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Abstract The visual interpretation of intracranial EEG

(iEEG) is the standard method used in complex epilepsy

surgery cases to map the regions of seizure onset targeted

for resection. Still, visual iEEG analysis is labor-intensive

and biased due to interpreter dependency. Multivariate

parametric functional connectivity measures using adaptive

autoregressive (AR) modeling of the iEEG signals based on

the Kalman filter algorithm have been used successfully to

localize the electrographic seizure onsets. Due to their high

computational cost, these methods have been applied to a

limited number of iEEG time-series (\60). The aim of this

study was to test two Kalman filter implementations, a

well-known multivariate adaptive AR model (Arnold et al.

1998) and a simplified, computationally efficient derivation

of it, for their potential application to connectivity analysis

of high-dimensional (up to 192 channels) iEEG data. When

used on simulated seizures together with a multivariate

connectivity estimator, the partial directed coherence, the

two AR models were compared for their ability to

reconstitute the designed seizure signal connections from

noisy data. Next, focal seizures from iEEG recordings

(73–113 channels) in three patients rendered seizure-free

after surgery were mapped with the outdegree, a graph-

theory index of outward directed connectivity. Simulation

results indicated high levels of mapping accuracy for the

two models in the presence of low-to-moderate noise cross-

correlation. Accordingly, both AR models correctly map-

ped the real seizure onset to the resection volume. This

study supports the possibility of conducting fully data-

driven multivariate connectivity estimations on high-di-

mensional iEEG datasets using the Kalman filter approach.
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Introduction

For patients with focal epilepsy resistant to medical therapy,

epilepsy surgery can lead to a life free of seizures. In plan-

ning for resection, one must correctly identify the brain

region(s) where seizures arise (Rosenow and Lüders 2001).

To this end, a presurgical evaluation routine is applied, ini-

tially consisting of noninvasive studies (structural MRI, scalp

EEG, and functional neuroimaging studies). In complex

surgical cases, these noninvasive studies inform where elec-

trodes are placed on the cortex or inside the brain par-

enchyma to record intracranial EEG (iEEG). Despite the use

of visual iEEG analysis, the current gold standard for map-

ping the seizure onset, only 33–68 % of the patients under-

going resective surgery become seizure-free (Bulacio et al.

2012; Carrette et al. 2010). For the rest, approximately half of

the poor seizure outcomes are thought to be due to incorrect

preoperative seizure-onset localization (Bulacio et al. 2012).

Octavian V. Lie and Pieter van Mierlo have contributed equally to

this work.

Electronic supplementary material The online version of this
article (doi:10.1007/s10548-016-0527-x) contains supplementary
material, which is available to authorized users.

& Octavian V. Lie

lie@uthscsa.edu

1 Department of Neurology, University of Texas Health

Science Center at San Antonio, 8300 Floyd Curl Drive MSC:

7883, San Antonio, TX 78229-3900, USA

2 Functional Brain Mapping Laboratory, EEG and Epilepsy

Unit, University of Geneva, Geneva, Switzerland

3 iMinds Medical IT Department, Medical Image and Signal

Processing Group, Ghent University, Ghent, Belgium

123

Brain Topogr (2017) 30:46–59

DOI 10.1007/s10548-016-0527-x

http://dx.doi.org/10.1007/s10548-016-0527-x
http://crossmark.crossref.org/dialog/?doi=10.1007/s10548-016-0527-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10548-016-0527-x&amp;domain=pdf


A growing body of research has applied quantitative

methods studying connectivity among brain regions in

order to complement the standard iEEG analysis of

epileptic activity (Andrzejak et al. 2015; van Mierlo et al.

2014). These efforts have contributed to a better under-

standing of epilepsy as a network-based disorder (Wilke

et al. 2011; Yaffe et al. 2015), and have driven new

research fields such as virtual epilepsy surgery (Sinha et al.

2014). Methods based on functional connectivity model the

statistical dependencies among time-series in the time or

frequency domain into spatially resolved connectivity

matrices. If analyzed over time to characterize seizures,

these matrices reflect the dynamic interactions among the

iEEG time-series during the course of the seizure, and are

used to derive network graphs mapping the seizure onset

and propagation. Among an extensive array of functional

connectivity measures, multivariate, linear, frequency-do-

main measures based on the concept of Granger causality

(Granger 1969) have shown promising results in localizing

the regions of seizure onset (Korzeniewska et al. 2014; van

Mierlo et al. 2011, 2013; Varotto et al. 2010, 2012; Wilke

et al. 2008, 2010, 2011). Briefly, it is said that one time-

series Granger-causes a second if its past values help pre-

dict the second better than the past values of the second

alone. Accordingly, Granger-causality measures use

autoregressive (AR) models to denoise and parametrize the

iEEG ‘seizure signal’ with a set of AR coefficients

encoding the linear contribution of its recent past (Schlögl

2000).

To address signal nonstationarities in the time domain

typical of seizures, two basic AR modeling approaches

have been used. In the segmentation approach, the iEEG

data is divided in short windows of relative signal sta-

tionarity shifting in time, and the AR coefficients are

estimated for each segment (Ding et al. 2000; Korze-

niewska et al. 2014; Wilke et al. 2010, 2011). In an

alternative approach, AR coefficients are allowed to vary

in time and can be estimated adaptively (Wilke et al.

