
the results of better noise cancellation and accurate time 
course reconstruction. For the third source, Fig. 1b, all five 
algorithms present well results but iDMR obtains the highest 
output SNR. The eiDMR presents the same performance as 
iDMR, meaning source decorrelation is sufficient and there 
is no need for eigenspace-projection.

Also, the image of source power on the plane z = 90 mm 
is shown in Fig. 2 for aforementioned methods. As seen, 
iDMR completely discriminates two sources and together 
with eiDMR obtain the most concentrated power spectrum. 
Whereas, other three methods show two sources with less 
power and more spatial blur. Proposed method shows third 
source with more intense red color because, as shown in 
Fig. 3, its time course has more nonzero values, thereby 
corresponding output power is more. Difference between the 
images of the iDMR and undiagonal iDMR verifies the sig-
nificance of eliminating the sources cross-correlation from 
measurement covariance matrix.

Estimated time courses for all sources are presented at 
Fig. 3. As it is evident, proposed method fully reconstructs 
the time courses in aspects of shape and amplitude. Addi-
tionally, clearer time courses are achieved by iDMR. As a 
result, iDMR/eiDMR can provide higher SNR than the other 
methods. Reconstructed time courses of correlated sources 
by other methods are completely distorted and too much 
noisy. In contrast to iDMR/eiDMR, spatial filter pass bands 
of other methods allow contribution of noise to the time 
course of desired source, resulting in time course suppres-
sion and distortion, which in turn leading to decreased SNR. 
Another advantage of accurate time course estimation is that 
iDMR can be exploited as a localizer with high temporal 
resolution in order of 1 ms.

For understanding the main reason for iDMR high level 
performance, it is better to mention to some facts that 
can be found from shown figures and formulations of the 
algorithm. The one is eigenspace-projection has no role in 
iDMR performance. The only difference between iDMR and 
undiagonal iDMR is using decorrelated source covariance 
matrix in iDMR. The only difference between MVB and 
undiagonal iDMR is using less noisy expressions in the latter 
method data covariance matrix because there are two noisy 
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sentences ��ns and �sn�
T in earlier method sample covari-

ance matrix � (assuming matrix A is constructed correctly). 
Based on the similar results of MVB and undiagonal iDMR 
and also superior performance of iDMR than undiagonal 
iDMR, we can conclude that the main reason for high level 
performance of iDMR and the way for increasing MVB per-
formance to that of iDMR is using data covariance matrix in 
which sources are decorrelated.

Evaluation of iDMR Performance in Comparison to MPZ 
Algorithm

In this scenario, we aim to investigate the performance 
of our proposed method versus another well-known tech-
nique for correlated sources localization, MPZ technique, 
in a somewhat difficult situation. For generation of event 
related field data, four sources were activated; two sources 
with high correlation (corr = 0.9) at left and right primary 
auditory cortex area, one source at somatosensory area, 
and the interference source at the frontal part of the brain 
left lobe. Each source was oriented normal to the cortex. 
Totally, 400 trials each with 400 samples were generated 

with sampling frequency of 600 Hz. For simulation noise, 
we used the resting state MEG recordings which is avail-
able in Brainstorm download page and using it for research 
purpose needs written consent from the MEG Lab. It was 
based on an eyes open resting recordings of one subject 
and recorded at the Montreal Neurological Institute in 
2012 with a CTF MEG 275 system. Experiment included 
two runs of 10 min of resting state recordings with sam-
pling frequency of 2400 Hz. Details of this dataset can be 
found in the tutorial “MEG resting state and phase-ampli-
tude coupling” at Brainstorm tutorial web page. Without 
missing desired information and for decreasing computa-
tional cost, we downsampled data to 600 Hz. This dataset 
was processed based on the Brainstorm tutorial related 
to this data (Tadel et al. 2011). We considered the one 
of the runs for generation ERF data and the other one for 
computing noise covariance matrix. For signal generation, 
noise amplitude was set so that SNR was equal to 0dB 
for averaged ERF data. This amplitude setting was also 
applied to other rest data which is used for noise covari-
ance matrix estimation. The information of rest data, run1, 
such as subject anatomy, cortex and channel file were used 
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Fig. 1  The cross-section of the source activities on the line a 
y = 1 mm and b y = − 33 mm computed by eiDMR, iDMR, undigo-
nal eiDMR, eMVB, and MVB methods, when two highly correlated 
and one interference sources are located at [− 26, 1, 90] mm, [24, 1, 

90]  mm and [− 1, − 33, 90]  mm. For better visualization purpose, 
results of undigonal eiDMR, eMVB, and MVB methods are shown in 
c. The simulated signal at SNR = 4 dB is plotted in d 
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for computing lead field matrices. The generated averaged 
ERF data can be seen from Fig. 4.

