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that fourteen different independent spatiospectral maps are 
present across the different paradigms/tasks, i.e. they are 
generally stable.
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Introduction

Scalp electrical fluctuations (measured with electroencepha-
lography; EEG) are related to a range of cognitive processes, 
and different processes are often associated with different 
frequencies (Buzsaki 2006). These potentially distinct pro-
cesses sum together due to the volume conduction properties 
of the brain, skull, and scalp resulting in spatial smearing of 
voltages on the surface of the scalp (Nunez and Srinivasan 
2006).

Blind source separation (BSS) approaches are useful for 
decomposing voltage mixtures measured from electrodes 
placed on the scalp surface, and temporal independent com-
ponent analysis (ICA) is one of the most often used BSS 
algorithms. Temporal ICA decomposes the electrode × time 
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matrix into a source × time matrix with an associated mix-
ing matrix (i.e. scalp topography) (Makeig et  al. 1997; 
Hyvärinen et al. 2001; Stone 2004). Temporal ICA is widely 
implemented for removing eye blink and eye movement arti-
facts, but appears less successful in decomposing distinct 
EEG oscillations measured in the absence of an explicit task 
(i.e. during ‘rest’) (Hyvärinen et al. 2010; Li et al. 2015).

In order to isolate distinct EEG oscillations (i.e. signal 
from signal), a variety of approaches have been developed 
to decompose real valued or complex valued EEG spec-
tra (Anemüller et al. 2003; Bernat et al. 2005; Onton et al. 
2005; Hyvärinen et al. 2010; Nikulin et al. 2011; Ramkumar 
et al. 2012; Shou et al. 2012; Kauppi et al. 2013; Hu et al. 
2015; Van Der Meij et al. 2016; Takeda et al. 2016). These 
approaches are generally applied to individual subjects data, 
which requires identification of similar components across 
the separate decompositions. In order to overcome this 
problem, and in order to aggregate information across the 
aggregate group for decomposition, various multi-subject 
extensions have been developed and implemented (Kovace-
vic and McIntosh 2007; Congedo et al. 2010; Eichele et al. 
2011; Cong et al. 2013; Lio and Boulinguez 2013; Bridwell 
et al. 2013, 2014, 2015; Ponomarev et al. 2014; Ramkumar 
et al. 2014; Huster et al. 2015; Mareček et al. 2016).

Spatiospectral group ICA decompositions have been 
applied to EEG data collected at rest, revealing biologically 
plausible spatiospectral maps (i.e. with interpretable fre-
quency and spatial characteristics) (Wu et al. 2010; Bridwell 

et al. 2016), and fluctuations in map time courses have been 
associated with BOLD signal fluctuations in concurrently 
recorded fMRI data (Bridwell et al. 2013; Yu et al. 2016).

However, the stability of spatiospectral components 
across different experiments has yet to be explored. We focus 
on this question explicitly within the present manuscript by 
conducting k-means clustering analysis of spatiospectral 
maps derived from three different EEG datasets [visual odd-
ball task (VOT), semantic decision task (SDT) and resting-
state paradigm (RST)], revealing the characteristics, proper-
ties, and similarity/dissimilarity of maps over datasets, and 
the relationship between spatiospectral map time courses 
and the stimulus vector time courses. Overall, spatiospectral 
maps are generally stable across different paradigms, which 
motivates the utility of the approach for further studies iso-
lating distinct EEG spatiospectral functional responses that 
contribute to cognitive function, and may differ between 
healthy and clinical populations.

Materials and Methods

Figure 1 illustrates the pipeline from the original EEG col-
lected during the three paradigms, to assessment of compo-
nent stability by k-means clustering of individual subject 
component maps. Each step within the block diagram is 
described in more detail below.

Fig. 1  Block diagram of the analysis pipeline from resting-state (RST), sematic decision (SDT) and visual oddball (VOT) EEG datasets
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EEG Acquisition

The scalp EEG data, with a reference between Cz and Fz 
electrodes, was acquired simultaneously with fMRI using 
an MR compatible 32-channel 10/20 EEG system (Brain‑
Products, Germany) with a sampling frequency of 5 kHz. 
Two channels were used for ECG and EOG. The simulta-
neous fMRI data was acquired using 1.5T Siemens Sym-
phony Numaris. However, the present manuscript focuses 
on the EEG data only. Informed consent was obtained from 
all subjects after the procedures were fully explained, and 
the study received the approval by the local ethics commit-
tee. The equipment was identical during acquisitions of the 
three paradigms described below, and the subjects within 
two paradigms partially overlapped (among the 50 and 42 
individuals who participated in the resting state and seman-
tic decision paradigms, respectively, 29 subjects participated 
in both). The VOT participants were a separate group of 
subjects than the other two tasks.