2008, 2009). Among several adaptive AR algorithms

tested, linear random-walk models based on Kalman fil-

ter (Kalman 1960; Kalman and Bucy 1961) have per-

formed well when analyzed with model error and

adaptation speed criteria (Arnold et al. 1998; Schlögl

2000), and have been used successfully to map the

regions of seizure activity (van Mierlo et al. 2011, 2013;

Wilke et al. 2008).

The application of the Kalman-filter AR models to high-

dimensional data requires a significant computational effort

(Arnold et al. 1998; Blinowska 2011). As a result, these

models have been applied thus far to a limited number of

iEEG channels/time-series (up to 60, Toppi et al. 2012),

often handpicked based on preferential involvement in the

process under study (‘signal-enriched’ channels) or other

data reduction criteria (Milde et al. 2010). This approach

suffers from a hidden-source problem since multivariate

connectivity methods assume that all relevant signals are

analyzed (Schlögl and Supp 2006). Moreover, data reduc-

tion amplifies the inherent limitation of iEEG recordings in

sampling cerebral activity when used for mapping certain

neurophysiological events. For example, seizure-onset

localization by iEEG requires at times an extensive

implantation of hundreds of intracranial electrode contacts

due to the narrow, near-field view of intracranial

recordings.

The aim of this study is to evaluate a well-published

multivariate adaptive AR model based on Kalman filter

(Arnold et al. 1998), and a computationally efficient AR

model derived from it, for their potential application to

high-dimensional (up to 192) time-series. The two AR

models differ in how they account for the measurement or

observational noise that may contaminate the recordings.

This paper is organized as follows: (1) The theoretical

framework of the two models is exposed. (2) The AR

coefficients resulting from the application of each model to

simulated seizures are used to estimate the underlying

connectivity structures in the presences of various degrees

of correlated noise. Thereby, the relative performance of

the two models in characterizing the ground-truth seizure

networks is evaluated. (3) The onset of iEEG seizures

recorded in three surgical patients is identified by mapping

the time-variant connections based on the two AR models.

The resulting seizure-onset estimates are compared based

on colocalization with the resection volume, and the cor-

relation of the dynamic connectivity maps based on the two

models is determined. Next, the effect of AR modeling of

lower- and higher-density seizure datasets is analyzed. (4)

The computational cost of the two models is evaluated. (5)

Finally, the results and significance of the Kalman filter

approach herein are discussed.

Materials and Methods

Autoregressive Modeling

In its scalar form, an AR model of order p is given by.

yðnÞ ¼
Xp

k¼1

akyðn� kÞ þ eðnÞ; ð1Þ

where y(n) is the nth observation of a signal or time-series,

a1. . .ap are AR coefficients specifying the linear contri-

bution of the previous p signal observations, and e(n) is

assumed a series of independent, normally distributed

variables uncorrelated over time (zero autocorrelation at

lag i; i[ 0), with zero mean and variance r2(i.d.
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�Nð0; r2Þ. In effect, e(n) is a white-noise process

reflecting the uncertainty in predicting the signal of interest

recursively (prediction error).

For a multivariate time-series, the vector representation

of a time-variant AR process is.

yðnÞ ¼
Xp

k¼1

AkðnÞyðn� kÞ þ eðnÞ; ð2Þ

where yðnÞ ¼ y1ðnÞ; y2ðnÞ. . .ysðnÞð ÞT for s signals/chan-

nels, Ak is the s 9 s coefficient matrix at delay k, and

e nð Þ ¼ e1 nð Þ; e2 nð Þ. . .es nð Þð ÞT .
The application of the Kalman algorithm to estimate

the AR coefficients makes use of the state-space model

of the AR process, which consists of a system or state

equation,

xðnþ 1Þ ¼ Fðnþ 1; nÞxðnÞ þ v1ðnÞ; ð3Þ

and an observation or measurement equation,

yðnÞ ¼ HðnÞxðnÞ þ v2ðnÞ ð4Þ

Equation (3) relates the state vector x(n) of AR

coefficients,

xðnÞ ¼ a111ðnÞ; . . .; a1s1ðnÞ; a112ðnÞ; . . .; a1s2ðnÞ; . . .;ð
a1spðnÞ; a211ðnÞ; . . .; asspðnÞ

�T
;

ð5Þ

to the state at time n ? 1 by defining the state transition

matrix, F(n ? 1, n), and the system white-noise process

v1(n) = N(0, Q1(n)). In Eq. (4), H(n) is called the measure-

ment matrix, and relates the current system state to the current

observation of the system. H(n) contains the past system

observations Y(n) = (yT(n - 1), yT(n - 2)…yT(n - p)):

H nð Þ ¼ Is � Y nð Þ ¼
Y nð Þ 0

. .
.

0 Y nð Þ

0
B@

1
CA; ð6Þ

where � denotes the Kronecker product of matrices.

v2(n) represents the measurement noise, v2(n) = N(0,

Q2(n)).

