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Introduction

Applications of machine-learning techniques for neurosci-
ence data, triggered much by developments in functional 
magnetic resonance imaging (fMRI) methodology, have 
gained a strong momentum in recent years. Group-level 
analysis of fMRI data, for example, directly infers the latent 
structure of processes in resting-, task-, or disease-states 
from multiple subjects concurrently (e.g., Calhoun and 
Adali 2012). This technique has been extremely successful 
due to its ability to specify and disambiguate the activity of 
otherwise simultaneously active functional networks of the 
brain. Similar applications have been developed for electro-
encephalography (EEG) data; however, these techniques are 
not that widely used yet. The fast-paced changes in neural 
states that characterize EEG recordings, along with inter-
individual variations in scalp topographies as a result of 
differences in neuroanatomy, create a vast space of different 
scenarios to which no simple and generic solution exists so 
far (Makeig et al. 2004). Nonetheless, in recent years a num-
ber of methods have been proposed that altogether address 
the majority of possible scenarios, and thorough evaluations 
support their validity as methods for the estimation of func-
tional networks from EEG data.

Here, we will discuss these different scenarios and how to 
address them by introducing a variety of current approaches 
for group-level component analyses of EEG data. We will 
start out with an overview of currently available approaches, 
focusing on a description at the conceptual level rather than 
elaborating on mathematical specifics or the computational 
implementation. Thereafter, the discussion of methods will 
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be guided by the formulation of specific scenarios com-
monly encountered in EEG. To illustrate these scenarios, 
simulations are provided that vary EEG characteristics such 
as temporal variability of stimulus-evoked activity or topo-
graphical distributions of scalp potentials across subjects. 
This review is accompanied by code snippets to explore 
these scenarios and apply selected methods for group-level 
decomposition, thereby giving this synopsis also a tutorial 
character.

Aims and Methods

EEG constitutes measurements from a number of elec-
trodes attached to a person’s scalp, with each single elec-
trode recording a mixture of activity patterns from several 
concurrently active brain regions. A number of algorithms 
have previously been applied to EEG data to recover or 
isolate activity patterns of underlying brain sources or net-
works, thereby effectively demixing the original record-
ings according to specified assumptions. Classic examples 
for the analysis of single subject data sets are EEG source 
reconstruction (aka inverse modeling; e.g., Michel et al. 
2004), principal component analysis (PCA; e.g., Skrandies 
1993), or independent component analysis (ICA; Makeig 
et al. 2004; Delorme et al. 2012). Especially the latter, ICA, 
has gained much momentum for its ability to isolate and 
subtract activity associated with eye artifacts from genuine 
brain activity. ICA assumes that the observed variables (e.g. 
EEG channels) are linear mixtures of independent sources 
(brain regions or networks), and uses higher-order statistics 
to demix the original recordings. ICA then provides us with 
a number of source estimates, where each source is char-
acterized by a time course that is maximally independent 
from all other source time courses, and a component topog-
raphy that specifies how strong a given source contributes 
to the EEG recordings at each single channel. Please refer 
to Onton et al. (2006) for a more detailed explanation of 
the generative model of ICA and its application to EEG. 
In comparison to ICA, PCA merely decomposes the data 
to linearly uncorrelated variables, thereby leaving room for 
non-linear dependencies between component time courses. 
These and other methods have been proven very useful for 
the analysis of EEG data. One major problem, though, is that 
the latent structure estimated from single subject data sets 
does not directly generalize across subjects. This, however, 
is exactly what we are most often interested in, since the 
majority of our statistical analyses aim at inferring proper-
ties of a population.

Two general approaches can be differentiated that address 
this issue. First, the clustering of components estimated from 
EEG data of different subjects has been applied to identify 
groups of similar components expressed within a sample. 

Second, a class of algorithms has been brought forward that 
rather relies on the concatenation of single-subject data sets 
to large matrices from which a latent structure of sources is 
estimated that is representative for the sample as a whole. 
In the following, we will shortly describe the general ideas 
behind applications proposed so far, and later illustrate their 
individual strengths and limitations in context of specific 
scenarios.

