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Abstract Epilepsy surgery is the most efficient treatment

option for patients with refractory epilepsy. Before surgery,

it is of utmost importance to accurately delineate the sei-

zure onset zone (SOZ). Non-invasive EEG is the most used

neuroimaging technique to diagnose epilepsy, but it is hard

to localize the SOZ from EEG due to its low spatial res-

olution and because epilepsy is a network disease, with

several brain regions becoming active during a seizure. In

this work, we propose and validate an approach based on

EEG source imaging (ESI) combined with functional

connectivity analysis to overcome these problems. We

considered both simulations and real data of patients. Ictal

epochs of 204-channel EEG and subsets down to 32

channels were analyzed. ESI was done using realistic head

models and LORETA was used as inverse technique. The

connectivity pattern between the reconstructed sources was

calculated, and the source with the highest number of

outgoing connections was selected as SOZ. We compared

this algorithm with a more straightforward approach, i.e.

selecting the source with the highest power after ESI as the

SOZ. We found that functional connectivity analysis

estimated the SOZ consistently closer to the simulated EZ/

RZ than localization based on maximal power. Perfor-

mance, however, decreased when 128 electrodes or less

were used, especially in the realistic data. The results show

the added value of functional connectivity analysis for SOZ

localization, when the EEG is obtained with a high-density

setup. Next to this, the method can potentially be used as

objective tool in clinical settings.

Keywords High-density electroencephalogram (hd-

EEG) � EEG source imaging (ESI) � Functional
connectivity � Granger causality � Refractory epilepsy

Introduction

The electroencephalogram (EEG) is the most important

clinical technique to diagnose and characterize epilepsy,

because it can directly measure the aberrant electrical

activity in the brain associated with this disease in a con-

venient, safe, and inexpensive way (Smith 2005). Patients

with epilepsy have a strongly abnormal ictal EEG during

seizures, but also in between seizures abnormalities such as

interictal epileptiform discharges (IEDs) and slow waves

can be noticed.

The goal of epilepsy treatment is to suppress seizures.

When antiepileptic drugs (AEDs) do not allow seizure

control, surgery is an important option due to its high

efficacy in selected candidates (Téllez-Zenteno et al. 2005;

de Tisi et al. 2011). During epilepsy surgery, the brain

region that causes the seizures is disconnected (discon-

nective surgery) or removed (resective surgery). Therefore,

it is of utmost importance to accurately delineate the

epileptogenic zone (EZ), that is the brain area of which

surgical removal is required and sufficient to render the
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patient seizure-free. However, the EZ is only a conceptual

region since it cannot be measured directly. Only when a

patient is seizure-free after surgery, we can conclude that

the EZ was harbored in the resected zone (RZ) (Rosenow

and Lüders 2001). Fortunately, it is possible to get an

indirect estimate of the EZ by localizing the seizure onset

zone (SOZ), which is the region where clinical seizures

originate, and/or the irritative zone (IZ), i.e. the region

where interictal epileptiform discharges (IEDs) originate.

In current clinical practice, visual inspection of the EEG is

combined with other investigations such as MRI, SPECT,

PET, MEG, and invasive EEG (iEEG) with implanted

electrodes, to localize these areas (Carrette et al. 2011).

Yet, individually, none of these techniques are able to

localize SOZ unambiguously. On the other hand, every

extra investigation is expensive, time-consuming, and

potentially harmful for the patient, e.g. iEEG can lead to

scarring, infection and functional loss (Sprengers et al.

2014).

Therefore, it would be of high clinical value to be able

to localize the SOZ based on non-invasive EEG alone,

which is an inexpensive and safe technique. However,

several problems are encountered when estimating the SOZ

from non-invasive EEG. One of the major problems is the

low spatial resolution (� cm) of non-invasive EEG due to

volume conduction. Neuronal activity propagates through

different tissues (such as cerebrospinal fluid, skull and

scalp) before it reaches the electrodes. Because of the

different conductivities of these tissues, and certainly the

low conductivity of the skull, the measured activity at the

electrodes is smeared and distorted. As a consequence, the

potential measured at a given electrode does not neces-

sarily represent the activity of the directly underlying brain

area. The second major problem is that epilepsy is a net-

work disease, i.e. during a seizure, several brain regions

become simultaneously active as part of the patient’s

individual epileptic network and it is often hard to distin-

guish the main driver(s) of this network at seizure onset

from the secondary activated regions (Spencer 2002;

Richardson 2012).

One way to tackle the problem of the low spatial reso-

lution is to reconstruct the sources in the brain that are

generating the EEG using EEG source imaging (ESI)

techniques. In recent years, a large body of research to

measure the EZ based on ESI of EEG recordings has been

done. ESI can be applied on interictal or ictal EEG mea-

surements to get information about the IZ and the SOZ,

respectively. The vast majority of studies has focused on

the localization of the IZ (Plummer et al. 2008; Brodbeck

et al. 2011; Wennberg et al. 2011; Mégevand et al. 2014;

Wennberg and Cheyne 2014; Strobbe et al. 2016). Yet, it

can be argued that identification of the SOZ is more

indicative of the EZ compared to the IZ, since they directly

reflect the seizures (Jayakar et al. 1991; Rémi et al. 2011;

Elshoff et al. 2013).

However, ESI of ictal activity is significantly harder to

obtain due to muscle and movement artifacts during sei-

zures. Despite these difficulties, some methods analyzing

ictal EEG recordings have been proposed, suggesting that

ESI of ictal activity is promising for SOZ localization

(Lantz et al. 1999; Assaf and Ebersole 1997; Ebersole

2000; Boon et al. 2002; Jung et al. 2009; Koessler et al.

2010; Yang et al. 2011; Habib et al. 2015).