The state vector x(n) can be estimated using the Kalman

recursion. Modeling state transitions as a white-noise pro-

cess (random walk) with a diagonal system noise covari-

ance matrix Q1(n) leads to a simplified representation of

the Kalman filter equations:

eðnÞ ¼ yðnÞ �HðnÞx̂ðnjn� 1Þ
RðnÞ ¼ HðnÞKðn; n� 1ÞHTðnÞ þQ2ðnÞ

GðnÞ ¼ Kðn; n� 1ÞHTðnÞR�1ðnÞ
x̂ðnþ 1jnÞ ¼ x̂ðnjn� 1Þ þGðnÞeðnÞ

Kðn; nÞ ¼ Kðn; n� 1Þ �GðnÞHðnÞKðn; n� 1Þ
Kðnþ 1; nÞ ¼ Kðn; nÞ þQ1ðnÞ

ð7Þ

Here, x̂ denotes the estimate of the true system state x,

R(n) = E[e(n)eT(n)] is the one-step prediction error

covariance matrix, K(n, n) is the a posteriori (filtered) state

error covariancematrix, andG(n) is the Kalman gain matrix,

which in effect weighs the information in the measurements

against the a priori knowledge of the system state.

When applying the Kalman algorithm to real data, the

structure and update processes of the Q1 and Q2 covariance

matrices are not known. Previous work has evaluated

various Q1 and Q2 estimates under different noise statistics

assumptions (Kasess 2002; Schlögl 2000). Here, we define

the AR model m1 by the following two noise covariance

equations:

Q1ðnÞ ¼ ILUC; ð8Þ

where L = s2 9 p, and.

Q2ðnÞ ¼ ð1� UCÞQ2ðn� 1Þ þ UCeðnÞeTðnÞ ð9Þ

UC is the update coefficient (0\UC\ 1) encoding the

speed of adaptation of the AR model. The m1 model

(Arnold et al. 1998) was shown to generate reliable esti-

mates for various time-series data types and suggested to

perform better than several adaptive and segmentation-

based AR models. m1 performance was robust when

compared with several Kalman-filter implementations

using alternative Q1 and Q2 formulations (Kasess 2002). In

addition, several successful applications of m1 in modeling

seizure propagation have been reported (van Mierlo et al.

2011, 2013; Wilke et al. 2008).

In the multivariate case, a more stringent assumption is

that the measurement noise is instantaneously uncorrelated

across time-series (Kasess 2002). That is, for i, j time-series,

the zero-lag measurement-noise cross-correlation corri,j
(n, 0) = E(v2i(n)v2j(n)) and its normalization with the zero-

lag auto-correlation values for i, j (Zi,j(n, 0)) are negligible:

Zi;jðn; 0Þ ¼ corri;jðn; 0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
corri;iðn; 0Þcorrj;jðn; 0Þ

q
ffi 0

ð10Þ

In this case, off-diagonal elements of Q2(n) can be

ignored, and the measurement noise update equation

becomes.

Q2ðnÞ ¼ ð1� UCÞQ2ðn� 1Þ þ diag(eðn)eTðnÞÞ
� �

ð11Þ

Here, Eqs. (8), (11) define the AR model m2. Since

Q2(n) is diagonal,

Q2ðnÞ ¼
q21ðnÞ 0

. .
.

0 q2sðnÞ

0
B@

1
CA; ð12Þ

and the initial values of the state error covariance matrix K

are assumed to be diagonal or block diagonal,
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Kð1; 0Þ ¼
K1ð1Þ 0

. .
.

0 Ksð1Þ

0
B@

1
CA; ð13Þ

Kalman equations can be separated into i = 1…s dis-

tinct Kalman filters:

eiðnÞ ¼ yiðnÞ � YðnÞx̂iðnjn� 1Þ
riðnÞ ¼ Y nð ÞKiðn; n� 1ÞYTðnÞ þ q2iðnÞ

giðnÞ ¼ Kiðn; n� 1ÞYTðnÞr�1
i ðnÞ

x̂iðnþ 1jnÞ ¼ x̂iðnjn� 1Þ þ giðnÞeiðnÞ
Kiðn; nÞ ¼ Kiðn; n� 1Þ � giðnÞYðnÞKiðn; n� 1Þ

Kiðnþ 1; nÞ ¼ Kiðn; nÞ þQ1iðnÞ

ð14Þ

As such, model m2 offers significant computational

advantages, in part due to matrix size operations reduced

by the order of s. At the same time, it is expected that m1

models highly correlated time-series more accurately.

Time-Variant Functional Connectivity

In order to evaluate the causal information flow between

time-series, the signal represented by the AR coefficients

can be used to derive Granger-causality measures of con-

nectivity. To estimate functional connections in the fre-

quency-domain, the Fourier transform of AR coefficients is

first applied, as follows:

ef ðf Þ ¼ Af ðf Þyf ðf Þ; ð15Þ

where

Af ðf ; nÞ ¼ �
Xp

k¼0

AkðnÞe�i2pfk ð16Þ

ef, yf and Af are spectral transforms of the residuals,

measured signal and AR coefficient matrices, respectively,

and A0(n) is the s 9 s identity matrix.

Within the class of frequency-based connectivity mea-

sures, the partial directed coherence (PDC, Baccala and

Sameshima 2001) has been extensively used to model

causal information flow in multivariate time-series. Both

time-invariant and adaptive PDC representations have been

applied to EEG-recorded seizures in order to characterize

the seizures-onset regions and map the epileptic networks

(Moeller et al. 2013; Omidvarnia et al. 2011; Varotto et al.