Power map results are illustrated in Fig. 5. For MPZ, the 
found location at each iteration is indicated by a green point. 
True source locations in the brain right and left lobes are 
labeled as GT_R and GT_L. Localization results of iDMR 
for the right and left lobes are indicated with iDMR_R and 
iDMR_L, respectively. By considering that four sources are 
activated, MPZ is implemented for six iterations. In Fig. 5, 
the location of found source in each iteration is indicated as 
green point. As it is obvious, proposed method can accu-
rately estimate active source locations with the most spatial 
resolution. MPZ algorithm only can localize somatosensory 
area source (iteration one) correctly. Reconstructed time 
courses are plotted in Fig. 6. For MPZ algorithm, the time 
courses of sources localized at iterations 1–4 are plotted.

Proposed method can perfectly reconstruct time courses 
in aspects of shape and pick to pick amplitude. MPZ 
approach cannot estimate true locations and thereby cannot 
make a spatial filter which is specific for active sources. As 
a bad result, undesired source activities and noise can con-
tribute into desired source activities and so reconstructed 
time courses are far from the true ones in aspects of shape 
and amplitude. The bad effects of interference source are 
evident in MPZ time courses. The single pseudo-Z score 
for six iterations is shown in Fig. 5 with a bar plot. Based on 

these z-scores, one may interpret that two or at most three 
active sources generate ERF data and only considers and 
reports results related to the sources localized at iterations 
1–3, whereas we now that the number of active sources is 
four.

Two reasons can be posed for superiority of iDMR in 
comparison to MPZ. The first one is that iDMR uses RAP-
MUSIC algorithm for source detection whereas MPZ 
employs pseudo-Z score which is MVB-based power local-
izer. Therefore, iDMR in its recursive implementation can 
find more accurate locations for active sources, due to less 
sensitivity of RAP-MUSIC to highly correlated sources. The 
second one is that iDMR results are achieved by two steps 
processing, RAP-MUSIC and then MVB-based power local-
izer. The information of first step helps MVB to compensate 
its weakness point (missing highly correlated sources). Also, 
it is possible that RAP-MUSIC presents locations around the 
true locations not exact locations. In this situation, MVB-
based power localizer tries to enhance first step perfor-
mance and present more accurate information. In addition, 
we define a threshold metric for terminating RAP-MUSIC 
algorithm the value of which is 0.7, thereby it is possible that 
RAP-MUSIC finds more sources than true ones. In this situ-
ation, again, MVB-based power localizer by its high spatial 
resolution can focus on true locations (for observing the two 
last cases, we address enthusiastic readers to real AEF data 

Fig. 2  The image of source power on the plane z = 90  mm for 
eiDMR, iDMR, undiagonal eiDMR, eMVB, and MVB, when two 
sources with correlation of 0.9 are located at [− 26, 1, 90] mm and 

[24, 1, 90]  mm and one interference source (uncorrelated with two 
others) is located at [− 1, − 33, 90] mm
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analysis scenario). Overall, we can say that these two steps 
are necessary and complement each other.

In the following, we applied iDMR method for localiza-
tion of data when data trial number varied from 20 to 400 
in steps of 60 to evaluate the effect of number of trials on 
the iDMR performance. The cortex activity map is shown 
in Fig. 7.

Although, for low trial numbers, the iDMR cannot place 
active sources in their true locations, it provides accurate 
results for high number of trials. When the number of trials 
is low, a stable and accurate data covariance matrix cannot 
be provided. As a result, estimated signal subspace would be 
far from true signal subspace which in turn leads to decrease 
the RAP-MUSIC ability for finding active locations. There-
fore, iDMR performance is deteriorated. Low trial number 
is not only a problem for iDMR. Every localization method 
relying on the data covariance matrices needs to have enough 
trials for suitable estimation of the data covariance matrix.