ESI can be improved by increasing the spatial resolution

of the EEG by including more electrodes. Despite the fact

that increasing the number of electrodes does not solve the

distortion of the brain signals, previous research has shown

the benefit of high-density EEG (hd-EEG) on ESI (Lantz

et al. 2003; Michel and Murray 2012), with specificity and

sensitivity increasing significantly with the number of

electrodes used (Brodbeck et al. 2011).

The aforementioned studies did not take into account

that epilepsy is a network disease and thus did not cope

with the second problem mentioned above. Usually, one

distinct time point was used to reconstruct the sources of

the averaged IED (e.g. the peak or the 50% slope of the

peak of the IED) (Brodbeck et al. 2011) or, in case of ictal

recordings, averaged discharges during ictal rhythms (As-

saf and Ebersole 1997; Ebersole 2000; Habib et al. 2015).

In other ictal cases, epochs rather than single time points

were reconstructed and the source with the highest ampli-

tude over time and space was selected (Koessler et al.

2010). In another approach, ESI depended on components

of the decomposed EEG associated with seizure activity,

with every component corresponding to a single topogra-

phy to remove the potential non-stationarity of the signals

(Jung et al. 2009; Yang et al. 2011). It cannot, however, be

assured that the selected time sample or epoch contains

only activity of the onset and no propagated activity.

Moreover, there is no direct evidence to assume that the

brain activity in the SOZ is stronger than the propagated

activity, because a single driving neuron could trigger a

larger group of neurons resulting in an area of higher power

elsewhere.

The concept of functional brain connectivity can be used

to investigate the epileptic network and its pathways.

Functional brain connectivity models reveal how infor-

mation flows are directed in the brain when applied on the

reconstructed brain signals after ESI. Only a few studies

tackling the two major problems stated above by combin-

ing ESI with functional connectivity analysis to localize the

IZ/SOZ or study the epileptic networks have been per-

formed up to date. Song et al. (2013) and Coito et al.

(2015) investigated the epileptic network during IEDs in

hd-EEG recordings. Song et al. (2013) applied ESI with

either minimum norm or cortical surface Laplacian
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constraints and used spectral coherence for functional

connectivity analysis to search for the possible engagement

of pathological networks. They saw characteristic source

coherence patterns before, during and after IEDs, but these

patterns could not always be easily related to the EZ. Coito

et al. (2015) performed source reconstruction using local

auto-regressive averages (LAURA) and used partial

directed coherence (PDC) to assess the connectivity to

investigate the fast-varying behavior of epileptic networks

during interictal spikes and concluded that there are sig-

nificantly different connectivity patterns in patients with

left temporal lobe epilepsy (TLE), right TLE, and healthy

controls. This study had as main goal to find functional

network differences between epileptic subpopulations (left

vs. right TLE) and healthy controls, rather than localizing

the IZ or SOZ in each individual patient. Ding et al. (2007)

and Lu et al. (2012) analyzed ictal epochs of 3 s by com-

bining first principle vector (FINE) spatio-temporal ESI

and directed transfer function (DTF) analysis to identify

the ictal sources. While Ding et al. (2007) only used 32

electrodes, Lu et al. (2012) compared 32 and 76 electrodes

and found more localizing results for the higher number of

electrodes. Ding et al. (2007) estimated the SOZ within

15 mm of the presumed EZ in five patients and Lu et al.

(2012) found the SOZ in 7 out of 10 patients within 10 mm

of the RZ. Elshoff et al. (2013) analyzed ictal EEG seg-

ments (38–50 electrodes) of max. 10 s in the beginning and

in the middle of seizures with Dynamic Imaging of

Coherent Sources (DICS) to determine the SOZ. The

source with the highest power was identified as SOZ.

Afterwards, functional connectivity analysis based on

(renormalized) partial directed coherence ((R)PDC) was

applied on the reconstructed sources, however, not to

localize the SOZ, but rather to gain insight into the char-

acteristic underlying epileptic network. In eight patients

that were rendered seizure-free after surgery, the first two

sources identified by DICS were concordant with the RZ.

For three other patients, who were not seizure-free, the first

two sources were not concordant with the RZ.

In the present study, we investigate a new combination

of ESI and functional connectivity analysis to study the

added value of using functional connectivity analysis

compared to the more traditional method that uses power

after ESI to localize the SOZ. To assess connectivity, we

will use a Granger causality based measure, the spectrum-

weighted adaptive directed transfer function (swADTF), as

successfully applied on ictal iEEG (van Mierlo et al. 2013).

Here, we extend the method to non-invasive ictal EEG.

First, simulated ictal high-density EEG data is used to

verify the method. Next, we validate the approach in five

patients. Finally, we perform the analysis on subsets of the

electrodes to mimic lower-density setups to investigate the

influence of the number of electrodes on the performance

of the proposed algorithm.

Methods

Generation of Simulated Data

Ictal EEG epochs of 3 s were constructed by forward

projection of a simulated epileptic network in the brain.

The details on the forward models used for this purpose,

can be found in Sect. 2.3.2. The epileptic network con-

sisted of three nodes, of which the configuration can be

seen in Fig. 1a. The seizure originated in node 1 and

propagated to node 3 via node 2. In node 1, the driver of

the network, epileptic activity was mimicked by a sinusoid

of decreasing frequency from 12 Hz at t ¼ 0 s to 8 Hz at

t ¼ 3 s and its first two harmonics. Gaussian noise with 1/f

spectral behavior was added with a signal-to-noise ratio

(SNR) of 5 dB to account for background brain activity.

The seizure propagated to the second node with a delay of

20 ms. Extra Gaussian 1/f noise is added with an SNR of

(a) (b)

Fig. 1 a Configuration of the

simulated epileptic network.