Across Subject Component Clustering

For across subject component clustering, the individual 
components are first derived for each single subject (e.g. 
via algorithms implemented in common toolboxes for EEG 
processing, such as EEGLAB or Fieldtrip; e.g., Onton 
et al. 2006). These components are then grouped together 
across subjects based on their similarity. The general idea 
is to define a set of features characterizing a component, 
e.g. its topography, spectral profile, or activity patterns 
averaged across trials in the time domain (i.e. the event-
related response), and to match components across subjects 
to groups with highly similar feature profiles. Viola et al. 
(2009), for example, developed an EEGLAB plug-in (COR-
RMAP) that matches individual components to a template 
based on correlations of the components’ scalp topogra-
phies. The pre-defined template topography simply mimics 
the common topography usually seen with eye-artefacts, i.e. 
high and symmetric loadings at frontal electrodes close to 
the eyes (e.g., FP1, FP2), with otherwise uniformly low load-
ings elsewhere. Wessel and Ullsperger (2011) developed this 
idea further by additionally taking the temporal evolution of 
template and test components into account. This procedure is 
also available as an EEGLAB plug-in (COMPASS). Further-
more, EEGLAB itself provides procedures to cluster compo-
nents obtained from different subjects into groups using dif-
ferent algorithms (e.g. k-means cluster analysis; more details 
can be found here: http://sccn.ucsd.edu/wiki/). Using a very 
basic k-means clustering for example, k clusters could be ini-
tiated by randomly choosing k independent components as 
representative cluster means. Then, each single component 
is iteratively assigned to the cluster it is most similar to, con-
secutively updating the corresponding cluster’s mean feature 
vector after each assignment for the following iterations. A 
common measure to determine similarity (or dissimilarity) 
is the Euclidian distance, which simply is the root of the 
sum of the squared differences between the feature vectors 
of the cluster mean and the test component. Thus, the lower 
this distance measure, the higher the similarity. Procedures 
based on these kinds of clustering have successfully been 
applied for the identification of artifacts (e.g., Viola et al. 
2009; Wessel and Ullsperger 2011), or genuine neural pro-
cesses such as fronto-medial dynamics of working memory 
(Onton et al. 2005). Bigdely-Shamlo et al. (2013) further 
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advanced component-clustering in their measure projection 
analysis method. Here, functional domains are identified in 
a template brain that represent a mapping of (a) the spatial 
proximity of independent components after localization, and 
(b) a measure quantifying the similarity of component activ-
ity patterns for each voxel in the brain. Measure projection 
analysis thus constitutes an elegant statistical method the 
integration of source-localized EEG measures across data 
sets within a brain imaging framework.

Clustering procedures are very powerful, yet they usually 
depend on informed user input, which limits their applica-
bility in context of multi-subject EEG analyses. Since the 
user has to define and derive the variables that constitute 
the feature vector, user choices can dramatically change the 
outcome of the clustering procedure. It is also not uncom-
mon that most component clusters only receive contributions 
from a subset of all subjects, a situation that significantly 
complicates and hampers statistical assessments and conclu-
sions at the group level. For the remainder of this review, we 
will therefore focus on procedures that concurrently infer a 
common or most representative source structure from the 
sample as a whole, thereby naturally generalizing to the 
group-level.

Multi-subject Data Decomposition

A growing number of applications aims at directly inferring 
the latent structure of sources driving scalp EEG record-
ings concurrently from multi-subject data sets. The common 
characteristic here is that the data sets of several subjects 
are concatenated to build a new data structure to which a 
source separation algorithm is applied. Inherent to most 
of these techniques is a data reduction step to render the 
problem computationally feasible. Whereas some of these 
procedures work on time series data, others can be applied 
in the frequency domain, thus also enabling the analysis of 
induced or even spontaneous EEG activity. We will start by 
first introducing some procedures working on the EEG in 
the temporal domain. Then, we will address applications 
that work on EEG spectra, i.e. EEG as characterized by its 
frequency-specific content. Figure 1 provides a schematic 
overview of data organization and processing for each of the 
approaches described below.

Multi‑level Group ICA (mlGICA)

Eichele et al. (2011) proposed a combination of two data 
reduction steps, followed by ICA, for the analysis of multi-
subject time-series data. Specifically, each single-subject 
data set containing the single-trial EEG first undergoes 
data reduction via PCA. Then, the selected principal 

components of all subjects get concatenated vertically to 
form a large matrix of the size (S × C) × (T × L), where S 
and C indicate the number of subjects and components of 
the single-subject PCA, and T and L the number of trials 
and the number of data points per trial, respectively. This 
necessitates that the subject-specific data sets are of the 
same size, i.e. they contain the same number of trials, and 
that the order of trials with respect to the conditions they 
belong to is consistent across data sets as well. A sec-
ond PCA is computed on this concatenated data matrix, 
again selecting a certain number of components, to which 
finally ICA is applied. Resulting group independent com-
ponents represent statistically independent sources rep-
resentative for the sample as a whole. It is possible to 
back-reconstruct independent component time-courses and 
spatial maps for each subject individually, since individual 
demixing-matrices can be constructed from the two PCA 
and the ICA coefficient matrices, then applying them to the 
individual EEG time-courses (for details see Eichele et al. 
2011; Huster et al. 2015).

Note that PCAs are commonly used as processing steps 
prior to ICA for two reasons: first, by finding uncorrelated 
components, PCA simplifies the problem to be solved by 
ICA, because pair-wise dependencies of principal compo-
nents are already reduced. Also, PCA is commonly used 
for data reduction by selecting only a certain number of 
components for further processing, e.g. the first × com-
ponents that altogether explain 90% of the variance of 
the data set. Starting out with 64-channel recordings of 
30 participants, for example, without any data reduction 
a total of 1920 components would have to be processed 
and later analyzed and eventually interpreted. However, 
it is not uncommon that about 10–20 components explain 
about 90% of the variance of an EEG recording, and that 
the number of components at this percentage is similarly 
high for the second or group-level PCA. Thus, a common 
procedure is to extract the same number of components at 
both the single-subject and the group-level, thereby sig-
nificantly reducing the computational complexity of the 
analysis, as well as simplifying the actual interpretation of 
the data. However, data reduction always entails the risk 
of disregarding activity patterns of potential interest that 
might be represented in the unselected principal compo-
nents, and we will discuss this issue in a bit more detail 
in context of certain use-cases. Also, the combination of 
data organization (stacking the subjects along the spatial 
dimension, i.e. the dimension originally representing elec-
trodes) causes the PCA to identify correlational patterns 
across subjects and trials, resulting in a bias of this method 
towards event-related activity (Huster et al. 2015). More 
precisely, induced activity that is not strictly time-locked 
across trials necessarily also varies across subjects, caus-
ing low correlations of corresponding activity patterns.
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Temporal‑Concatenation Group ICA (tcGICA)