Resting‑State Paradigm and fMRI Acquisition

Fifty healthy subjects participated in a 15 min “resting-state” 
experiment (30 right handed men, 20 right-handed women; 
age 25 ± 5 years). Subjects were instructed to lie still within 
the fMRI scanner with their eyes closed, not to think of any-
thing specific, and not to fall asleep.

Gradient Echo, Echo‑Planar Functional Imag‑
ing Sequence TR = 3000  ms; TE = 40  ms; 
FOV = 220 × 220  mm; FA = 90°; matrix size 64 × 64 
(3.9 × 3.9 mm); slice thickness = 3.5 mm; and 32 transversal 
slices which covered the whole brain excluding part of the 
cerebellum. 300 functional scans were acquired in 1 con-
tinuous session.

Semantic Decision Paradigm and fMRI Acquisition

A block designed semantic decision task was performed 
by 42 healthy subjects (22 right-handed men, 2 left-handed 
men, 18 right-handed women; age 25 ± 5 years). The task 
was designed with a block stimulation paradigm, with the 
goal of eliciting robust language network activation. During 
the probe block, two types of sentences were presented in 
random order. Sentences with semantic error created by a 
phonemic exchange (e.g. The cat was chased by fog) alter-
nated with semantically correct sentences. The sentences 
were replaced with a series of the characters X or O, (e.g. 
‘Xxxx xx xxxx xxx.’) during the control block. Nine control 
and eight probe blocks alternated during the experiment. 
Each block lasted 24 s, and consisted of six different con-
trol or probe stimuli presented for 3.5 s followed by a black 
screen for 0.5 s. Subjects viewed the stimuli through a mirror 

mounted on the head coil. Responses were not requested 
from the subjects during the task. After the session, no 
subjects reported any problems with reading the sentences 
(Mareček et al. 2016).

Gradient Echo, Echo‑Planar Functional Imag‑
ing Sequence TR = 1850  ms, TE = 40  ms, 
FOV = 250 × 250  mm; FA = 80°, matrix size = 64 × 64 
(3.9 × 3.9  mm); slice thickness = 6  mm; no gap between 
slices; 20 transversal slices per scan which covered the 
whole brain excluding part of the cerebellum. 228 func-
tional scans were acquired in 1 continuous session.

Visual Oddball Paradigm and fMRI Acquisition

An event-related designed visual oddball task was performed 
by 21 healthy subjects (13 right-handed men, 1 left-handed 
man, 7 right-handed women; age 23 ± 2 years). Three stimu-
lus types were presented randomly to each subject. Each 
stimulus consisted of a single yellow uppercase letter shown 
for 500 ms on a black background. Inter-stimulus intervals 
were either 4, 5 or 6 s (drawn uniformly and randomly). A 
total of 336 stimuli were presented, consisting of targets 
(letter X, 15%), frequents (letter O, 70%) and distractors 
(letters other than X and O, 15%). Subjects were instructed 
to press a button held in their right hand whenever the target 
stimulus appeared and not to respond to distractor or fre-
quent stimuli. The experiment was divided into 4 sessions 
for each person (84 stimuli per session) (Brázdil et al. 2007; 
Labounek et al. 2015).

Gradient Echo, Echo‑Planar Functional Imag‑
ing Sequence TR = 1660  ms; TE = 45  ms; 
FOV = 250 × 250  mm; FA = 80°; matrix size = 64 × 64 
(3.9 × 3.9 mm); slice thickness = 6 mm; 15 transversal slices 
per scan which covered the whole brain excluding part of 
the cerebellum. The whole task was divided into four equal 
runs of 256 scans and 84 stimuli.

EEG Data Preprocessing

We preprocessed the EEG data using BrainVision Ana-
lyzer 2.02 (BrainProducts, Germany). Gradient artifacts 
were removed using template subtraction (Allen et  al. 
2000) and signals were resampled to 250 Hz (antialiasing 
filter included), and filtered with a Butterworth zero phase 
1 Hz-40 Hz band-pass filter. Cardiobalistogram artifacts 
were removed by subtracting the average pulse artifact wave-
form from each channel (Allen et al. 1998) and signals were 
re-referenced to the average. For visual oddball EEG data, 
eye-blinking artifacts were removed by conducting a tem-
poral ICA decomposition and removing eye-blink artifacts 
from the back-reconstructed time course.
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Overview of Spatiospectral Group ICA