Source 1 is the overall driver.

b An example of the signals that

mimick epileptic activity

corresponding to the three nodes

of the network
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5dB. The resulting signal is delayed with 32 ms to node 3

and again Gaussian 1/f noise is added. The three signals

were constructed with a sample frequency of 250 Hz, and

an example can be seen in Fig. 1b.

Every node corresponded with a patch in the brain,

which was constructed by growing a region in the gray

matter around a randomly chosen seedpoint, until the patch

enclosed 100 gridpoints of a uniform cubic grid with

spacing 4 mm (see also Sect. 2.3.2). This resulted in a

mean volume of 8.04 cm3 per patch. A minimal distance of

15 mm between every two patches was guaranteed. An

example of three patches can be seen in Fig. 2a. The

activity in the patches was smoothed towards the borders in

order to obtain a three-dimensional Gaussian-shaped power

distribution to avoid abrupt power level changes, since

neighboring neurons tend to synchronize (Haalman and

Vaadia 1997), giving rise to a smooth activity distribution.

The background brain activity outside the patches was set

to Gaussian 1/f noise with an SNR of 5 dB with respect to

the epileptic signal in the first node.

The brain activity in source space was projected to

sensor space to obtain hd-EEG with 204 channels, this

can be seen in Fig. 2b. Subsets of 200, 196, 192, 188,

184, 180, 176, 172, 168 and 164 electrodes were created

by consecutive exclusion of four electrodes, while keep-

ing the electrode distribution as uniform as possible.

Additionally, subsets of 128, 64 and 32 electrodes were

created to mimic setups that are more common in clinical

practice. The resulting electrode configurations can be

seen in Fig. 3.

Collection of Patient Data

Patients were selected from the database of the epilepsy

unit of the Geneva University Hospital with following

inclusion criteria: (1) patients suffering from focal refrac-

tory epilepsy; (2) they underwent hd-EEG (256 channels)

monitoring and had at least one seizure during recording;

(3) the patients underwent resective surgery of the sup-

posed epileptogenic zone; (4) they had only one resection;

(5) the surgical outcome of the patients was Engel Class III

or higher; (6) pre- and post-operative T1-weighted MRI of

the patient was available. Five patients (2 male) with mean

age of 37.6 years fulfilled all criteria and were included.

Table 1 gives an overview of the patients’ age and sex,

clinical and MRI findings, the result of visual analysis of

the scalp EEG, the performed resective surgery, and the

outcome of the surgery. The local ethical committee

approved the study and all patients gave written informed

consent.

Long term hd-EEG was recorded for approximately

24 h in each patient (EGI, Geodesic Sensor Net with 256

electrodes). From the 256 electrodes, the facial electrodes

and the bottom line of the cap were removed due to major

muscle artifacts, resulting in a setup of 204 electrodes.

Electrode positions were estimated for every patient by

manually fitting a template cap on the individual MRI.

Also for the patient data, subsets of 200, 196, 192, 188,

184, 180, 176, 172, 168, 164, 128, 64 and 32 electrodes

were created, with the configurations shown in Fig. 3. The

sample frequency was either 250 Hz or 1000 Hz. In the

(a) (b)

Fig. 2 a Example of three randomly located epileptic patches in the brain, corresponding to the nodes of the network. bMontage of the resulting

EEG after projection of the epileptic brain activity to sensor space
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latter case, the EEG was downsampled offline to 250 Hz

for consistency and to reduce computation time.

For every patient, an epoch of 3 s was selected that

started at the seizure onset time marked by an EEG expert

(MG).

From EEG to SOZ

An overview of the presented approach to get from the

EEG to SOZ estimation is shown in Fig. 4. The data of

patient 1 is used for illustration purpose. To summarize, we

(a) (b) (c)

(d) (e) (f)

Fig. 3 The different used electrode setups: a original 204 electrode

setup, b the electrodes that were subsequently removed to obtain

setups of 200–168 electrodes, c subset with 164 electrodes (red),

d 128 electrodes, e 64 electrodes and f 32 electrodes. L left, R right,

A anterior, P posterior (Color figure online)

Table 1 Overview of patient details

p1 p2 p3 p4 p5

Age (years) 36 42 36 29 45

Sex F F M F M

Cinical findings complex partial

seizures

complex

partial

seizures

epigastric aura,

secondary

generalisation

aura of deja vu, change of taste,

non-lateralized impairment of

vision

complex partial

seizures,general tonic

clonic seizures

MRI findings R hippocampal

sclerosis

R hippocampal

sclerosis

R hippocampal

slcerosis

R cortical dysplasia in amygdala

and paraventricular nucleus

L TPO Gangliocytoma

Visual analysis of

interictal scalp

EEG

T2, F8 TP10, T8 T2, T8, P8, Tp10 T2, T8 F3, P7, CP3, P5

Surgery R polectomy and

amygdalohippo-

campectomy

R temporal

anterior

lobectomy

R amygdalohippo-

campectomy

R polectomy and temporal

anterior lobectomy

L occipital lobectomy

Engel Class I I I I III

L left, R right, M male, F female, TPO temporo-parieto-occipital
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selected 3 s of ictal hd-EEG beginning at the marked sei-

zure onset and reconstructed the sources generating the

ictal brain activity with ESI. In the inverse solution, we

selected local hotspots of higher activity. This resulted in

eight sources. As no constraints on the orientation of the

sources were applied in the reconstruction, each of these

eight sources is represented by three time series, for the x, y

and z direction. We used singular value decomposition

(SVD) to represent each source with one time series (Golub

and Reinsch 1970). Using these time series, functional

connectivity analysis was applied with the spectrum-

weighted adaptive transfer function (swADTF) (van Mierlo

et al. 2013). Next, the swADTF values were summed to get

the outdegree of every source as a measure for the total

outgoing information flow from a source. The source with

the highest outdegree, source 2 in the example (Fig. 4g),

was selected as SOZ. This estimated SOZ was compared to

the RZ of the patient and also to the source with highest

power after ESI, i.e. source 3. In the following sections, we

present every step of this method in detail.