Evaluation of iDMR with Real AEF Data

To test performance of the iDMR with experimental data, 
AEF dataset which is available from the BrainStorm 
 toolbox1 was analyzed. This dataset was acquired from one 
subject and with two acquisition runs of 6 min each. Sub-
ject stimulated binaurally with intra-aural earphones (air 
tubes + transducers). Each run contains 200 regular (stand-
ard) beeps (440 Hz) 40 easy deviant beeps (554.4 Hz, 4 
semitones higher). Data acquisition was done at 2400 Hz, 
with a CTF 275 system, subject in sitting position. This 
data was recorded at the Montreal Neurological Institute in 
December 2013. Without losing desired information and for 
easier analysis on a regular computer, data was downsam-
pled to 600 Hz.

We preprocessed data using Brainstorm software, based 
on tutorials provided for this dataset and are available on this 
software web site (Tadel et al. 2011). Also, we used infor-
mation of this dataset for computing lead field matrices. We 
only used first acquisition run and data related to standard 
beeps because of having more epochs. Used dataset which 
was averaged over 200 trials is plotted in Fig. 8. Empty 
room recording, 30 s long, was used for noise covariance 
estimation.

Regarding that, eye blinks and movements, muscle 
artifacts were removed with SSP (Signal-Space Projec-
tion), one delicate point should be taken into considera-
tion. Since the signal-space projection modifies the signal 

vectors originating in the brain, it is necessary to apply the 
projection to the forward solution in the course of inverse 
computations. Hence, we applied SSP projectors to lead 
field matrices and then performed first step of iDMR, 
RAP-MUSIC. Then, for generating of iDMR data covari-
ance matrix, we also employed projected noise covariance 
matrix.

The RAP-MUSIC finds seven sources, locations of which 
are shown in Fig. 9a, b. As one can see from Fig. 9, RAP-
MUSIC over-selects active sources, meaning finds seven 
sources when there are two active areas, left and right pri-
mary auditory cortex. This is because of the threshold value, 
0.7, which is lower than it is required. In addition, RAP-
MUSIC does not position sources in their locations but does 
around 2–4 cm far from those. Based on the RAP-MUSIC 
results, the iDMR data covariance matrix is constructed. 
Then this matrix is uploaded in Brainstorm for localization 
purpose.

The results of iDMR power maps, are shown in Fig. 9c, 
d. In contrast to RAP-MUSIC, iDMR can find active loca-
tions in primary auditory cortex. This result verifies this idea 
that even if over-selection or misplacing or both of them 
(as is the case for this scenario) occur for RAP-MUSIC, 
second step of iDMR, power based localizer of MVB, can 
compensate it and present more accurate results. As a result, 
it can be interpreted that iDMR is not so sensitive to hyper 
parameter of RAP-MUSIC, threshold value for algorithm 
termination. However, we offer setting termination value to 
0.7 because value too larger (for example 0.9) may be cause 
under-selection phenomena to occur by RAP-MUSIC. The 
under-selection can degrade second step performance of 
iDMR because we know that MVB-based localizers only 
can detect sources information of which exist in data covari-
ance matrix. However, as real dataset demonstrates, over-
selection which is a consequence of lower threshold value 
is not as destructive as under-selection.

Time courses of left and right primary auditory cortex are 
plotted in Fig. 9e, f. Although, the responses of right and left 
auditory cortices are highly correlated, the right response 
is not as strong as left one. This fact also can be observed 
in power map results, Fig. 9c, d. These binaural auditory 
stimulations should be generating similar responses in both 
left and right auditory cortices at early latencies. Possible 
explanations for this observation maybe justified by possible 
reasons presented by brainstorm web page:

(1) The earplug was not adjusted on the right side and the 
sound was not well delivered.

(2) The subject’s hearing from the right ear is impaired.
(3) The response is actually stronger in the left auditory 

cortex for this subject.
(4) The orientation of the source makes it more difficult for 

the MEG sensors to capture.

Fig. 3  For “Evaluation of iDMR performance in a Z-plane” scenario: 
estimated time courses by eiDMR, iDMR, undiagonal iDMR, eMVB, 
and MVB approaches for correlated sources (first and second col-
umns) and interference source (third column). True time courses are 
shown in red color

◂
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However, simulation results and real data one guaran-
tee the applicability of iDMR for localization, time course 
reconstruction of highly correlated sources.

For real data, noise covariance and gain matrices were 
needed to be projected onto the null-space of data artifacts. 
Hence, we computed the iDMR data covariance matrix and 
then uploaded it into brainstorm software. After that, we 
applied the beamformer in the brainstorm which carried 
out the projection. The colormap scales are based on the 
brainstorm scale (not normalized to scale 1).