Group ICA was implemented using the GIFT software 
package (Calhoun et al. 2001; http://mialab.mrn.org/soft-
ware/gift/) with the INFOMAX ICA algorithm (Bell and 
Sejnowski 1995; Bridwell et al. 2016). Group ICA extends 
the single subject implementation of ICA to operate on 
multi-subject datasets, returning components estimated at 
the aggregate group level while preserving individual sub-
ject variability (Allen et al. 2012; for review see; Calhoun 
and Adalı 2012). Individual subject estimates are derived by 
back-reconstructing the group components on the individual 
subject data using either PCA based back-reconstruction (i.e. 
the individual partition of the PCA reducing matrix is matrix 
multiplied by the individual partition of the aggregate reduc-
ing matrix) (Calhoun et al. 2001), or spatio-temporal regres-
sion (STR) (i.e. dual regression, an indirect least squares 
approach) (Calhoun et al. 2004; for review see; Erhardt et al. 
2011). The individual subject mixing matrices represent the 
contribution of the group component to each epoch, and the 
temporal modulation of each component is conceptually 
similar to the envelope of the response within the frequency 
band defined by that component.

Temporal and spectral decompositions of EEG are often 
implemented, with unique merits and limitations to each 
approach. The algorithmic assumptions of temporal ICA 
align well with the biological generation of EEG, where 
the voltage at each electrode reflects a linear mixture of 
independent scalp voltages (Makeig et  al. 2004; Onton 
et al. 2006). However, while temporal ICA is well suited 
for removing artifacts (e.g. eye movement and eye blink), 
it appears less well suited at decomposing distinct EEG 
oscillations (i.e. EEG signal from EEG signal) compared to 
alternative approaches including (but not limited to) second-
order blind identification (SOBI) (Belouchrani et al. 1997; 
Tang et al. 2005; Tang 2010), approximate joint diagonali-
zation of cospectra (AJDC) (Congedo et al. 2008, 2010), or 
spectral ICA (Hyvärinen et al. 2010; Bridwell et al. 2016).

In the context of spatiospectral ICA implemented here, 
we assume that the [frequency × channel] amplitude data 
at each epoch reflects a linear mixture of independent [fre-
quency × channel] amplitude maps. The assumption of linear 
mixing of independent spatiospectral maps is less theoreti-
cally tied to the biological generation of EEG (i.e. a linear 
mixture of temporal sources at each electrode), but appears 
to have utility nonetheless, analogous to the utility of apply-
ing spatial ICA to fMRI data despite the known interdepend-
ence and connectivity among brain networks. Importantly, 
Bridwell et al. (2016) demonstrate that spatiospectral ICA 
may be successfully implemented to decompose biologically 
plausible simulations of spatiospectral maps with source 
distributions and dependencies that are less than optimal 
for many BSS algorithms. These findings indicate that 

INFOMAX ICA is robust to the source characteristics of 
realistic EEG spatiospectral maps. Bridwell et al. (2016) 
also demonstrate that similar components may be derived 
using INFOMAX ICA and weights adjusted with second-
order blind identification (WASOBI) (Belouchrani et al. 
1997; Yeredor 2000; Doron and Yeredor 2004; Tichavský 
et  al. 2006), two approaches with different algorithmic 
assumptions.

EEG Spatiospectral Decomposition

For each session, the preprocessed EEG signal from each 
lead was normalized such that the time course was normally 
distributed N(0,1), and divided into 1.66 s (the shortest rep-
etition time of fMRI scanning TR) epochs without overlap. 
Each epoch was transformed to the spectral domain with fast 
Fourier transform (FFT), generating a vector (length = 67) 
of complex valued spectral coefficients between 0-40Hz. 
Complex values were converted to absolute power by tak-
ing the absolute value and squaring. The output vector of 67 
real absolute power values comprised a 3D matrix E with 
dimensions nt, nc and nω. Dimension nt is the total num-
ber of EEG epochs (nt = 540 for RST; nt =255 for SDT; nt 
=256 for VOT), dimension nc is the total number of leads 
(nc=30) and dimension nω is the total number of spectral 
coefficients (nω = 67). The 3D matrix E(nt, nc, nω) was trans-
formed into a 2D matrix E(nt, nc*nω) and used as input into 
group spatiospectral ICA decomposition (Eq. 1) (Bridwell 
et al. 2013), returning a group mixing matrix W with dimen-
sions W(nt, m) and a group source matrix S with dimensions 
S(m, nc*nω). The dimension m is the number of decomposed 
orthogonal and independent components.