EEG Preprocessing

The patient data was common average referenced and

band-pass filtered between 1 and 30 Hz, to remove baseline

drift and to reduce high frequency noise resulting from

movement artifacts. An extra notch filter at 50 Hz was

applied to filter out remaining power line noise. In patient 4

and 5, ICA was applied to remove remaining artifact

(Makeig et al. 1996).

EEG Source Imaging

To reconstruct the sources generating the ictal epochs, EEG

source imaging (ESI) was done. For the forward model,

patient-specific head models were constructed based on the

finite difference method (FDM) (Hallez et al. 2005). Air,

scalp, skull, cerebrospinal fluid (CSF), gray and white

matter were segmented from the individual pre-operative

T1-weighted MRI of the patient (resliced to voxels of

1� 1� 1 mm3) using the Statistical Parametric Mapping

(SPM12) toolbox (http://www.fil.ion.ucl.ac.uk/spm). The

segmented volumes were combined into a single head

model with six tissue classes, and following conductivity

values were assigned to the different tissues: 0.33 S/m for

gray matter, 0.14 S/m for white matter, 1.79 S/m for CSF

(Baumann et al. 1997), 0.33/25 S/m = 0.0132 S/m for the

skull and 0.33 S/m for scalp (Montes-Restrepo et al. 2014;

Vorwerk et al. 2014), and 0 S/m for air. The solution space

was created based on the segmented gray matter. Solution

points (SP) were uniformly distributed in the gray matter of

the patient with a grid spacing of 4 mm, which resulted in

approximately 8000 SP for every patient. These SPs

formed the central nodes of the dipole model, so we

ensured that at least 2 voxels of gray matter were left open

between the SPs and the boundaries with other tissues in all

directions, in order to keep the dipoles restricted to the gray

matter.

An in-house implementation of the LOw Resolution

Electromagnetic TomogrAphy (LORETA) algorithm

(Pascual-Marqui et al. 1994) was used to solve the inverse

problem. This is a distributed linear method that is based

on the physiological assumption that neighboring neurons

are simultaneously and synchronously activated, which

practically means that the solution should be as smooth as

possible. Since we work with a cortical volume and not

with a cortical sheet, perpendicularity to the cortical sur-

face is rather ambiguous and therefore we did not fix the

orientation of the sources beforehand, as is done often

(Baillet et al. 2001; Lopez et al. 2014). Because we did not

put any constraints on dipole orientation, every SP is rep-

resented by 3 time series, one for each orthogonal spatial

direction (x, y, z) after solving the inverse problem.

Source Selection and Time Series

In a typical LORETA solution, the brain activity is smooth

throughout the volume of the brain with one or more hot-

spots of higher activity that vary in intensity and that may

overlap partially. During an epileptic seizure, several brain

regions become active. We assume that some of the hot-

spots we obtain after ESI correspond with the active

regions in the network. To determine these hotspots, we

calculated the sphere power of every SP. We defined the

sphere power of a certain SP to be the mean power of all

SPs lying in a sphere centered around that certain SP. We

considered the spheres with no neighbors with higher

sphere power to be the center of a hotspot. The SP that had

the highest power in that sphere was selected and called a

source. Sources in the cerebellum were excluded. By

varying the radius of the sphere, more or less sources could

be found. Two extreme cases can be distinguished: when

the radius is larger than the largest distance between two

SPs, only one SP will be selected, i.e. the one corre-

sponding with the maximal power, and connectivity

bFig. 4 Analysis of p1. a Selection and preprocessing of an ictal hd-

epoch. b Result of EEG source imaging, c Source selection shown in

solution space and d time series for x, y and z direction for these

sources. e SVD to represent each source with one time series.

f swADTF values over time (summed in the 3–30 Hz frequency band)

for every source to every other source. g Summation of the swADTF

values leads to the outdegree. h The source with the highest outdegree

is selected as SOZ. The location of this source is compared with the

location of the source with the highest power and with the segmented

resected zone. The presented method finds the SOZ in the RZ, while

the source with the highest power is not located inside the RZ

Brain Topogr (2017) 30:257–271 263
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analysis cannot be done. In the other extreme, when the

radius is smaller than the resolution of the grid (here

4 mm), all sources will be selected. In this case, the sub-

sequent connectivity analysis would still be computation-

ally feasible with the advent of high-performance clusters.

However, this situation is avoidable because it might bias

the connectivity analysis since LORETA provides a

solution in which neighboring sources are correlated, and

thus possibly introducing spurious connections. In this

study, we want to localize the SOZ and we are not

looking for whole brain functional connectivity patterns at

all spatial scales (from mm to cm), but rather for those in

a selected range of distances, larger than 15 mm. There-

fore, we limit the radius to be in a range that does not

make the search area unnecessarily large, while not

excluding possible network nodes (i.e. not excluding

possibly relevant local maxima). We found good corre-

spondence between the LORETA solution and the selec-

ted sources when a radius between 15 and 25 mm was

chosen. We eventually used a radius of 20 mm as this

provided overall best results and for which the number of

selected sources varied between 4 and 13 for all patients

during the analyzed ictal epoch.

Suppose that K sources were selected. As we did not

impose constraints on dipole orientation, the activity in

each source k of the K selected sources can be represented

by a matrix Fk 2 R3�N for k ¼ 1. . .K, with N the number

of time samples of the epoch. Each row of the matrix

corresponds with an orthogonal spatial direction (x, y, z).