Cong et  al. (2013) formalized a related procedure, but 
instead of a spatial concatenation as in mlGICA, the data 
are concatenated in the temporal dimension. Hence, EEG 
data sets of different subjects are not stacked along the 
dimension representing the channels, but rather are concat-
enated temporally, such that the resulting matrix is of size 
E × (S × T × L). Here, E represents the number of electrodes, 
and S, T, and L are defined as above (S = number of subjects; 
T = number of trials; L = number of samples per trial). Note 
that T and L are allowed to vary for different subjects, mean-
ing that there is no restriction to have the same number of 
trials over subjects. Generally speaking, one may as well 
concatenate recordings of spontaneous EEG (e.g., resting 
state activity) of different subjects. This composite data 
matrix then is subjected to ICA (with or without previous 
PCA). Each of the resulting group independent components 
is defined by a common map and the time-courses of the 
different subjects, which can easily be extracted or aggre-
gated for further processing. Inherent to this procedure is 
the assumption that the mixing matrix, i.e. the number of 
sources and how these sources in the brain project to elec-
trodes, is constant across subjects. This means that differ-
ences in the scalp distribution (or topography) of a given 
event-related response across subjects represent or contrib-
ute to conditions violating this assumption. Consequently, 
there is no representation of individual component topog-
raphies. On the other hand, since the decomposition works 
along the temporal dimension, this procedure is sensitive to 
evoked, induced, as well as spontaneous activity.

Temporal Group‑UWSOBI

Lio and Boulinguez (2016) devised and evaluated another 
approach relying on the joint diagonalization of time-lagged 
covariance matrices. Specifically, for each single trial of a 
subject’s data set a covariance matrix is computed relating 
each channel to all other channels; in addition, this proce-
dure is repeated with lagged time-series by shifting the data 
by one time point per iteration. Then, these lagged covari-
ance matrices are averaged across trials for every subject, 
and consecutively also across subjects. At last, these group-
level covariance matrices (e.g., 50 in case of 50 lags) are 
subjected to a joint diagonalization to estimate the demix-
ing matrix. Although this procedure does not allow for the 

estimation of individual component or source topographies, 
it was shown that it resulted in good representation of source 
constellations at the group-level. Specifically, the authors 
extensively simulated EEG data with strongly varying source 
constellations (i.e. with inter-individual differences in source 
locations and source orientations) in different regions of the 
brain, and compared decompositions for group-UWSOBI 
and temporal-concatenation group-ICA (tc-GICA). It was 
found that group-UWSOBI showed better performance 
regarding both the quality of waveform estimation as well 
as the precision of source localization, regardless of the 
exact number of subjects used for group-level decomposi-
tion. Interestingly, the evaluation showed that the number 
of subjects needed for a satisfactory source reconstruction 
differs across the regions of signal origin in the brain, with 
larger groups needed in regions such as the dorsolateral 
prefrontal cortex or the temporo-parietal junction. It can be 
speculated that this may be due to the special morphology of 
these regions, where slight variations of cortical shape may 
cause signal cancellations when averaging across subjects.

Multi‑way Decomposition for Time–Frequency 
Transformed EEG

In many cases we might not be interested in time-domain 
data, but rather in frequency-specific changes of activity pat-
terns over time. The ERPWAVELAB toolbox (Mørup et al. 
2007), available as an EEGLAB plug-in, has been developed 
with this in mind. Note that the previously introduced pro-
cedures mostly work on matrices (two-dimensional arrays, 
with dimensions representing channels and time points, and 
the data of subjects being concatenated to one larger two-
dimensional array). Computing a time–frequency transform 
of plain time series data adds another dimension though 
(channel, time, and frequency per subject), so that the gen-
eralization of the previously described methods to this sce-
nario is not trivial. However, the ERPWAVELAB toolbox 
not only provides the possibility to compute time–frequency 
transforms and derive various measures from it (such as 
amplitude- or coherence-based measures to compare chan-
nels or trials), but it also implements algorithms to decom-
pose such multi-dimensional data sets. Implementations rely 
on the PARAFAC (Carroll and Chang 1970) and TUCKER 
(Tucker 1966) decompositions, which are generalizations 
of decomposition techniques such as PCA, ICA, or the sin-
gular value decomposition. These generalizations can well 
be applied to multi-way arrays (tensors) with more than two 
dimensions. This makes the decomposition of multi-subject 
time–frequency data possible by applying the algorithms to 
tensors of high order, e.g. covering time, frequency, channel, 
and subject. Although the toolbox is optimized to work an 
aggregate data per subject, such as the event-related spec-
tral perturbation (ERSP; Delorme and Makeig 2004), the 