Group spatiospectral ICA was conducted separately for 
each paradigm and the data were decomposed to m = 20 
orthogonal and independent spatiospectral components, 
after reducing the dimensionality of each single-subject 2D 
matrix E with PCA (principal component analysis; reduced 
at 50 PCs). The PCA data reduction and whole group ICA 
decomposition were performed using the GIFT toolbox 
(Calhoun et al. 2001) with the INFOMAX algorithm (Bell 
and Sejnowski 1995; Bridwell et al. 2016). The reproducibil-
ity of group components was examined using the ICASSO 
package (Himberg and Hyvärinen 2003; Himberg et al. 
2004), which conducts multiple group ICA runs on the same 
dataset (ten iterations). ICASSO employs the hierarchical 
clustering method to split up all components from all runs 
into a predefined number of clusters, and the reproducibility 
of each group component is estimated within a given Group 
ICA run by computing the cluster quality index Iq (Him-
berg et al. 2004). The cluster quality index reflects the com-
pactness and uniqueness of a given cluster of components, 

(1)E = WS

http://mialab.mrn.org/software/gift/
http://mialab.mrn.org/software/gift/
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computed as the difference between the average intra-cluster 
similarity and the average inter-cluster similarity.

The analysis outputs are group-derived matrices W and 
S for each paradigm and separate W and S matrices gener-
ated by back reconstruction against each individual subject’s 
data. The S spatiospectral matrices were collected across 
subjects and paradigms for clustering, as described below. 
The relationship between spatiospectral components/sources 
and task dynamics were examined by relating the source 
time course (i.e. mixing matrix) W with the respective stim-
ulus time course.

Clustering of Spatiospectral Maps Across Paradigms

For each subject, paradigm and session (4 sessions for 
VOT data), we have one matrix S with dimensions S(20, 
2010) containing 20 back-reconstructed spatiospectral pat-
terns. For similarity/dissimilarity assessment of the spa-
tiospectral patterns across paradigms, we have performed 
k-means clustering, a conventional algorithm belonging to 
multivariate methods for dimensionality reduction. Because 
we had 50 single-subject S matrices for “rest”, 42 single-
subject S matrices for semantic decision task and 21×4 = 84 
single-subject S matrices for visual oddball task, there are 
(50 + 42 + 84)*20 = 3520 different spatiospectral patterns 
comprising matrix C, with dimensions C(3520, 2010) for 
input into k-means clustering. K-means clustering was per-
formed with Pascual-Marqui et al. (1995) optimizing method 
with 40 final clusters. Clustering was repeated 50 times with 
random initial conditions and the result with minimal residu-
als was selected as the final clustering result.

After clustering, a few post-processing steps were neces-
sary in some cases: IF a given cluster consists of spatiospec-
tral patterns from subjects from RST, subjects from SDT and 
subjects from VOT; AND IF another cluster contains the 
same spatiospectral pattern with subjects from the three par-
adigms then those 2 clusters are combined and considered as 
one final cluster. This occurred in 3 of the 30 final clusters 
(cl. n. 2, 4 and 5). Clusters that were grouped together are 
indicated by {} brackets.

Intra‑Cluster and Inter‑Cluster Correlations

The correlation was computed between single-subject, single-
session and single-paradigm spatiospectral patterns within the 
k-means cluster (intra-cluster correlations) and between pat-
terns of different clusters (inter-cluster correlations). These cor-
relations were averaged separately within and across clusters 
to assess the similarity of patterns within clusters compared to 
across clusters. The mean coefficients (r) were transformed at 
t-values (Eq. 2), and then respectively at p-values (Eq. 3) of 
statistical significance characterizing the probability if intra- or 
inter-cluster components are similar or not (number of samples 

n = 2010). The function C in Eq. 3 is the cumulative density 
function for t-distribution depending on |t|‑value and on the 
difference between number of samples n and degrees of free-
dom (=1).

Comparison of EEG Spatiospectral Pattern Dynamics 
with Stimuli Vectors

For each subject, paradigm and session, we have one matrix 
W with dimensions W(nt, 20) containing the back-recon-
structed time course of each spatiospectral component. 
Relationships between these dynamics and stimulus vector 
timings (in matrix X) were assessed with a single-subject 
general linear model (Eq. 4, GLM) solved with the least 
mean square algorithm (Eq. 5) and a continuous group one-
sample t-test for the k‑th stimulus vector (Eq. 6) as imple-
mented previously (Friston et al. 1994; Labounek et al. 
2015). Variable c is the vector of binary positive contrast 
at the stimulus vector of interest, the brackets ⟨⟩ character-
ize the expectation over subjects, variable σ is the standard 
deviation and variable s is the total number of subjects.

For VOT data, model matrix X contained frequent, target 
and distractor timings in 12 separate binary vectors for each 
stimulus and session and 4 vectors for the DC component 
in each session. For SDT data, model matrix X contained a 
binary vector with the probe block timings and a vector with 
the DC component.