2010, 2012). PDC estimates the direct connections between

time-series and their generators from indirect, or cascade,

flows, within a functional network (Astolfi et al. 2008;

Baccala and Sameshima 2001; Blinowska 2011). These

connections are also directed, expressing the information

flow between channels in source-sink terms. The adaptive

PDC formulation used here estimates the spectral infor-

mation from channel j to channel i; as follows:

iAWPDCj!iðnÞ ¼
1

f2 � f1

Xf2

f¼f1

Aijðf ; nÞ
�� ��2

Ps
k¼1 Aikðf ; nÞj j2

Sjðf ; nÞ2
 !

;

ð17Þ

where Sj denotes the power-spectral density of channel

j (Plomp et al. 2014). iAWPDC represents the spectrally-

weighted squared PDC, which emphasizes the information

flow at spectral peaks within a frequency band of interest

(f1:f2). iAWPDC has been applied recently to EEG data

from surgical epilepsy patients and generated robust con-

nectivity estimates when compared with other PDC for-

mulations (Plomp et al. 2014, 2015). Here, iAWPDC is

used to evaluate the ability of m1 and m2 to model simu-

lated iEEG seizures in the presence of noise with various

cross-correlation structures.

Simulations

30-sec, 10-channel seizure epochs were generated at a

sampling frequency of 250 Hz. Each epoch consisted of

baseline or background activity modeled as 1/f multivariate

random noise, and a seizure signal modeled as a sinusoid

with a frequency evolving from 12 Hz at the seizure onset

to 8 Hz at the seizure end (van Mierlo et al. 2011). The

seizure began after a 10-sec preseizure baseline, and

propagated successively from one channel to a maximum

of three other channels chosen randomly for a total of 6

‘ictal’ channels, after a delay between channels varying

from 4 to 16 ms and a sample or phase delay of 4–12 ms.

The sinusoid signal was added to the background noise at a

signal-to-noise ratio (SNR) of -5, 0, or 5 dB. SNR was

defined as.

SNR ¼ 10 log10 Psignal=Pnoise ð18Þ

An example of a simulated seizure and its corresponding

network graph is shown in Fig. 1.

Several measurement-noise correlation structures were

used to generate random, fully correlated, and focally

correlated noise types. To this end, the noise covariance

matrix entries for the (i, j) channel pairs were controlled

using the normalized cross-correlation index Zi,j. Random

noise allowed only momentary instantaneous (zero-lag)

correlations among times-series, thereby it was decorre-

lated over time (expected
Pnt
n1

Zijðn; 0Þ ¼ 0 for all i, j pairs

and t observations). Fully correlated noise, i.e. identical

noise time-series, was obtained by setting Zi,j(n, 0) to 1 for

all (i, j) at each time point. Focally correlated noise was

generated by setting Zi,j(n, 0) to 1 for three and five channel

pairs (i, j) at all t time points, corresponding to instances

when up to half of all channels/time-series are fully cross-

correlated over time. These limit noise structures allow a

Brain Topogr (2017) 30:46–59 49
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‘stress test’ of the ability of the m1 and m2 models to

estimate the seizure signal connections encoded by the AR

coefficients and iAWPDC, and by extension, the direct

connections characterizing the seizure network.

Combining various SNR values and noise types resulted

in 12 seizure epoch groups, each consisting of 50 indi-

vidual seizure epochs. Within a group, each epoch was

characterized by a unique noise time-series created with a

random number generator. In addition, seizure epochs

grouped based on focally correlated noise contained dis-

tinct channel-pair combinations with identical noise time-

series chosen randomly from the range of possible spatial

configurations of such combinations within the seizure

connectivity matrix.

AR Model Evaluation Based on Simulations

The functional connectivity profiles of the seizures in each

of the 12 seizure groups were estimated with the m1 and m2

ARmodels in combination with iAWPDC. Each iEEG time-

series was z-scored by subtracting its mean and dividing by

standard deviation. m1 and m2 were applied using a model

order p of 5, and an update coefficient UC of 10-4 selected

by minimizing a model error index (REV, Schlögl 2000).

iAWPDC values were calculated for a frequency window

ranging from 2 to 50 Hz with a frequency resolution of

0.3 Hz. The analysis resulted in 24 connectivity data groups

containing m1- and m2-derived connectivity matrices.

Next, these matrices were thresholded in order to separate

significant connections from noise and recover the func-

tional networks of interest. Selecting the optimal threshold is

problematic when analyzing real data of unknown structure

(Wang et al. 2014). With simulated data, the designed signal

connections (Fig. 1b) constitute the ground truth against

which various connectivity estimates can be evaluated and

compared. Here, for each seizure, the network imposed by

the propagated seizure signal served as the ground truth. In

turn, this was used to calculate the number of true/false-

positive and true/false-negative direct connections present

in the m1- and m2-based connectivity matrices as a function

of threshold. A receiver operating characteristic (ROC)

curve was built for each connectivity matrix by varying the

applied threshold from 0 to 1 in 0.01 steps, and the corre-

sponding area under the curve (AUC) was calculated. The

larger the AUC, the better an AR model was considered in

identifying the underlying connectivity structure of the

simulated seizure. Here, AUC values were adjusted so that

AUC = 1 in case a threshold existed for which amodel fully

identified the ground-truth network of a simulated seizure

(Wang et al. 2014). To assess the relative performance of the

m1 and m2 AR models, the mean AUC values were first

compared among connectivity data groups with repeated-

measures analysis of variance (rANOVA). Between-group

comparisons were then performed by applying the Tukey–

Kramer correction for multiple testing at a significance level

of 0.05.