Fig. 1  Schematic depiction of basic data organization and processing 
steps for each of the group-level decomposition approaches discussed 
in this overview. Schematic workflows for multilevel group ICA and 
temporal-concatenation group ICA were adapted from Huster et  al. 
(2015), and that for temporal group UWSOBI was adapted from Lio 
and Boulinguez (2016)

◂
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general framework does allow for the inclusion of single 
trial data as well. Other than that, the outcome is compara-
ble to the group ICA approaches, where the components are 
characterized by their topographies (scalp distribution) and 
activity profiles (in time and frequency). The reconstruction 
of individual topographies and activity patterns, as well as 
the comparison of groups of subjects has also already been 
implemented in the toolbox.

Spatiospectral Group ICA

Similar to the previous approach, Bridwell et al. (2016) 
developed a procedure for the analysis of EEG spectra, or 
more specifically, the characterization of epoched EEG by 
amplitudes at different frequencies. This approach again 
applies blind source separation to a 2-dimensional matrix, 
constructing it slightly differently though. The amplitude 
spectra of a given subject are stacked across trials, generat-
ing a [T × (F × E)] matrix, where T corresponds to trials, F 
to frequencies, and E to electrodes. From here, this approach 
very much follows the procedure described for multi-level 
group ICA, and is also implemented in the EEGIFT toolbox. 
Thus, these subject-specific matrices are subjected to a PCA, 
then the selected components of all subjects are concate-
nated vertically (along the dimension originally representing 
trials), and the group-level PCA and ICA are computed con-
secutively. This spatiospectral analysis therefore is conceptu-
ally closer to spatial group-level analysis as applied to fMRI 
data than it is to the temporal decomposition usually com-
puted on EEG data. An observed spatiospectral EEG map 
within a given trial/epoch is comparable to a spatial fMRI 
map for a given TR, where each map represents a linear 
mixture of statistically independent source maps. Thus, we 
receive spatiospectral source maps alongside their temporal 
profiles (changes across trials). This procedure may be espe-
cially well-suited for the analysis of ongoing brain activity 
in the absence of task-related stimulation, since frequency 
content is naturally aggregated across time. Although ini-
tially Infomax ICA was applied to decompose the data, 
the authors now tested a variety of different blind source 
separation algorithms for use in this framework (Bridwell 
et al. 2016). COMBI (Tichavský et al. 2008), a combination 
of FAST ICA (EFICA) and weights-adjusted second-order 
blind identification (WASOBI), also proved to be a powerful 
candidate for the decomposition of EEG data.

The Wider Picture

Many studies use similar approaches, some of which were 
published even before the frameworks discussed above were 
presented in a more formalized fashion. For example, Kova-
cevic and McIntosh (2007) set up a group ICA with temporal 
concatenation already earlier, and used it in combination 

with partial-least square analysis to assess task-dependent 
changes in independent components. Congedo et al. (2010) 
computed ICA on the grand-averaged, complex spectral 
Fourier matrices. Ramkumar et al. (2014) combined sin-
gle-subject and group PCA (as in multilevel group ICA) to 
compute an ICA on time–frequency transformed data, where 
input variables were either based on reconstructed cortical 
sources or time points. Similarly, we recently used multi-
level group ICA and time–frequency decomposed data using 
channels as input variables to derive features for single-trial 
classification (Huster et al. 2017). Thus, the frameworks dis-
cussed above are flexible and can easily be adapted further 
for more sophisticated analyses. However, the growth of this 
field at this moment seems to be constrained by the rather 
low number of software packages that offer relevant applica-
tions out of the box.

Problem Analysis and Structure

When reconstructing the neural source activity patterns 
via methods for the decomposition of multi-subject data, 
care has to be taken to choose the most appropriate method 
and to adapt it to the research question at hand. Thus, let us 
shortly consider several scenarios one might encounter. In 
terms of neural processes under study, at least two dimen-
sions should be considered: first, the temporal characteris-
tics of neural responses, i.e. whether the neural activity of 
interest is evoked, induced, or spontaneous; and second, the 
homogeneity of the structure of latent processes across the 
sample. In addition, we may or may not be interested in the 
reconstruction of single-subject source patterns in addition 
to group-level activity, for example to compare two groups, 
or to study the variability of a neural process across the 
whole sample.

As to the temporal characteristics of EEG, recorded neu-
ral activity could be either spontaneous, that is the EEG was 
measured in the absence of any task or external stimula-
tion, or there were external and/or internal events to which 
the brain responded. In the latter case, evoked and induced 
activity is differentiated (e.g., Makeig et al. 2004). Evoked 
activity refers to neural activity that occurs strictly phase- 
or time-locked relative to an event, i.e. the temporal profile 
is about the same for all repetitions of that event, which for 
example implies that there is only little variability in onset 
times or peak latencies. With induced activity, on the other 
hand, exactly the opposite is the case: onset and peak times 
do vary across repetitions, causing low or non-significant 
correlations of the time series over corresponding trials. 
Note also that the detrimental effects of temporal jittering 
on signal averaging become more pronounced with higher 
frequencies. Whereas a jitter of peak amplitudes by 10 ms 
does not strongly affect the event-related potential of low 
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frequency activity such as the N2 or P3, the frequency peaks 
of which are in the range of upper delta (< 4 Hz) and lower 
theta (4–8 Hz). However, such a response jittering at 50 Hz 
may lead to cancelations during averaging since 10 ms dif-
ference from one trial to the next corresponds to a phase 
inversion. As we will see later, data organization and pre-
processing strongly affect the sensitivity of a method to these 
different neural activity profiles.