Results

EEG Spatiospectral Patterns Over Datasets

The percent of variance explained after dimensionality 
reduction through PCA is demonstrated in Fig. 2a for the 
RST dataset, in Fig. 2b for the SDT dataset and in Fig. 2c 
for the VOT dataset. In all three cases, the first 50 principal 
components explain about 95% of variability.

The 20 independent group EEG spatiospectral compo-
nents, and their reproducibility over 10 ICASSO estimates 
are shown in Fig. S1 for RST data, Fig. S2 for SDT data 

(2)
t =

r√
1−r2

n−2

(3)p = 2(1 − C(|t|, n − 1))

(4)W = X� + �

(5)� = (X
T
X)−1X

T
W

(6)tk =
√
s
c
T
k
�k

�cT
k
�k
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and Fig. S3 for VOT data. The most reproducible compo-
nent estimates were achieved for the resting-state paradigm 
(Fig. S1b, c) where all cluster quality values were above 0.9. 
The last 3 or 4 cluster quality indexes of the least reliable 
components were between 0.7 and 0.9 for semantic decision 
(Fig. S2b, c) and visual oddball (Fig. S3b, c) data. Visual 
inspection among the spatiospectral maps generated across 
paradigms (Fig. S1a, Fig. S2a, and Fig. S3a) suggests that 
similar components may be observed across all three data-
sets (e.g. RST com. n. 10, SDT com. n. 14 and VOT com. 
n. 17; or RST com. n. 19, SDT com. n. 13 and VOT com. n. 
13; or RST com. n. 16, SDT com. n. 15 and VOT com. n. 15; 
etc.), as evaluated empirically using k-means clustering of 
back-reconstructed individual results (next section).

K‑Means Clustering

The original 3520 dimensions (i.e. 3520 spatiospectral pat-
terns) were reduced to 40 representative cluster centroids. 
Forty output clusters were selected after examining the com-
pactness, i.e. σmcv (characterizing predictive residual vari-
ance with Eq. 22 derived in (Pascual-Marqui et al. 1995)) 
and σμ (characterizing residual variance with Eq. 10 derived 
in (Pascual-Marqui et al. 1995)) of clusters generated with 
2–250 output centroids, and identifying the lowest norm 
at 40 (see Fig. S4). The relationships and distances among 
the 40 centroids are demonstrated within the dendrogram 
in Fig. 3a.

The cluster spatiospectral features were examined by 
averaging the patterns separately for each experimental para-
digm. These maps appear similar across the three paradigms 
in instances where many subjects contributed clusters to the 
average maps, as indicated by cluster 39 within Fig. 3b. The 
similarity of patterns within a representative cluster was 
demonstrated by computing the correlations between spatio-
spectral patterns within cluster 39 (intra-cluster correlation) 

and between cluster 39 and the patterns within each of 
the other clusters (inter-cluster correlations) (Fig. 4). The 
intra-cluster correlations were significantly larger than zero 
(t = 21.67; p = 2.2*10− 16), while the inter-cluster correlation 
values did not statistically differ from zero (|t| values ranged 
from 0.21 to 1.85 and p-values ranged from 6.5*10− 2 to 
8.35*10− 1 respectively). Since the distributions within Fig. 4 
appear symmetric around the mean, the mean intra-cluster 
and inter-cluster correlation coefficients are indicated within 
Fig. 5a as a summary of the the original 3520 × 3520 similar-
ity matrix used for k-means clustering. The figure indicates 
that the majority of inter-cluster correlation coefficients did 
not statistically differ from 0, while all mean intra-cluster 
coefficients were significantly larger than 0 (Fig. 5b–d).

The percentage of subjects with maps present within each 
cluster is indicated within Table 1, separately for each para-
digm, and a representative spatiospectral map is indicated 
within Fig. 6 for each cluster. The radial projection of the 
post-processed dendrogram (containing 30 final clusters) 
and detailed visualization of each cluster for different para-
digms are indicated within supplementary Fig. S5. The same 
dendrogram projection is shown also within Fig. 6.

K-means clustering analysis and Table 1 indicate that 
similar EEG spatiospectral patterns appear across different 
tasks. Fifteen clusters (cl. numbers 2, 4, 5, 9, {13;3}, 16, 
{17;27}, {18;20}, 30, 32, 37, 39) define 12 different spa-
tiospectral patterns which are observable in all tasks, with 
more than 89% of subjects from each dataset present within 
each cluster. In general, these spatiospectral maps appear 
consistent with maps generated in previous studies (Bridwell 
et al. 2013, 2016) and appear biologically plausible, demon-
strating power within characteristic EEG frequency bands.

The spatiospectral pattern in cluster 27 appears to cap-
ture eye artifacts, with peak values appearing over frontal 
electrodes. This cluster may have separated from cluster 
17 likely due to different EEG preprocessing steps (i.e. 