We used singular value decomposition (SVD) to represent

each source by a single time series sk 2 RN , associated

with the largest singular value of the SVD (Golub and

Reinsch 1970). In SVD, there exists an intrinsic sign

indetermacy and sign flips might occur over sources. This

is, however, not a problem because the subsequent con-

nectivity analysis (see Sect. 2.3.4), is mathematically not

dependent on the sign of the signals.

Functional Connectivity Analysis

Functional connectivity analysis was used to estimate

which source is the most important, i.e. the driver behind

the epileptic network. We used a Granger causality based

measure to investigate the network, more specifically the

spectrum-weighted adaptive directed transfer function

(swADTF). The general concepts of this technique have

been previously described by van Mierlo et al. (2013).

First, the source signals sk are modeled with a time-varying

multivariate autoregressive (TVAR) model in which the

signals are represented as a linear combination of their own

past plus additional uncorrelated white noise. This can be

mathematically described as:

skðtÞ ¼
XP

p¼1

XJ

j¼1

akjðp; tÞsjðt � pÞ þ ekðtÞ ð1Þ

in which P is the model order, i.e. the number of past

samples that are taken into account for the calculation of

the current sample, akjðp; tÞ are the model coefficients, and

ekðtÞ is uncorrelated white noise at time t. In matrix rep-

resentation we get:

SðtÞ ¼
XP

p¼1

ApðtÞSðt � pÞ þ EðtÞ ð2Þ

with SðtÞ ¼ ½s1ðtÞ s2ðtÞ . . . sKðtÞ�T the K � 1 source matrix

of the K selected sources at time t, with ApðtÞ the K � K

coefficient matrix for delay p at time t, and with EðtÞ ¼
½e1ðtÞ e2ðtÞ . . . eKðtÞ�T the K � 1 matrix of the uncorrelated

white noise at time t.

The model coefficients describe the directional infor-

mation flow between the different signals and can change

over time, making the model time-variant. In the simula-

tion data, we set the model order fixed to 10 (=40 ms), to

minimize computational demand, following the ranges that

are presented in literature (Astolfi et al. 2008; van Mierlo

et al. 2011, 2013; Coito et al. 2015). For the patient data,

we calculated the optimal model order with the Akaike

Information Criterion (AIC) (Akaike 1974) and found

model orders between 4 and 8, see also Table 3 in Ap-

pendix. For patient 4, we found diverging results and

therefore we set the model order to the maximal value

found for the other patients, i.e. 8. The TVAR coefficients

were estimated using the Kalman filtering algorithm

(Arnold et al. 1998; Schlögl et al. 2000). The Kalman fil-

tering algorithm is mainly influenced by the update coef-

ficient (UC), which expresses how quickly the TVAR

model coefficients will adapt to changes in the dataset. This

way it provides a balance between the amount of signal and

the amount of noise that is modeled. We chose a low value

of 10�4 for the UC, as we only want to see connections that

are maintained in the data and we are not interested in

modeling abrupt changes.

The time-varying transfer matrix Hðf ; tÞ of the model

can be found after Fourier transformation and inversion of

the coefficient matrix:

Aðf ; tÞ ¼ �
XP

p¼0

ApðtÞe�i2p f
fs
p

Hðf ; tÞ ¼A�1ðf ; tÞ
ð3Þ

with fs the sample frequency and Ap¼0ðtÞ equal to the

negative K � K identity matrix. The elements Hi;jðf ; tÞ of
the transfer matrix describe the information flow from

signal j to signal i at frequency f at time t. From the transfer
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matrix, the spectrum-weighted adaptive directed transfer

function (swADTF) can be calculated to investigate the

causal relation from source signal sj to source signal si for a

predefined frequency band at time t:

swADTFijðtÞ ¼
Pf2

f¼f1
jHijðf ; tÞj2

PK
k¼1 jHjkðf ; tÞj2

PK
l¼1

Pf2
f 0¼f1

Hilðf 0; tÞj j2
PK

o¼1 Hloðf 0; tÞj j2
� �

ð4Þ

Due to normalization of the swADTF, the sum of

incoming information flow into a source at each time point

is equal to 1:

XJ

j¼1

swADTFijðtÞ ¼ 1: ð5Þ

SOZ Localization

The swADTF values were calculated for every source sj
to every other source si at every time point of the epoch

in the frequency band 3–30 Hz, as this band contained

the fundamental seizure frequency noticed in the EEG.

For every source sj, we defined the outdegree (OD) as

the sum of the swADTF values to all other sources over

time:

ODj ¼
XK

k¼1

XT

t¼1

swADTFkjðtÞ ð6Þ

in which we defined swADTFjj ¼ 0. The outdegree is a

measure for the total outgoing information flow from a

source to all the other sources. The source with the highest

outdegree was assumed to drive the epileptic network

active during the seizure and was selected as SOZ.

Evaluation of the Simulated Data

With the forward model of every of the five patients, we

simulated 200 ictal hd-EEG epochs of 3 s resulting in a

dataset of 1000 unique epochs. For all these epochs and all

electrode setups, we tried to localize the driving patch of the

epileptic network. The localization error (LEconn) was

determined as the Euclidean distance between the border of

the driving patch and the estimated SOZ, i.e. the source with

the highest outdegree. If the selected SOZ was in the driving

patch, the LE was 0 mm. LEconn was then compared to the

shortest distance between the driving patch and the source

with the highest power (LEpow), to see whether connectivity

analysis can provide extra information compared to ESI

alone. Also the distance LEmin between the driving patch and

the closest source of all selected sources to the driving patch

was calculated to provide a measure for the quality of the

combination of ESI and source selection. It offers a lower

bound on the error of both the source with the highest out-

degree and the source with the highest power. When

LEconn=pow ¼ LEmin, the respective method achieves the best

possible result, given the reconstructed sources. The differ-

ent localization errors are illustrated in Fig. 5.