Real Data

Individual iEEG seizures were analyzed from three patients

who had undergone intracranial monitoring followed by

curative epilepsy surgery (tailored resections) at the

Fig. 1 Simulated seizure. a iEEG seizure epoch consisting of a

10-sec baseline prior to the seizure onset (vertical red line) in channel

1 (red) and spread to ictal channels 2–6 (blue), b connectivity graph

depicting the direct connections between ictal channels during the

seizure (Color figure online)

50 Brain Topogr (2017) 30:46–59
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University of Texas Health Science Center at San Antonio

(Table 1).

iEEG was recorded with subdural grids and strips (±

depth electrodes) at a 500-Hz sampling frequency. The

implantation scheme (patient 1) is depicted for illustration

in Fig. 2.

For analysis, seizure epochs consisted of 10-sec pre-

seizure and 30-sec seizure segments identified by visual

inspection of a clinical electroencephalographer. For each

seizure, two iEEG datasets were generated to examine

whether using a large number of unselected channels in

multivariate connectivity analyses of the seizure networks

is feasible. First, a dataset comprised the 50 channels with

the most prominent involvement in the electrographic

seizure discharge based on visual analysis of the tracings.

This reduced dataset was presumed to contain the seizure

signal at a relatively high SNR. Second, a dataset con-

sisting of all recorded time-series was selected. Next, the

m1 and m2 AR models were applied to the z-scored 50-

channel dataset. The full channel set was analyzed with the

m2 model exclusively, because the memory cost associated

with m1 application would be prohibitive (see Computa-

tional cost section below). The AR parameters (p;UC) used

to calculate iAWPDC estimates were selected for each

dataset to minimize the model error (Schlögl 2000).

iAWPDC values calculated for the reduced and full seizure

datasets were then thresholded at the 95 % percentile of a

range of iAWPDC values modeling the corresponding

channel subsets of carefully chosen baseline iEEG seg-

ments of 55-70-sec duration (van Mierlo et al. 2011, 2013).

This study was approved by the local institutional ethics

research board.

AR Model Evaluation Based on Real Data

While there is no ground-truth network graph for real

datasets, in the case of seizures, the ability of a functional

connectivity method to identify the channels driving the

seizure, i.e. map the seizure onset, can inform of the

method’s ability to estimate correctly the causal informa-

tion flow among time-series. As such, localizing the onset

of a seizure to the resection volume in a patient free of

seizures after surgery is supportive of a method’s mapping

accuracy.

In this study, the number of outgoing direct connections

weighted based on the matrix of thresholded iAWPDC

values from a channel or node to all other nodes was cal-

culated at each time point, in order to estimate the

prominence of that node within the seizure network. This

number represents the outdegree, a time-dependent graph

theoretical measure expressed as.

;jðnÞ ¼
Xs

k¼1

CkjðnÞiAPDCkjðnÞ; ð19Þ

where CkjðnÞ ¼ 1 if iAPDCkj(n) is at or above the threshold

applied, and Ckj(n) = 0 otherwise (van Mierlo et al. 2013).

Next, the resection volume was reconstructed as in Lie

et al. (2015), and the electrode channels colocalizing with

the resection were determined.

The ability to identify the seizure onsets by connectivity

analysis was probed by superimposing maps of the out-

degree values calculated over time and the contacts within

the resection volume. In addition, the dynamic correlation

between the outdegree-over-time maps resulting from the

application of the m1 and m2 models (50-channel dataset),

and between the restricted and full datasets processed with

m2, were estimated with the Pearson correlation coeffi-

cient. Briefly, a sliding time-window approach was used,

with step/window lengths of 0.002 s/0.002 s (one time

sample) and 0.25 s/0.5 s (Leonardi and Van De Ville

2015). For each time window, mean channel-specific out-

degree values were ranked, transformed to normal scores

and compared between datasets with the Pearson correla-

tion coefficient (Bishara and Hittner 2012).

Table 1 Clinical patient characteristics and seizure connectivity analysis parameters

Patient

no.

Age

(years)

Epilepsy

type

MRI Surgery (tailored

resections)

Surgical

outcome

Follow-up

(years)

Seizure

No. of

channels

p UC

1 22 R FLE FCD FP operculum Engel I 4 113 5 0.00001

50 7 0.0001

2 22 L FLE FCD F Engel I 6 73 5 0.1

50 5 0.1

3 28 L TLE Amy

massa
Anterior T Engel I 4 91 5 0.01

50 9 0.01

Each seizure was analyzed using either the full electrode configuration or a reduced (n = 50) dataset

p model order, UC update coefficient, Amy amygdala, F frontal, FCD focal cortical dysplasia, FP frontoparietal, L left, R right, T temporal
a Ganglioglioma

Brain Topogr (2017) 30:46–59 51
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Computational Cost

The memory and time costs of modeling times-series with

m1 and m2 using graphics processing unit (GPU)-opti-

mized code in MATLAB were estimated on 1-sec iEEG

epochs of progressively larger datasets (16–192 channels)

on a workstation PC with an 8-core Intel Xeon Processor

E5-2667 v3 and a NVIDIA Quadro K6000 GPU with

12 GB memory.

Results

Simulated Data

The relative performance of the m1 and m2 AR models

when estimating direct connectedness in simulated net-

works with known structures was assessed using a work-

flow exemplified in Fig. 3.