Fig. 2  EEG data dimensionality after PCA decomposition
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Fig. 3  Dendrogram of 40 clusters generated from k-means cluster-
ing (a) and cluster 39 as a representative example (b). (a) The green‑
circled clusters are the clusters combined during post-processing 
described within the Materials and Methods. The blue‑circled clus‑
ters are the clusters which were not combined in post-processing, but 
were combined post hoc based upon visual inspection of the spatio-
spectral patterns. The red‑circled clusters are residuals which account 
for less than 5% of the single-subject spatiospectral patterns within 

any experimental paradigm. In (b), the spatiospectral patterns were 
averaged for each experimental paradigm and cluster. The number on 
the upper right (e.g. “S:”) indicates the percentage of subjects who 
belong to the cluster. The spatial distribution of electrodes in each 
plot is: F7, F3, Fp1, Fz, Fp2, F4, F8, FC6, FC2, FC1, FC5, T7, C3, 
Cz, C4, T8, CP6, CP2, CP1, CP5, TP9, P7, P3, Pz, P4, P8, TP10, O2, 
Oz, O1

Fig. 4  K-means intra-cluster and inter-cluster correlation coefficients 
for cluster n. 39. Correlations between spatiospectral patterns within 
cluster 39 were computed (e.g. intra-cluster correlations), and corre-
lations between the patterns in cluster 39 and the patterns within the 
other clusters were computed (e.g. inter-cluster correlations) across 
the patterns for each subject, session, and paradigm pair. The violin 
plots indicate the distribution of intra-cluster correlations (leftmost 
plot) and the 22 distributions of inter-cluster correlations (i.e. the dis-

tribution of correlations between the patterns of cluster 39 patterns 
and the patterns within the other clusters, as indicated on the x-axis). 
The individual intra-cluster correlations were significantly larger than 
zero (t = 21.67; p = 2.2 × 10− 16), and the inter-cluster correlations did 
not statistically differ for any of the 22 distributions computed (see 
Fig. 5). Results within this representative pattern indicate higher cor-
relations within clusters than between clusters
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eye-blink artifact correction applied to VOT but not RST-
eye-closed or SDT data). Clusters number 1 and 12 consist 
of components with maximal narrow-band power slightly 
above 30 Hz, and cluster 24 appears to comprise a collec-
tion of residual (i.e. unique) spatiospectral patterns.

Two spatiospectral patterns which are observable in 
all datasets were divided at six disjunctive clusters where 
each cluster belongs to one specific dataset. On both the 
standard dendrogram (Fig.  3a) and the radial dendro-
gram projection (Fig. 6), these clusters form 2 different 
but neighboring groups and each group corresponds to a 
unique spatiospectral pattern (cl. numbers {6;29;38} and 
{19;22;33}).

As demonstrated in Fig. 6, 21 of 30 clusters characterize 
14 different spatiospectral patterns which are observable and 
relatively stable in all three datasets. For exceptions, we note 
that clusters 25 and 31 contain some spatiospectral patterns 

which are present only during task, while the patterns of 
clusters 10 and 15 were present only during “rest”.

Relationship Between EEG Spatiospectral Patterns 
and Stimulus

Statistical relationships between spatiospectral time courses 
and stimulus vectors were present only at an uncorrected 
level of p < 0.05 (i.e. abs(t value) >2.1) for a subset of clus-
ters and paradigms. None of the tests reached statistical 
significance using conservative corrections for multiple 
comparisons. Thus, it is likely that the dynamics of EEG’s 
spatiospectral patterns are a mixture of the task-evoked neu-
ronal activity and neuronal activity of task unrelated process 
(e.g. default mode activity).

In general, the majority of uncorrected statistical effects 
appear for the VOT (higher t-values for 8 patterns from 20 

Fig. 5  Mean intra-cluster (main diagonal) and inter-cluster (below 
the main diagonal) correlation coefficients (a) over the final k-means 
clusters, the probabilities [the p values (c), derived from correlations 
coefficients through t-values (b)] indicating the likelihood that the 

observed correlations differed from zero by chance and the supra-
thresholded  pFWE<0.05 (d). The labels indicate the final cluster 
indexes (see Fig. 3a)
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different clusters) than for the SDT (higher t-values only for 
2 patterns from 20 different clusters).

Discussion

Stable EEG Spatiospectral Patterns

EEG oscillations are often subdivided into distinct frequency 
bands which appear to represent distinct cognitive states 
(δ:0–4Hz, θ:4–8Hz, α:8–12Hz, β:12–20Hz and γ > 20 Hz) 
(Buzsaki 2006; Niedermeyer and da Silva 2011). Our results 
suggest that those bands can be further subdivided by fre-
quency and electrode with data-driven group decomposition 
of independent spatiospectral patterns, and that these pat-
terns are stable across experimental paradigms.