Validation in Patient Data

For all patients, we segmented the resected zone (RZ) from

the post-operative MRI, which we coregistered to the

solution space. We used the proposed approach to try to

localize the SOZ for every patient and every electrode

setup. Also for the patient data LEconn;LEpow and LEmin

were calculated, but now with the RZ as a reference.

Results

Simulated Data

Overall Results

The results of the SOZ localization based on 1000 simu-

lated ictal EEG epochs can be seen in Fig. 6. The data is

represented in a boxplot, with the dot indicating the mean

and the bar indicating the median of the errors. The data for

200, 192, 184, 176 and 168 electrodes are not shown, as

they are very similar to their neighboring setups. From the

figure, it is clear that connectivity analysis is better in

localizing the epileptic driving patch than localization

based on maximal power. More precisely, the localization

error based on connectivity analysis was smaller than or

equal to that based on power, LEconn � LEpow in 85.5% of

all the cases. LEconn was strictly smaller than LEpow in

(a) (b)

Fig. 5 Illustration of the different localization errors. LEconn = the

Euclidean distance between the source with the highest outdegree and

the driving patch in the simulated data or the RZ in the patient data,

LEpow = the Euclidean distance between the source with the highest

power and the driving patch/RZ, and LEmin = the Euclidean distance

between the source closest to the driving patch/RZ and the driving

patch/RZ. a In this case LEpow [LEconn [LEmin. b The localization

errors can be equal to each other. In this case LEconn = LEmin,

meaning that our method selected the best possible source to estimate

the SOZ. A anterior, P posterior
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58.5% and they were equal in 26.9% of all cases. Only in

14.5%, power outperformed connectivity analysis.

When comparing the localization errors based on con-

nectivity and power with the minimal error that could be

achieved, we found that LEconn equaled LEmin in 66.74% of

the cases. This is in contrast with LEpow, which was equal

to LEmin in only 31.64%.

Influence of the Number of Electrodes

From Fig. 6, it can be seen that the localization errors are not

distributed normally. Therefore, we consider the median to

be more useful than the mean for representing the data over

the different electrode setups. An overview of the different

medians can be found in Table 2. Themedian of theminimal

localization error LEmin was smaller than 10 mm for all

setups except for 32 electrodes, for which it was 12 mm. The

upper quartile stayed below 20 mm. For all electrode setups,

it was possible to find a source very close to the origin of the

simulated seizure. Themedian of the localization error based

on connectivity analysis LEconn was smaller than 15 mm in

all setups, except for 32 electrodes, for which it was

20.78 mm. We notice an increase in both LEmin and LEconn

when we lowered the number of electrodes, especially in the

upper quartile of LEconn. Between 32 and 204 electrodes, the

median of LEmin got 5.07 mm larger and the median of

LEconn 8.78 mm,which represented in both cases an increase

of approximately 72%. In contrast, the median of the

localization error based on power was much larger and

varied between 40.10 and 44.72 mm over all electrode set-

ups, which reflected a fluctuation of maximal 11.5%.

Patient Data

Overall Results

In Fig. 7, an overview of the localization errors (LEs) for all

patients and all electrode setups can be found. A localization

error of e.g. 50 mm is considered to be as unfavorable as a

localization error of 80 mm, therefore we used different

intervals to characterize the errors: LE = 0 mm,

LE 2 �0; 10� mm, LE 2 �10; 25� mm, LE 2 �25; 45� mm,

and LE[ 45 mm.

From the figure, we can see that LEconn was equal to or

smaller than LEpow in 91.4% of the cases, meaning that in

these cases our presented method performed as well as or

better than localization based on power. LEconn was strictly

smaller than LEpow in 57.1 % of the cases. In 34.3 %,

LEconn = LEpow and, in 8.6 % of the cases, power out-

performed connectivity analysis, LEconn [ LEpow. These

8.6 % represent 6 cases that are mainly located in the low-

density setups (3 for 32 electrodes and 1 for 64 electrodes,

and two outliers for p1 for 184 and 192 electrodes).

Fig. 6 Overview of (i) the localization errors (LE) of the SOZ

estimated by connectivity analysis, (ii) the LEs of the source with the

highest power, and (iii) the LEs of the closest selected source for the

different electrode setups for the simulated data. The distribution of

the LEs is shown as a boxplot, the dot symbolizes the mean LE, while

the bar indicates the median LE

Table 2 Overview of the medians of LEconn, LEmin and LEpow for the different setups obtained after evaluation of 1000 simulated ictal EEG

epochs

(mm) 204 196 188 180 172 164 128 64 32

Median LEconn 12.00 12.00 12.00 12.65 12.65 12.65 13.27 14.97 20.78

Median LEmin 6.93 6.93 6.93 8.00 8.00 8.00 8.94 9.37 12.00

Median LEpow 44.72 44.72 42.99 42.99 44.00 42.61 41.95 40.99 40.10

(a) (b) (c)

Fig. 7 Overview of a the localization errors (LE) of the SOZ

estimated by connectivity analysis, b the LEs of the source with the

highest power, and c the LEs of the closest selected source for the

different electrode setups for the five patients
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For all setups, ESI and source selection were able to find

a source inside the RZ for four patients, and within 10 mm

of the border of the RZ or within the resection for the other

patient. Connectivity analysis was able to find this optimal

solution in 88.6% of the cases, whereas LEpow = LEmin in

38.6% of the cases.