With respect to the homogeneity of the latent structure 
across the sample, two aspects are worth considering. On 
the one hand, most of our inferences and cognitive models 
generalize to the level of populations, inherently assuming 
that the number and nature of (cognitive) processes is the 
same for different individuals. Also, these processes are 
assumed to originate from the same brain regions or net-
works. Obviously, this is an oversimplification known not 
to be true. Individuals may rely on different strategies for 
task processing, engage brain structures in slightly different 
constellations, or may even vary in the number of differen-
tiable sources or processes that contribute to performance. 
Not least, individual differences in brain morphometry cause 
differences in the topography of scalp potentials. Individu-
als differ with respect to the positioning of cytoarchitectural 
areas in the cortex, or specifically its gyri and sulci. This 
leads to variations in the orientation of current dipoles rela-
tive to the scull, thereby shifting scalp potential distribu-
tions. These factors translate to differences in the mixing 
matrices of different subjects, since the mixing matrix also 
codes the projection of the source activity patterns to the 
scalp electrodes.

At last, the research question at hand dictates whether 
one wants to work with the estimated multi-subject com-
ponents or sources exclusively, or whether there is need to 
reconstruct the source activities for individuals (or groups 
thereof). This aspect is only partially independent from the 
previous one, the homogeneity of the latent structure. As 
explained earlier, group-level decomposition rests on the 
assumption that there is a common underlying structuring 
of the latent processes of the sample. Let’s consider the two 
most extreme cases. On the one hand, all subjects could rely 
on the exact same source constellation (identical numbers 

of sources, qualitatively the same processes, identical tem-
poral profiles, etc.), such that a multi-subject decomposition 
and the estimated group-level components or sources would 
perfectly represent the sample characteristics. The other 
extreme would be that all subjects show a unique constella-
tion, i.e. no two subjects would exhibit an identical source 
(in terms of a cognitive process, brain region, or network); 
in this case there simply is no common structure which 
could be considered representative for the sample. In most 
cases the truth will be somewhere in-between: in many task-
contexts, such as plain speeded response tasks, early sen-
sory or motor processes are very similar across individuals, 
whereas in more complex-decision making tasks, processes 
in-between sensory evaluation and response generation leave 
more room for inter-individual variability. In any case, many 
research questions aim to compare not only conditions, but 
also different groups, such as healthy controls and clinical 
samples. Thus, in some cases we need to be able to recon-
struct and group individually-reconstructed sources to com-
pare corresponding sources between groups quantitatively, 
or even to assess differences in the latent structure between 
groups in its entirety.

Use-Case Examples

Based on the considerations of the previous section, we will 
now discuss some of the most common analysis scenarios, 
structuring the discussion according to the neural activity 
patterns under study. We will further need to take the homo-
geneity of the latent structure across subjects into considera-
tion. Needless to say that the previously discussed case of 
a perfect non-overlap of the latent structure across subjects 
(i.e., utterly distinct source neural activity patterns for each 
subject) would preclude the application of any multi-sub-
ject decomposition. However, it is fair to assume that this 
is a very unlikely case as long as participants process the 
same task (or more generally put: recordings are taken in 
similar mental states). Figure 2 provides an overview of the 
previously discussed methods and a rough guide to what 
scenarios each method covers. This is not meant to be an 

Fig. 2  Overview of the differ-
ent approaches and possible 
scenarios in terms of data char-
acteristics and analysis goals
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exhaustive overview, but should rather serve as a starting 
point for the reader’s considerations.

To illustrate some of the concepts, a set of simulations 
was generated that represent three sources with activity at 
8, 20, and 40 Hz, and fronto-medial, lateral–central, and 
occipital topographies, respectively. A total of 50 trials were 
simulated with a length of 3 s at a sampling rate of 200 Hz, 
and a virtual baseline of − 1500 ms. These sources are 
embedded in Gaussian noise. When discussing the different 
scenarios, certain parameters of these data sets are varied, as 
for example the variability of the individual mixing matrices 
(i.e. the projection of the sources to the scalp electrodes), 
or onset variability of sources across trials. Details on data 
generation as well as a quantitative analysis of the effects of 
certain parameters on source reconstruction can be found in 
Eichele et al. (2011), and Huster et al. (2015).