Using the current approach, (i.e. with a high model 
order), we demonstrate a more detailed parcellation of 

EEG sub-bands. The δ-band appears to have four inde-
pendent spatiospectral components (clusters 2, 5, {3;13} 
and {17;27}). The θ-band was divided into four stable 
independent mostly narrow-band clusters ({29;38;6}, 
{22;33;6}, 16; 37). The maximal α-band power was 
observed for three independent spatiospectral patterns (cl. 
4, 30 and 32). The stable β-band components converged 
into two clusters (9 and 39), and broad-band components 
within the γ-band were only observed within cluster 
{1;12}. The narrow-band components within the γ-band 
are likely non-neural in origin, potentially reflecting resid-
ual artifacts from the fMRI environment, as in (Mareček 
et al. 2016). In general, previous studies demonstrate that 
some EEG sub-bands differ with respect to their relation-
ship to BOLD-fMRI (Laufs et al. 2006; Bridwell et al. 
2013) and further studies may disentangle their potentially 
distinct relationships to cognition, and whether they are 
present to differing degrees within healthy and clinical 
populations.

The number components observed within each frequency 
band may depend on the model order (i.e. number of compo-
nents) in ICA decomposition. For example, a given compo-
nent may split into multiple components with a higher model 
order. The number of reliable components provides a use-
ful metric for the appropriate choice of model order, since 
additional components are less reliably estimated when the 
model order is too high (Li et al. 2007). The model orders 
used within the present study appear appropriate, since clus-
ter quality values are generally above 0.9, and were never 
below 0.7.

Although the subjects’ groups partially overlapped for the 
SDT and RST datasets, the results in indicate that the spa-
tiospectral patterns should be stable also over subjects. This 
conclusion is supported by three facts. First, the percentile of 
subjects belonging to the stable cluster is over 90% on aver-
age for all paradigms. Second, the VOT data involved totally 
disjunctive group of subjects from both other datasets. Third, 
the back-reconstruction of single-subject spatiospectral pat-
terns brings inter-subject variability into the k-means clus-
tering analysis, which reorganizes the variability back into 
relevant, convergent and compact clusters.

Cortical oscillations may be tightly coupled with task 
dynamics, or may appear broadly throughout the task 
without a direct relationship to task parameters. For 
example, while we failed to identify robust relationships 
between spatiospectral time courses and stimulus time 
courses, we have observed a few clusters which appear 
specific to the different experimental paradigms. For 
example, cluster numbers 25 and 31 were comprised of 
spatiospectral maps which appeared during the two tasks, 
but not during rest (Fig.  6) and without a significant 

Table 1  Percentage of subjects belonging to the cluster within each 
dataset. If the cluster contained more components for one experimen-
tal paradigm, there are more values for one experiment

Cl. n. cluster number, RST resting-state, SDT semantic decision task, 
VOT visual oddball task, PN number of paradigms where the spatio-
spectral pattern was observed

Cl. n. RST (%) SDT (%) VOT (%) PN

1 0 0 100 1
2 100 100 100 3
3;13 98 98 96 3
4 100 100 100 3
5 90 98 89 3
6;29;38 100 98 94 3
8 100 100 39 3
9 100 100 89 3

73
10 100 0 16 1
12 100 100 0 2

98
15 100 0 0 1
16 98 100 100 3
17;27 100 98 99 3
18;20 100 100 100 3
19;22;33 100 98 100 3
21 100 0 0 1
24 100 100 96 3

51
25 0 100 100 2
30 100 100 100 3
31 0 100 100 2
32 100 100 100 3
37 100 100 100 3
39 100 100 100 3
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Fig. 6  Representative EEG spatiospectral patterns for 28 of 30 final 
post-processed clusters stable over all, or over a subset paradigms; 
and radial projection of the post-processed dendrogram. Clusters 12 

and 24 (within Fig. S5) are not included since their patterns appeared 
inconsistent across paradigms
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relationship to stimuli timings. This finding suggests that 
these networks emerge or support cognitive processes uti-
lized during visual oddball or semantic decision tasks, but 
they are unrelated to the stimulus time courses directly 
(e.g. representing arousal).