Influence of the Number of Electrodes

Figure 8 shows the result of the connectivity analysis and the

source with the highest power compared to the RZ for all

patients for 204 electrodes. For the 204 electrodes setup, we

were able to estimate the SOZ inside the RZ

(LEconn = 0 mm in p1, p2, p4, p5) or within 10 mm of the

border (LEconn\ 10 mm in p3) of the RZ. In contrast,

localization based on power was only able to estimate the

SOZ inside the RZ in one patient and within 10 mm of the

border of the RZ in one other patient. In these cases, local-

ization based on power and connectivity found the same

source. For the three other patients, the localization error

LEpow was larger than 25 (1/3 patients) or 45 mm (2/3

patients). The lateralization was, however, correct. When

comparing to the minimal localization error, connectivity

analysis achieved the best possible result after ESI and

source selection in every patient for 204 electrodes. This is

also shown in Fig. 9, which displays in how many patients

theminimal localization error was found, for every electrode

setup and for both methods. On the contrary, localization

based on power was only able to select the optimal source in

two patients. The same results applied when gradually

lowering the number of electrodes to 128, with the exception

of three cases: for 192 and 184 electrodes, localization based

on connectivity analysis does not find the optimal source in

p1. For 128 electrodes, power localized the optimal source

only in one out of five patients. For the high-density setups

we can say that the presented approach outperformed

localization based on power consistently.

For 64 electrodes, the performance of the presented

approach decreased. The SOZ was estimated inside the RZ

(2/5 patients) or within 10 mm of the border of the RZ (1/5

patients) in only three patients instead of 5. Yet, this result

is better than localization based on power, for which the

optimal source is only found in two patients. Only for one

patient LEpow was smaller than 10 mm. This is also

reflected in Fig. 9: LEconn = LEmin in three patients and

LEpow = LEmin in one patient.

Fig. 8 The selected SOZ based

on the presented method (blue),

the source with the highest

power (red) and the resected

zone (green) in the solution

space for every patient, using

the 204 electrode setup. L left,

R right, A anterior, P posterior

(Color figure online)

Fig. 9 Representation of the number of patients for who the lower

limit of error is achieved for each of the methods for all electrode

setups, i.e. in how many patients does the source with the highest

outdegree/the source with the highest power coincides with the source

closest to the RZ for each setup

Brain Topogr (2017) 30:257–271 267

123



For the low-density setup of 32 electrodes, the SOZ was

estimated inside the RZ in only one patient. The source

with the highest power, was however inside the RZ in two

out of five patients.

Discussion

In this paper, we proposed an approach that combines ESI

and functional connectivity analysis to localize the SOZ

from non-invasive EEG in patients with refractory epi-

lepsy. We look at the connectivity instead of the power of

the neuronal activity during an epileptic seizure. The pre-

sented method does not require patient-dependent param-

eters, which makes it suitable for use in clinical practice.

We compared the localization obtained from connectivity

measures with the maximal power of the electrical activity

at the onset of an epileptic seizure.

We validated our method using simulated ictal EEG

epochs and found that localization based on connectivity

analysis had a significantly and consistently better yield

than localization based on maximal power, for every

electrode setup. The localizing potential of the method

increased with the number of electrodes, which is in

agreement with literature (Michel and Murray 2012). As a

result, the perfomance of connectivity analysis also

increased for high-density setups. The influence of the

amount of electrodes was much smaller when localization

was based on maximal power, but the median localization

error was unacceptably high for all setups.

Next to simulations, we validated the method in five

patients. For almost all high-density setups with 128

electrodes or more, we found the best possible result with

the presented method: in four out of five patients the

connectivity analysis selected the best possible source to

localize the SOZ in every setup. For the fifth patient, the

connectivity analysis was able to select the optimal source

in all but two setups. The source with the highest power

coincided with this optimal source in only two out of five

patients. These results are better than what we found with

the simulations, but this can be accounted for by the

resected zones of the patients being larger than the patches

of the simulated network. Next, we found equally good or

better results with the connectivity method in 91.4% of the

cases compared to selecting the source with the highest

power. A possible explanation for this could be that there is

some remaining artifact in the selected epochs, and that

connectivity analysis is more robust to artifacts and noise

in the EEG than the power metric. A solution would be to

limit the power analysis to a patient-specific seizure fre-

quency range, to filter out the artifact as much as possible.

This is done by Elshoff et al. (2013), where the frequency

range could also change over the course of the seizure.

However, given that a patient-specific seizure range could

make the method subjective and less suitable to be directly

used in a clinical setting, we opted not to do this and

performed wide-spectrum analysis.

In the range of 204 down to 128 electrodes, our method

generally estimated the localization of the SOZ inside (4/5

patients) or very close (\10 mm) to the boundaryof theRZ (1/

5 patients). When lowering the number of electrodes down to

64, the performance of the method dropped, but it was still

capable of localizing the SOZ inside (2/5 patients) or very

close to the border of theRZ (1/5patients). For the low-density

setup with 32 electrodes, we experienced an extra drop in

performance. When using only 32 electrodes, there was cor-

rect localization in only one of the patients. Setups with more

electrodes are thus preferred in the current approach. We

assume that the performance goes down with the number of

electrodes due to suboptimal estimation of the time series per

source (however the goodness-of-fit did not drop signifi-

cantly) and/or SVD not being able to represent the three

orthogonal time series as one time series. As a consequence,

these errors propagate in the connectivity analysis and the

correct source cannot be selected. Nevertheless, Ding et al.

(2007) used only 31 electrodes and they were able to localize

the SOZ within 15 mm of the presumed EZ.

However, four out of the five analyzed patients showed

clear large lesions on MRI that were presumed to be epilep-

togenic and it remains to be investigated how this influenced

the results, as only one patient in this study had a small lesion.