The main aim of this tutorial review is to guide research-
ers new to the field of multi-subject data decomposition in 
their choice of procedures and to equip them with a basic 
understanding of underlying principles and methods. To this 
means, we will focus on multi-level and temporal-concat-
enation group-level decompositions using ICA (mlGICA 
and tcGICA, respectively), which are powerful, yet rela-
tively easy to understand and simple to modify. The code 
used for the purpose of this paper, including some routines 
for multi-subject decomposition, can be found here: http://
www.rjhuster.com/downloads. The code is accompanied 
by instructions to simulate the data and run the analyses 
executed for this tutorial review. An extensive comparison 
of all methods or a discussion of the intricate details of every 
single approach cannot be provided within this overview, 
not least because their implementations do not yet exist in 
a unified computational framework. However, most of the 
techniques introduced in the previous sections are acces-
sible via separate routines or software packages, as well as 
tutorials and manuals. Thus, this tutorial review should be 
considered a practical starting point for further exploration 
of this exciting field.

Evoked Activity

Let us cover the easiest case first, namely the exclusive inter-
est in or occurrence of evoked activity with a similar latent 
structure across subjects. All methods covered above are 
well-suited to treat this case, and the major question of inter-
est is whether we want the data to be analyzed in the time or 
frequency domain. But since the activity patterns across both 
trials and subjects show only minimal temporal offset any-
ways, we may as well stay in the time-domain. Then, both 
tcGICA and mlGICA may be worth considering, because 
both should be able to recover the generating sources well.

Figure  3 depicts the simulated source activity time 
courses, their scalp projections, as well as results of the 

group-level decompositions using mlGICA and tcGICA. 
Please refer to the MATLAB-scripts available on our web-
page to check for all details of the analyses. When running 
mlGICA, the inspection of the subject-specific PCAs used 
for whitening and data reduction indicates that on average 
about 56 components explain just about 90% of the variance 
of the data. Thus, for now we will extract 56 components at 
both the first PCA and the group-level PCA, consequently 
also arriving at 56 independent components. As can be seen, 
both mlGICA and tcGICA nicely reconstruct the three simu-
lated sources in three separate components alongside their 
corresponding topographies. The remaining 53 (not depicted 
in Fig. 3, but accessible via the script), reflect pure noise as 
indicated by unstructured topographies and a lack of stim-
ulus-related activity. When extracting the single-trial peak 
amplitudes from the reconstructed sources of each subject, 
we find high correlations between the reconstructed and 
simulated trial-by-trial source amplitude variations. Thus, 
data indicate that both procedures nicely reconstructed the 
original source activity patterns.

Induced Activity

What happens, however, if the activity patterns are not per-
fectly time-locked across trials and, as a consequence, also 
not across subjects? It can be predicted that this poses a 
problem for mlGICA, because the data organization inher-
ently assumes a strong correlation of time-courses across 
subjects; here, induced responses will effectively decorrelate 
the data across subjects, causing a drop in reconstruction 
performance. Thus, we now repeat the simulation allowing 
source activity patterns to jitter up to ± 50 ms randomly 
from trial-to-trial. As can be seen in Fig. 4, tcGICA nicely 
reconstructs all three sources. Although the averaged time-
courses may appear somewhat distorted, this is merely a 
byproduct of computing ERPs (i.e., the average across trials 
in the temporal domain) of induced activity patterns. This 
effect becomes more apparent when additionally inspect-
ing the event-related spectral perturbations (ERSP) of the 
resulting components. Here, every source exhibits a clearly 
defined peak response. An inspection of the sources recon-
structed with mlGICA, on the other hand, suggests that 
only the theta-source was successfully reconstructed. All 
other components of this decomposition are noisy beyond 
clear identification, yet an inspection of their corresponding 
ERSPs also suggests that all three simulated sources were 
disaggregated to different degrees, and can be found mixed 
in nearly all other components (Fig. 4 depicts only the first 
three components though). The effect that a given degree 
of temporal jittering over trials causes stronger deteriora-
tions in reconstruction quality of high- as compared to low-
frequency sources can easily be explained: a maximum jitter 
of 50 ms, for example, corresponds to a maximum phase 

http://www.rjhuster.com/downloads
http://www.rjhuster.com/downloads
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shift of 180° at 10 Hz, yet to shifts of 360° and beyond for 
frequencies equal or higher than 20 Hz, respectively. One 
might argue that the total maximum jitter as applied for these 

simulations may be considered extreme for many neural 
response profiles in context of cognitive tasks. Note though 
that response times often show variation even exceeding 

Fig. 3  Comparison of mlGICA and tcGICA for the reconstruction of 
sources characterized by strong time-locking and stable topographies. 
a Simulated source time courses (left), their respective topographies 
(middle) and their combined topography as seen for a single subject 

(right). b Comparison of mlGICA (left) and tcGICA (right) for the 
reconstruction of sources characterized by strong time-locking and 
stable topographies. c Trial-by-trial variation of the original simula-
tions and reconstructed source amplitudes
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100 ms from fastest to slowest responses. A more thorough 
evaluation of the effects of temporal jittering on group-level 
decompositions can be found in Huster et al. (2015).

Topographical Variation

Further sources of variation across subjects are differences 
in electrode placement, and even more severely, brain mor-
phology. Both contribute to inter-individual differences in 
the scalp topography of a given ERP. In mathematical terms, 
this means that the mixing matrixes, i.e. the model specify-
ing the mapping of sources to the scalp electrodes, devi-
ate from each other across subjects. This again violates the 
assumption inherent to tcGICA, where both PCA and ICA 
are applied exclusively at the group-level. With mlGICA, 
however, a subject-specific PCA precedes the group-level 
analyses, thereby allowing for inter-individual differences 
in the mapping of sources to scalp electrodes.