The Fig. 9c, d were plotted in brainstorm by constraint 
orientation approach. The widespread scatter in the locali-
zation results of iDMR is due to the orientation constraint 
on the dipoles orientations. Each value on the cortex 
should be interpreted as a vector, oriented perpendicu-
lar to the surface. Because of the brain’s circumvolutions, 
neighboring sources can have significantly different orien-
tations, which also causes the forward model response to 
change quickly with position. As a result, the orientation-
constrained solution can produce solutions that vary rap-
idly with position on the cortex resulting in the noisy and 
disjointed appearance (Tadel et al. 2011).

For data exploration, orientation-constrained solutions 
may be a good enough representation of brain activity, 
mostly because it is fast and efficient.

Fig. 4  The averaged ERF signal at 0 dB, when two highly correlated 
sources at left and right primary auditory cortex and one uncorrelated 
source in somatosensory area and one interference source in frontal 
part of left lope are activated
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Fig. 5  For “Evaluation of iDMR performance in comparison to 
MPZ algorithm” scenario: power computed by iDMR is mapped on 
the left (iDMR_L) and right (iDMR_R) lobes. MPZ_i shows loca-
tion of detected source in iteration i. Scores of single pseudo z for 
six iterations are shown by bar plot. True locations of active sources 
are shown with labels GT_L and GT_R. iDMR can successfully find 

active sources locations while MPZ can only find somatosensory area 
source. The results of bar plot indicates that single z_score can only 
inform about existence of at most three active sources while there are 
four active ones. The power of vertices are divided by the maximum 
power so the color-bar represents no unit for its values
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In the following, we applied iDMR method for localiza-
tion of real data when data trial number varied from 20 to 
200 in steps of 60 to evaluate the effect of number of trials 
on the iDMR performance. The cortex activity map is shown 
in Fig. 10. For low trial number, iDMR fails in localization 

of AEF data whereas by increasing the trial number iDMR 
performance is increased.

The real data is low SNR itself. Thus, it is needed to com-
pute the data covariance matrix across many trials to achieve 
a stable and more accurate data covariance matrix and there-
fore more accurate signal subspace for RAP-MUSIC. Hence, 
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Fig. 6  For “Evaluation of iDMR performance in comparison to MPZ 
algorithm” scenario: estimated time courses by b iDMR and c MPZ 
approaches for correlated sources (first and second rows), somatosen-

sory source (third row) and interference source (fourth row). True 
time courses are shown with red color (a)
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it is better not only for iDMR but also for other methods 
using data covariance matrix to employ more trials and 
observations, as possible.

Discussion

Our aim in this study was to apply the indirect dominant 
mode rejection (iDMR) approach to data produced by activa-
tion neural sources and to investigate its performance while 
complicated conditions such as existence of correlated and 
interference sources were taken into account. According to 
the results of implemented scenarios, iDMR shows its supe-
riority to traditional beamformers MVB and eMVB and also 
new version one MPZ which is developed for dealing with 
correlated sources.

We implemented scenario “Evaluation of iDMR perfor-
mance in a Z-plane” to understand the key reason for high 
level performance of proposed method. We understood the 
results of iDMR were the same as that of eiMR and also the 
results of undiagonal iDMR were similar to that of MVB. 
Therefore, we concluded that the main reason for excellent 
performance of iDMR and also the way for increasing the 
MVB perfprmance to that of iDMR is using data covari-
ance, for weight matrix, in which source covariance matrix 
is decorrelated.

Ground Truth Trials: 20

Trials: 80 Trials: 140

Trials: 200 Trials: 260

Trials:320 Trials:400

Fig. 7  Investigation of iDMR performance in localization of simula-
tion data of scenario 2 when number of trials varies from 20 to 400 
in steps of 60. Ground truth is shown for comparison purpose. The 

power of vertices are divided by the maximum power so the color-bar 
represents no unit for its values
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Fig. 8  AEF dataset related to standard beeps. This dataset is recorded 
with a CTF 275 system and averaged over 200 trials
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As seen from Fig. 1, based on the FWHM metric, iDMR 
and eiDMR obtained spatial resolution 7 mm for corre-
lated sources while this value for eMVB was 42 mm and 

undiagonal iDMR and MVB never reached to their FWHM 
value. As it is evident at Fig. 3, only iDMR and eiDMR 
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Fig. 9  For “Evaluation of iDMR with real AEF data” scenario: a and 
b illustrate the sources found by RAP-MUSIC for left and right brain 
hemispheres. c and d Present localization results of iDMR for left and 
right auditory area. e and f Plot the absolute of time courses of left 
and right auditory areas. Locations of left and right auditory sources 

are indicated by green points. For auditory data, color-bar values rep-
resent the power localizer values in which the numerator and denomi-
nator of power localizer cancel each other units so the color-bar has 
no units