Furthermore, it is not addressed whether the patients had

surgery, and if so, whether surgerywas successful. Therewere

also no intracranial EEG recordings to validate the results. Lu

et al. (2012) performed a similar studywith 76 electrodes, and

theywere able to localize the SOZwithin 10 mmof the border

of theRZ in7 out of 10patients. This result is comparablewith

our study for the 64 electrode setup.

To improve results for lower-density setups, some sug-

gestions can bemade.A possible improvement could be to use

patient-specific electrode locations in the forward model. The

benefit of this has been investigated and could improve the

estimation of the time series corresponding to each selected

source (VanHoey et al. 2000;Wang andGotman 2001; Dalal

et al. 2014). We chose LORETA as inverse solution method

as it is a simple, clear and easily controllable technique fit for

the reconstruction of non-stationary signals that was ready at

hand in our group. Nevertheless, the influence of other, more

advanced inverse techniques could be investigated, suchas the

multiple sparse volumetric priors (MSVP) algorithm (Strobbe

et al. 2014), the FINE algorithm (Xu et al. 2004; Ding andHe

2006; Ding et al. 2007), dynamic imaging of coherent sources

(DICS) (Groß et al. 2001, 2002), or theMaximumEntropy on

the Mean (MEM) approach (Clarke and Janday 1989; Grova

et al. 2006). The investigation of the potential benefit of such

techniques lies, however, beyond the scope of this study. In
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our analysis, the inverse solution is estimated for every time

sample separately, but we could take into account other time

samples to improve ESI.

Other functional connectivity analysis techniques, possibly

in combination with graph theory measures, could be con-

sidered. Some connectivity measures related to the swADTF

were tested, the integrated ADTF (iADTF) and the full-fre-

quency ADTF (ffADTF) (van Mierlo et al. 2011), both

resulting in worse results. Another interesting approach for

SOZ localization is to first decompose the ictal data to isolate

seizure components, e.g. with ICA, and then integrate ESI

with a recombination approach. This is done by Yang et al.

(2011), where this dynamic source imaging technique iden-

tified ictal activity in good correlation with iEEG and surgical

outcomes. It remains to be investigated how functional con-

nectivity analysis can possibly enhance this method.

In this study, functional connectivity analysis was per-

formed on a limited set of network nodes, selected based on a

measure of local maxima in power. It might be interesting to

look atwhat happens on thewhole-brain level during a seizure

and to compare this to the brain in resting state. In the past, all-

to-all functional connectivity analysis has been done by

reducing the brain space to several regions-of-interest based

on a brain atlas (Hillebrand et al. 2012; Brovelli et al. 2015).

This method avoids the problem of possibly introducing

spurious sources due to locally correlated sources in the ESI

solution, as discussed in Sect. 2.3.3. Recently, this has been

applied on epilepsy patients by Coito et al. (2015, 2016) to

investigate interictal and resting state connectivity.

ESI resulted in all cases in a source close to the resec-

tion, reflected in an overall low LEmin. The selection of this

optimal source was significantly better using connectivity

analysis compared to selecting the source with the highest

power, especially in high-density setups.

When applying functional connectivity analysis to non-

invasive recordings, the volume conduction problem is a

well-known phenomenon. All sources in the brain are seen

by each electrode. We addressed this problem by demixing

the sources, i.e. with ESI, but this technique does notmitigate

the effects of volume conduction completely and spurious

connections can still possibly exist (Schoffelen and Gross

2009). There is no technique to completely alter the mixing

problem, but it would be interesting to compare the current

framework with other techniques, e.g. the imaginary part of

the coherency (Nolte et al. 2004), designed to undo the

volume conduction problem in combination with functional

connectivity analysis. A clear review of the volume con-

duction problem in functional connectivity analysis and

different strategies and techniques to solve it, is given by

Bastos and Schoffelen (2015).

Considering the patient data, an important remark tomake

is that the method was validated in a dataset limited to only

five patients in which each patient had one seizure,

Moreover, one of the patients only had Engel Class III. With

this limited validation, we illustrated the potential of the

method and showed its possibilities. The findings were

concordant with simulation results. Extensive validation in a

larger and more heterogeneous (i.e. more types of epilepsy)

patient population is necessary to prove its clinical useful-

ness and added value in SOZ localization and to investigate

the interpatient variability. This would also give amore clear

view on how many electrodes are minimally needed to

achieve a certain sensitivity and specificity. Besides more

patients, more seizures per patient should be considered in

order to validate the intrapatient robustness. Unfortunately,

no other seizures were recorded in these patients. Not only

more seizures per patient, but also more epochs per seizures

could be the subject of future research to study whether the

driver of the network changes during the seizure or not.

Also, we used a fixed ictal timeframe of 3s starting at sei-

zure onset, to have a time frame that is consistently the same

for all patients, while alsominimizing the artifacts in the EEG

data. It remains to be investigated how the lengthof the chosen

time window and its point of onset influences the results.

Validation was done by comparing the estimated SOZ

with the RZ for all patients. The RZ is, however, often an

overestimation of the ground truth, the real seizure onset

zone. Therefore it could be useful to validate the method in

simultaneous hd-EEG and intracranial EEG, to see whether

the networks found with both modalities can be correlated.

Even though the sampling area of iEEG is smaller, it could

provide a more precise (smaller) ground truth than the RZ,

provided that the SOZ is sampled.

Conclusion

We developed a method based on ESI and functional

connectivity analysis to localize the seizure onset zone in a

non-invasive, objective way that can potentially be used in

a clinical setting. The approach consistently outperformed

localization based on power, and results were more accu-

rate for high-density EEG than for standard electrode

configurations. Validation in a larger and more diverse

patient group is warranted. We conclude that our presented

approach and in general ESI combined with functional

connectivity analysis can serve as a useful tool for SOZ

localization in the presurgical evaluation of epilepsy.
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Appendix: Model Orders

See Table 3.
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