To illustrate the resulting differences in source recon-
struction, we again simulate data, this time introducing 
topographical variability while again focusing on perfectly 
time-locked activity patterns across trials. As can be seen 
in Fig. 5, mlGICA reconstructs the three sources in the first 
three independent components, with consecutive compo-
nents capturing noise. In addition, for the first component 
(occipital gamma) the subject-specific reconstruction of 
topographies for five subjects are shown, elucidating the 

algorithm’s ability to capture and reconstruct differences in 
mixing matrices across subjects. In contrast, when inspect-
ing the first five independent components reconstructed via 
tcGICA, we notice that the first four all represent fronto-cen-
tral theta activity, which should have been captured within 
a single group component, whereas the fifths represents a 
reconstructed beta source. When inspecting the correspond-
ing time courses, we further see that their reconstructions 
strongly differ with respect to the achieved signal to noise 
ratio. Since tcGICA does not account for inter-individual dif-
ferences in source mixing, inter-subject variability causes a 
deteriorated reconstructed performance for all sources, with 
subjects contributing differently to the different independent 
components.

Spontaneous Activity

How to analyze spontaneous EEG, that is EEG in the 
absence of external experimental stimulation? By defini-
tion, this situation is characterized by the lack of phase- 
or time-locking of brain activity across subjects. Con-
sequently, the situation conceptually mimics the one of 
induced responses with extreme jittering of neural activity 
across trials (where a trial would correspond to a random 
period of resting EEG). The outcome will thus mirror 
that of our earlier inspection, just in an even more ampli-
fied way. Since mlGICA was not even designed with this 

Fig. 4  Comparison of mlGICA and tcGICA for the reconstruction of 
sources characterized by strong temporal jittering across trial onsets 
(induced activity) and stable topographies. From left to right: recon-

structed topographies, event-related potentials and event-related spec-
tral perturbations
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scenario in mind, it will fail to reliably reconstruct such 
sources, and we refrain from this rather trivial assessment 
here (the reader may very well simulate this case using 
our scripts, simply by setting the trial-wise jitter to unre-
alistically high values). Then again, tcGICA will provide 
a valid reconstruction of spontaneous sources as long as 
inter-subject differences of the mixing matrices are low. 
But as exemplified in Fig. 2, considering alternative proce-
dures directly working with the frequency-representation 
of the data, such as spatio-spectral group ICA, may be 
preferable.

Adaptations

In addition to the variety of algorithms already available, 
the actual power of the framework for multi-subject data 
decomposition is its flexibility and adaptability. Just taking 
mlGICA as an example, two major issues can be identified 
that potentially limit the applicability of this algorithm. As 
discussed earlier, a PCA-based data reduction step concur-
rently calculated across all subjects may cause two major 
limitations: (1) limited power in the detection and recon-
struction of sources with induced activity patterns, and (2) 

Fig. 5  Comparison of mlGICA and tcGICA for the reconstruction 
of time-locked sources (evoked activity), but topographies showing 
inter-subject variability. For both methods, the top two rows repre-
sent the reconstructed source topographies and event related poten-

tials for the first five sources. In mlGICA, the bottom row represents 
the individually reconstructed topographies of the first source for five 
individual participants. In tcGICA, the reconstruction of individual 
topographies is not possible
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a bias towards activity patterns that are not only time-locked 
but also large in amplitude, thereby causing large variations 
in scalp EEG. The latter may, for example, be the case with 
large ERPs such as the P300, as opposed to early sensory 
activity patterns that usually are smaller in amplitude and 
more focal, and thus also cause less systematic variability in 
the data. However, these scenarios can be addressed by com-
puting time–frequency decompositions prior to group-level 
data decomposition, and the re-organization of the data. 
Single-trial time–frequency data could easily be arranged 
in a two-dimensional matrix where the first dimension 
again represents channels, whereas the second dimension 
stores the multiplexed time-/frequency data (e.g., ch1t1f1, 
ch1t1f2…ch1t2f1, ch1t2f2…). Figure 6 displays the ration-
ale of this procedure, as well as three group independent 
components computed on the time–frequency transforms 
of simulated data with loose time-locking (the same data 

as used in our previous example; Fig. 4). As can be seen, 
the thereby adapted procedure now again captures all three 
sources very well. In addition, a channel-wise z-scoring of 
the data can alleviate a potential bias towards large potentials 
relative to rather focal and small amplitude EEG-effects by 
causing a relative down-scaling of the former, and an upscal-
ing of the smaller amplitude signals (given that the topogra-
phies do not overlap completely). Thus, all methods can be 
tweaked to overcome at least some of their limitations, and 
the power of such adaptations has hardly been explored yet 
(but see Huster et al. 2015; Bridwell et al. 2016; or Lio and 
Boulinguez 2016, for the evaluation of performance differ-
ences caused by the integration of different BSS algorithms 
in these frameworks).