Fig. 10  Investigation of iDMR performance in localizing real AEF 
data when number of trials varies from 20 to 200 in steps of 60. 
Green circles existing in right-bottom maps show the primary audi-

tory cortex area. Color-bar values represent the power localizer val-
ues in which the numerator and denominator of power localizer can-
cel each other units so the color-bar has no units
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correctly reconstructed active source time courses in both 
aspects shape and amplitude.

We ran the second scenario “Evaluation of iDMR perfor-
mance in comparison to MPZ algorithm” to compare results 
of iDMR with MPZ method. The latter is known as a suit-
able technique for dealing with correlated sources. MPZ uses 
an MVB based recursive procedure for source localization 
while iDMR performs two step processing, RAP-MUSIC 
and MVB-based localizer. As a result, iDMR can better han-
dle the correlated sources problem. As illustrated in Fig. 5, 
iDMR was able to place AEF, SEF, and interference sources 
in their correct positions whereas MPZ only could do this 
for SEF one. In contrast to MPZ, iDMR could accurately 
estimate time courses, Fig. 6.

As a final step, we applied iDMR on real AEF dataset 
which is available in brainstorm website.1 Proposed method, 
iDMR, was able to localize right and left primary auditory 
cortices, Fig. 9. This scenario results demonstrate that even if 
over-selection or misplacing or both of them occur by RAP-
MUSIC, iDMR can handle it and neglect spurious sources 
with its second step process, meaning MVB-based localizer. 
As a result, iDMR is not so sensitive to hyper parameter of 
RAP-MUSIC, threshold value for algorithm termination.

The proposed method only modifies the data covari-
ance matrix and other elements of which are the same as 
other MVB-based localizers. Thus, one can use iDMR data 
covariance matrix for power-based localizers (Moiseev et al. 
2011), eigenspace-projection MVB (Sekihara et al. 2001), 
maximum contrast beamformer (Chen et al. 2006) and many 
other MVB-based algorithms.

In real AEF dataset scenario, we used the empty room 
noise for computing Q and proper results were obtained. 
However, since iDMR rebuilds the data covariance matrix 
using Q, it is better to use rest data recorded before the task, 
for a few minutes. By doing so, we have a data covariance 
matrix which is similar to original data covariance matrix 
(5) besides that the sources are decorrelated.

The main idea of iDMR for handling correlated and inter-
ference sources is decorrelating source covariance matrix. 
Hence, one maybe interested to use this feature but replace 
RAP-MUSIC with other algorithms such as FINES tech-
nique which is shown using EEG simulation data that can 
deals with correlated sources better than RAP-MUSIC (Xu 
et al. 2004).

Employing RAP-MUSIC, due to using a recursive search 
throughout the brain, increases computational effort, espe-
cially with an increasing number of sources. In a detailed 
view, implementing iDMR not only requires V  beamformer 
computations (V is the total number of vertices) but also 
employs V × L RAP-MUSIC computations to estimate 
matrix A (L denotes the total number of sources found by 
RAP-MUSIC). As an alternative choice for RAP-MUSIC 
may source separation algorithms grouped in categories 

independent component analysis (ICA) (Hyvärinen et al. 
2004) and dependent component analysis (DCA) (Xiang 
et al. 2015) be useful for determining matrix A. Using these 
algorithms in iDMR can be a topic for future work.

Conclusion

In this work, we investigated the application of iDMR for 
spatio-temporal reconstruction of neural activities. In situa-
tions where the presence of correlated sources or the exist-
ence of an interference source can cause an adverse effect 
particularly in reconstructing the time course of sources, 
iDMR by removing the cross correlation information from 
the source covariance matrix outperforms MVB, eMVB, 
and MPZ algorithms. Through the results acquired from 
the numerical experiments on both EEG and MEG data 
and empirical experiment on AEF data it can be understood 
that iDMR is superior in terms of temporal and spatial reso-
lution, time course reconstruction, and output SNR, with 
respect to MVB, eMVB, and MPZ.
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