In addition to the SNR used, seizure simulations differed

based on their noise structure. The mean (standard devia-

tion, stdev) values of the correlation index Z were 0.002

(0.01) for the pooled random noise structures, 0.06 (0.01)

and 0.22 (0.02) for the focally correlated noise (three and

five channel pairs, respectively), and 1(0) for the fully

correlated noise. rANOVA of the AUC values resulting

from ROC analyses used the AR model type as within-

subject factor (Fig. 4). Statistically significant differences

between the m1 and m2 model performance were obtained

for the noise type used, Fð3; 588Þ ¼ 184:62; pvalue\0:001,

and for a combined SNR-noise variable,

Fð11; 588Þ ¼ 54:55; pvalue\0:001. In the latter case,

between-group comparisons disclosed small, yet statisti-

cally significant differences between m1- and m2-derived

mean AUC values for seizure groups containing fully

correlated noise (Fig. 4).

Real Data

The seizure onsets were mapped by estimating the dynamic

changes in the strength of direct functional connections

encoded by the outdegree, for channel datasets processed

with m1 (50-channel set only) and m2 in conjunction with

iAWPDC. The channels driving the functional connectivity

outflow during the course of the seizures colocalized with

the reconstructed resection volume for both m1 and m2

model analyses and the reduced and full datasets for all

seizures analyzed. Patient 1, 2 and 3 data are displayed in

Fig. 5, Online Resource 1 and 3, respectively.

Next, the correlation over time between outdegree esti-

mates based on the two AR models (50-channel data) and

for the restricted and full channel datasets (m2) was cal-

culated. Outdegree value ranks were highly, if variably,

correlated over time, whether results from the two AR

model analyses (50 channels) or m2-processed reduced and

full channel data were compared (Fig. 6, and Online

Resource 2 and 4).

Fig. 2 Intracranial electrode configuration. a grid and strip electrodes
overlying the lateral right hemisphere cortex, b IFG contacts in

relation to the reconstructed resection volume; G ground, IF inferior

frontal strip, IFG inferior frontal grid, MF middle frontal strip,

O occipital strip, P parietal strip, SF superior frontal strip, SFG

superior frontal grid
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Fig. 3 Functional connectivity analysis steps using the m1 and m2

AR models. a The designed signal connectivity matrix of a seizure

sinusoid encoding direct connections (red) formed during seizure

propagation, b Examples of measurement-noise structures, including

random noise with a diagonal noise covariance matrix (left) with

small-value off-diagonal elements (white) reflecting negligible cross-

correlation between channels, focally correlated noise (blue) for five

channel pairs (middle), and fully correlated noise (right), c–e Time-

averaged iAWPDC connectivity matrices derived with m1 or m2 for

individual seizures designed using signal and noise structures

depicted in a and b, respectively (left, middle). Here, added noise

was random noise (c) focally correlated noise in five channel pairs

(d) and fully correlated noise (e) at SNR = 0 dB. The corresponding

ROC plots are shown on the right (c, d, e) (Color figure online)
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Computational Cost

The Kalman filter-based analysis is computationally

expensive due to a rather large number of iterations, matrix

operations, and matrix sizes. The current GPU code

implementation of the m1 AR model is inspired by func-

tions from the BioSig library (Vidaurre et al. 2011) and

aims to reduce the run time of such analysis. m2 code

replaces large 2D matrices with 3D arrays that shift the

inputs of the s Kalman filters Eq. (14) to the 3rd dimension,

thereby reducing the size of filter-specific matrix opera-

tions (multiplication and inversion).

The memory cost of GPU-based operations is often

limiting given the relatively small GPU memory sizes (B

24 GB) of currently available units. In the case of m1, the

memory cost per iteration is O(s4 9 p2), representing the

size of the state error covariance matrix K (linear fit

f(x) = 1.01s4p2 ? 17.97, root-mean-square error 3.37),

whereas for m2 it is O(s3 9 p2) (f(x) = 1.01s3p2 ? 14.93,

root-mean-square error 0.61). Table 2 lists the empirical

memory and time costs attained when processing 1-sec

iEEG segments with the m1 and m2 models using two

model order values spanning a range commonly used in the

literature:

At this time, up to 100-channel time-series can be

modeled with m1 (at low model order values). m2

accommodates high-density recordings of up to 192

channels, and is comparatively more time efficient ([ 100

fold faster at high channel numbers). The connectivity

analysis of a 30-sec seizure simulated in 192 electrodes at

250 Hz and processed with m2 (p = 5) over a frequency

band of 2:50 Hz took 30 min to complete and was able to

reconstitute the true network structure represented by

designed signal matrix (Online Resource 5).

Discussion

This study demonstrates that adaptive, multivariate func-

tional-connectivity analyses can be conducted on high-di-

mensional time-series using Kalman filter-based AR

models. These models are advantageous when applied to

iEEG data, in that they allow the estimation of observa-

tional or measurement noise in the recordings and can

accommodate signal nonstationarities (Sommerlade et al.