Model Order Selection

One final issue that needs commenting relates to the speci-
fication of the model order, i.e. the number of sources to 
be estimated in a given analysis. In the previous examples, 
we simply based this decision on the variance cumulatively 
explained by principal components (e.g., the number of 
components that together explain 90% of the variance in the 
data). Here, we fixed the model order based on the cumu-
latively explained variance of the subject-specific PCAs, 
keeping this parameter constant for all subjects as well as 
the group-level analysis. It can be argued that this may result 
in misrepresentations or biases of the activity patterns of 
single subjects. Yet, one must not forget that these group-
level decompositions are meant to derive source estimates 
concurrently representative for multiple subjects, thus inher-
ently trading the optimized representation of the group 
against that of single subjects. In addition, whereas ICA 
minimizes statistical dependencies between components 
and consequently accounts for both linear as well as non-
linear associations, PCA merely de-correlates variables and 
thus disregards non-linear dependencies. Thus, although the 
variance-based criterion is commonly used, it is not without 
its shortcomings. Other procedures to estimate the model 
order rely on information theoretic concepts. The minimum 
description-length criterion, Akaike’s information criterion 
and Bayesian information criterion have been implemented 
in popular ICA software packages, such as MELODIC and 
GIFT, and are widely used in context of fMRI analyses (e.g., 
Williams 1994; Stoica and Babu 2012). It has been argued 
though that these procedures are sensitive to data with low 
signal-to-noise ratios, then potentially estimating source 
numbers with low reliability only. Alternatively, one may 
test the statistical reliability of ICA estimates using differ-
ent initial values for the number of components. ICASSO 
(Himberg et al. 2004) is an algorithm that runs ICA several 
times and produces different component estimates for each 
run; it then clusters the components of all runs based on their 

Fig. 6  Adaptation of mlGICA for the reconstruction of sources with 
strong temporal jittering across trial onsets (induced activity). a The 
procedure simply relies on the reorganization of the data prior to the 
analysis, such that the frequency-specific amplitude values get mul-
tiplexed with respect to the samples in a given trial as well as across 
trials (tr trial number; t time point or sample within a trial; f fre-
quency). b The component activity patterns (lower row) computed on 
the time–frequency decompositions show that mlGICA now nicely 
captures and reconstructs all three sources (compare to Fig.  4, with 
mlGICA computed on time-domain data)
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similarity. Components that can reliably be estimated across 
runs correspond to tight clusters (groups of components with 
high similarity). When comparing such cluster solutions for 
ICA estimates with different numbers of sources, the one 
with the highest reliability (the overall “tightest clusters”) 
should be preferred. However, as of know there is no gold 
standard for the estimation of the most appropriate model 
order, and the comparison of several measures for a given 
data set may be the most appropriate way to estimate the 
number of components to be estimated.

Conclusion

No size fits all! As our practically-guided discussion of 
scenarios exemplified, all current methods come with their 
strengths and weaknesses. Thus, care has to be taken to 
choose the approach best-suited to address the research ques-
tion at hand and to match the present data characteristics. 
Where this is the case though, group-level or multi-subject 
decomposition of EEG concurrently solves two major prob-
lems: (1) the spatio-temporal separation of activity originat-
ing from different brain regions and representing independ-
ent neurocognitive processes; (2) the matching of recovered 
sources across subjects.

Similar approaches used for the analyses of fMRI data 
surfaced about one-and-a-half decades ago, and since then 
have extensively been applied to study brain states. Group-
ICA of fMRI is one of the two major techniques to extract 
and analyze resting state networks (e.g., Calhoun and Adali 
2012). The assessment of these intrinsic functional connec-
tivity networks now promises to become a useful diagnostic 
tool and a predictor for treatment outcome measures (e.g., 
Rashid et al. 2016). With respect to EEG, still much more 
work is needed to mirror the widespread use of such algo-
rithms as seen in fMRI data analyses. However, we now have 
a number of tools available to address the most common sce-
narios relevant for the analysis of both task and resting state 
EEG. Indeed, first applications prove their utility. Group-
level decompositions are now commonly used in combina-
tion with other advanced signal analysis techniques, e.g. for 
(1) data fusion of simultaneously acquired EEG and fMRI 
(e.g., Bridwell et al. 2013), (2) feature generation for single-
trial prediction (e.g., Huster et al. 2017), (3) the study of 
the genetic underpinnings of neural oscillations (e.g., Anto-
nakakis et al. 2016), (4) the comparative analysis of resting 
state networks inferred from fMRI and EEG (Yuan et al. 
2012), (5) the assessment of developmental trajectories of 
neurocognitive processes across the lifespan (e.g., Enriquez-
Geppert and Barceló 2016; van Dinteren et al. 2017), (6) the 
characterization of the neural dynamics of depressive and 
psychotic symptoms (Bridwell et al. 2014, 2015), as well as 
(7) functional and effective connectivity analyses of brain 

networks (Huster et al. 2014). Although this list is far from 
being complete, it clearly showcases the wide applicability 
of multi-subject EEG data decomposition. In sum, group-
level decomposition is a powerful tool for analyzing EEG 
data, for which a strong propagation over the next decade is 
to be expected.
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