Spatiospectral Pattern Dynamics and External 
Stimulation

Relationships between spatiospectral fluctuations and 
the stimulus timing failed to reach statistical significance 
after correcting for multiple comparisons, despite previous 
studies demonstrating relationships between spectra and 
tasks (Rosa et al. 2010; Yuan et al. 2010; Miller 2010; 
Sclocco et al. 2014). Our previous study demonstrated 
stronger associations with power fluctuations and VOT 
stimuli (Labounek et al. 2015), consistent with the notion 
that relative EEG power contains more task-related vari-
ability than absolute EEG power (Klimesch 1999; Kilner 
et al. 2005). However, while relative power could increase 
task-related variability in the output W matrices of spa-
tiospectral group ICA (Labounek et al. 2016) a decrease 
in the cluster quality of S matrix estimates is observed 
(Fig. S6–8). It is also possible that task dynamics may 
have been attenuated within the present study as a result 
of the PCA dimension reduction. The PCA reduction of 
aggregate group data potentially emphasizes the most 
powerful and robust EEG spatiospectral maps (e.g. ongo-
ing low frequency oscillations), reducing the influence of 
task specific activities that represent only a small portion 
of signal variance, such as high frequency gamma band 
activity or event-related potentials (ERPs). In addition, it 
is important to note that the present approach isolates EEG 
responses over large windows (e.g. 1.66 s in the present 
study), which discards the time-locked activity present 
with conventional Event-Related Potential (ERP) analy-
sis of task data. Preserving time-locked activity, e.g. with 
group temporal ICA, may be a more promising approach 
for task data.

The stable spatiospectral maps observed within the 
present study may be related to network activity that con-
tributes to large scale brain networks (LSBNs) reported in 
“resting-state” fMRI studies (Damoiseaux et al. 2006; Van 
Den Heuvel et al. 2009; Allen et al. 2011), LSBNs have 
been observed during tasks, their activity sometimes cova-
ries with the experimental time course (Calhoun et al. 2008; 
Mantini et al. 2009; Spadone et al. 2015), and sub-set of 
LSBNs are related to EEG power fluctuations in concur-
rently recorded EEG (Mantini et al. 2007; Bridwell et al. 
2013; Mareček et al. 2016, 2017; for review see Bridwell 
and Calhoun 2014; or Murta et al. 2015). Thus, an improved 
understanding of the stable spatiospectral patterns may lead 

to and improved understanding of LSBNs observed with 
fMRI.

Current Study Novelty, Limits and Future Work

To the best of our knowledge, the present manuscript is 
the first to demonstrate the stability of EEG independent 
spatiospectral patterns over different datasets. These find-
ings further validate the approach for future studies, and 
motivate investigation of the functional role of the distinct 
spatiospectral patterns. Subdividing spectral responses 
in a data driven manner will be useful for future studies 
that decompose separate signals with potentially distinct 
functional roles (i.e. generating more robust results) and 
separating signals from artifact (i.e. enhancing signal over 
noise).

These stable patterns may be useful for brain computer 
interface (BCI) research (Wolpaw et al. 2000), since EEG 
spatiospectral filters are often applied as an approach to 
denoise the data (Lemm et al. 2005; Dornhege et al. 2006; 
Tomioka et al. 2006; Novi et al. 2007; Ang et al. 2008; 
Wu et al. 2008; Meng et al. 2013). The approach may also 
be useful in clinical research and applications focused on 
spectral differences between populations within distinct 
frequency bands, e.g. as demonstrated for Alzheimer’s 
(Rodriguez et al. 1999; Jeong 2004) or Parkinson’s (Soik-
keli et al. 1991; Klassen et al. 2011) diseases. If the stabil-
ity issues with relative EEG power were minimized, Group 
ICA may also be useful for examining the relative power 
differences prominent in autism (Wang et al. 2015).

It is unclear why we were unable to observe biologi-
cally plausible components within the γ-band within the 
present study, since previous studies demonstrate corre-
lations between γ-band and BOLD signals during tasks 
(Foucher et al. 2003; Lachaux et al. 2007; Nir et al. 2007; 
Scheeringa et al. 2011), and due to its association with 
perception and feature binding (Fries et al. 2007). Since 
Infomax ICA emphasizes sparse independent components 
(Calhoun et al. 2013), it’s possible that the component his-
tograms within the present study differed due to the num-
ber of electrodes or by the choice of bin size (dictated by 
the window size), modulating the sparsity and independ-
ence of γ-band components such that they were difficult to 
decompose. This frequency range may be more influenced 
by these parameters, thus, further studies focusing on this 
frequency band may use parameters more consistent with 
previous studies. In addition, results may improve after 
introducing overlap between the EEG segments (Bridwell 
et al. 2016).

Finally, future research could compare the consistency 
of group results derived using other approaches that gener-
ate EEG spatiospectral patterns, such as group-clustering 
after single-subject ICA (Hyvärinen 2011; Hyvärinen and 
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Ramkumar 2013), approximate joint diagonalization of 
lagged-covariance (Tang et al. 2005) or cospectral matrices 
(Congedo et al. 2008, 2010).
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