2012) without requiring data partition into epochs of quasi-

stationarity. Unlike segmentation-based approaches (Wilke

et al. 2010, 2011) however, Kalman-filter based models

have been applied until now to a small number of iEEG

channels/time-series (up to 60, Toppi et al. 2012), due to

their significant computational effort (Arnold et al. 1998;

Blinowska 2011). Here, GPU-accelerated implementations

of m1, a well-studied random-walk vector AR model

introduced by Arnold et al. (1998), and m2, a computa-

tionally efficient sequential derivation of m1, were devel-

oped and used to process up to 100 and 192 time-series,

respectively. Since this range applies to electrode numbers

used in many complex iEEG evaluations in epilepsy sur-

gery candidates, results support the possibility of routine

large-scale, fully data-driven and quasi-automated multi-

variate functional-connectivity analyses of seizure

dynamics. The current approach ameliorates the hidden-

source problem of iEEG recordings, obviating the hitherto

need for time-series preselection before high-dimensional

Fig. 4 Comparison of mean AUC values among seizure groups

analyzed with m1 and m2. Corr_3c, Corr_5c and Corr_full label

three-channel pair, five-channel pair, and fully correlated noise

structures, respectively. Error bars represent AUC stdev for the

respective groups. *pvalue\ 0.001 (Tukey–Kramer post hoc test)
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adaptive connectivity calculations are conducted (Milde

et al. 2010). A more granular iEEG connectivity estimation

may also facilitate cross-modality comparisons, especially

when large-scale global connectivity studies using dense-

array (scalp) EEG, magnetoencephalography, resting-state

functional MRI, or diffusion-weighted imaging are plan-

ned. In addition, high-dimensional Kalman-based modeling

has general applicability to data acquired with imaging

techniques other than iEEG (Molenaar et al. 2016). These

are all avenues to advance the view on how epileptic

networks operate (Stufflebeam et al. 2011; van Dellen et al.

2009).

Whether including all available iEEG data for seizure-

onset localization is beneficial in all cases needs further

exploration. In practice, the number and location of elec-

trode implants is determined based on more or less accurate

localization hypotheses drawn noninvasively, and eloquent

(i.e. functionally relevant) cortex mapping needs. In addi-

tion, long-range functional changes at the scale of the fully

sampled space have been noted during the seizures in both

Fig. 5 Colocalization of the seizure-onset estimates based on outde-

gree and the resection volume (patient 1). a preictal baseline and EEG
seizure onset (arrow) in the 50-channel dataset (upper), and the

corresponding outdegree-over-time maps derived from connectivity

analyses using m1/iAWPDC (middle) and m2/iAWPDC (lower).

Boxed channels fall within the resection volume, b EEG recording of

the same seizure in the full (n = 113) channel dataset (upper), and the

corresponding outdegree-over-time map using m2/iAWPDC (lower)
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iEEG (Jiménez-Jiménez et al. 2015) and functional MRI

(Englot et al. 2009) recordings. These changes may not

reflect the seizure discharge proper or affect the seizure

outcome after resective surgery (Jiménez-Jiménez et al.

2015) but may contribute significant connections in an

analysis including a larger number of sampling contacts.

While such analysis may, in some cases, add ‘noise’ to

localization estimates, it is independent of an often biased

and laborious visual iEEG interpretation, in contrast to data

preselection approaches. High-dimensional connectivity

estimations may also change the relative connection

weights for ‘signal-enriched’ time-series that would usually

be preselected. As Fig. 6, Online Resource 2 and 4 show,

the time-variant ranking of the outdegree values for several

channels common to the reduced (50) and full channel sets

changed as a result of the number of channels analyzed,

leading to a variable, if overall high, degree of correlation

between the analyses of the two datasets. Future studies

including patients rendered seizure-free by surgery and

those with continued seizures despite undergoing resection

will expand our understanding of the relative localization

accuracy of high-density connectivity analysis.

Here, a computationally efficient method based on

thresholds determined on a preseizure baseline was used

(van Mierlo et al. 2011, 2013). Of the more computation-

ally demanding surrogate statistics alternatives (Florin

et al. 2011; He et al. 2011), thresholding based on random

permutations uses a large number of AR model repetitions

or runs to generate the distribution of a connectivity mea-

sure (e.g. iAWPDC) under the null hypothesis. Since an

individual run is processed efficiently on the GPU of a

workstation PC with the present AR model coding strategy,

the significant workload imposed by random permutations

can be handled by the parallel distribution of runs to

individual GPUs on a GPU supercomputer with fairly

straightforward code adaptations. These thresholding

techniques, and analytical approaches when available,

Fig. 6 Dynamic correlation of

the outdegree maps estimated

based on m1 and m2 (patient 1).

Time-matched Pearson

correlation of the outdegree

values resulting from m1 or m2

application. c channel, rho mean

Pearson correlation coefficient

Table 2 Computational cost of AR analysis based on 1-sec iEEG

epochs.—out of memory

AR model Memory (MB) Time (sec)

m1 m2 m1 m2

Model order: p ¼ 5

No. channels

16 21 15 2.04 3.59

32 123 18 5.47 2.70

48 554 26 21.78 3.02

64 1714 42 81.30 3.52

96 8581 105 668.15 5.72

128 – 227 – 9.19

160 – 428 – 16.84

192 – 731 – 26.31

Model order: p ¼ 15

No. channels

16 74 19 3.70 3.66

32 966 44 35.49 3.55

48 4821 115 227.11 5.76

64 – 253 – 9.84

96 – 821 – 26.90

128 – 1911 – 72.97

160 – 3714 – 164.36

192 – 6402 – 252.49
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merit further evaluation in simulation and real seizure

studies.

Previously unreported, the analysis of simulated data

suggests that the m1 AR model performs best in the

presence of decorrelated noise. The m1 and m2 model

accuracy decreases as the degree of noise correlation

increases, with further modest reductions in m2 perfor-

mance when the simulated noise is highly and globally

cross-correlated (Fig. 4). Checking and correcting for

correlated noise in real EEG recordings is problematic,

because the artefactual and biological noise sources are

difficult to separate, the boundaries between the seizure

proper and seizure-related ictal electrographic changes are

uncertain, and the presence of epileptiform patterns during

baseline and volume conduction is confounding. One gross

approximation of the ictal noise cross-correlation is to

calculate the mean Z index on a baseline recording as done

herein, assuming that the seizure epoch consists of a ‘sei-

zure signal’ linearly added to noise with a correlation

structure similar to that of the baseline used. A low Z value

may increase the confidence in the estimated connectivity

maps. Another approach is to compare the connectivity

estimates for serial seizures in the same patient, among

which the measurement noise correlation may vary. Since

repeated seizures in individual patients often produce

rather similar iEEG signals, they may be seen as realiza-

tions of the same stochastic process (Jouny et al. 2007;

Korzeniewska et al. 2014). Finding conserved spatial

motifs for the direct connections characterizing each of

these seizures may improve seizure-onset mapping accu-

racy of the methods analyzed in this study. In addition,

noise reduction techniques can be used to account for

highly correlated noise. These include processing the raw

recordings with methods such as independent-component

analysis prior to the AR modeling step (Mullen et al. 2011),

and excluding the frequency bands (main and harmonics)

corresponding to the peak power of the line noise when

conducting broadband frequency-domain connectivity

estimations (Korzeniewska et al. 2014).

Future Directions

Several lines of research may be pursued to evaluate high-

dimensional connectivity methods based on Kalman fil-

tering in the context of epilepsy surgery. First, future

simulation studies are needed to compare the performance

of the linear AR models herein (m1, m2) with extended

Kalman-filter methods (Omidvarnia et al. 2011; Sommer-

lade et al. 2012) in conjunction with a broader range of

direct (Baccalá et al. 2013; Korzeniewska et al. 2003) and

indirect (van Mierlo et al. 2011, 2013) adaptive multi-

variate connectivity measures. Such tests can be conducted

within a systematic framework using generative linear and

nonlinear models, and various system and measurement

noise types and frequency bands of interest (Wang et al.

2014). Second, comparative real-data studies of the degree

of overlap between the estimated seizure networks, inter-

ictal epileptic and resting-state networks, and those

revealed by controlled interventions such as cortico-corti-

cal evoked potentials (Enatsu et al. 2012) may help better

understand the process of ictal propagation in epilepsy.

Third, any localization estimates based on dynamic func-

tional connectivity need validation against seizure-altering

treatments targeting network nodes focally. Colocalization

of the seizure connectivity maps (here; van Mierlo et al.

2013) or virtual resections derived from connectivity data

(Sinha et al. 2014) with the actual resection volume

reconstructions or electrode contacts used for electrical

stimulation therapy (Morrell et al. 2011), can help validate

a particular connectivity approach when considering the

postoperative (or post-stimulation) seizure control in indi-

vidual patients (Brodbeck et al. 2011).

Steps such as these will help assess the potential for

integration of high-density connectivity analysis methods

based on Kalman filtering into the formal presurgical

evaluation of epilepsy surgery candidates.
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of intracranial electrode density and spatial configuration on

interictal spike localization: a case study. J Clin Neurophysiol

32:e30–e40

Milde T, Leistritz L, Astolfi L et al (2010) A new Kalman filter

approach for the estimation of high-dimensional time-variant

multivariate AR models and its application in analysis of laser-

evoked brain potentials. Neuroimage 50:960–969

Moeller F, Muthuraman M, Stephani U, Deuschl G, Raethjen J,

Siniatchkin M (2013) Representation and propagation of

epileptic activity in absences and generalized photoparoxysmal

responses. Hum Brain Mapp 34:1896–1909

Molenaar PC, Beltz AM, Gates KM, Wilson SJ (2016) State space

modeling of time-varying contemporaneous and lagged relations

in connectivity maps. Neuroimage 125:791–802

Morrell MJ, RNS System in Epilepsy Study Group (2011) Responsive

cortical stimulation for the treatment of medically intractable par-

tial epilepsy. Neurology 77:1295–1304

Mullen T, Acar ZA, Worrell G, Makeig S (2011) Modeling cortical

source dynamics and interactions during seizure. Conf Proc

IEEE Eng Med Biol Soc 2011:1411–1414

Omidvarnia AH, Mesbah M, Khlif MS, O’Toole JM, Colditz PB,

Boashash B (2011) Kalman filter-based time-varying cortical

connectivity analysis of newborn EEG. Conf Proc IEEE Eng

Med Biol Soc 2011:1423–1426

Plomp G, Quairiaux C, Michel CM, Astolfi L (2014) The physiolog-

ical plausibility of time-varying Granger-causal modeling:

normalization and weighting by spectral power. Neuroimage

97:16–206

Plomp G, Astolfi L, Coito A, Michel CM (2015) Spectrally weighted

Granger-causal modeling: motivation and applications to data

from animal models and epileptic patients. Conf Proc IEEE Eng

Med Biol Soc 2015:5392–5395
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