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Abstract Epilepsy is a network disease. The epileptic

network usually involves spatially distributed brain

regions. In this context, noninvasive M/EEG source con-

nectivity is an emerging technique to identify functional

brain networks at cortical level from noninvasive record-

ings. In this paper, we analyze the effect of the two key

factors involved in EEG source connectivity processing:

(i) the algorithm used in the solution of the EEG inverse

problem and (ii) the method used in the estimation of the

functional connectivity. We evaluate four inverse solutions

algorithms (dSPM, wMNE, sLORETA and cMEM) and

four connectivity measures (r2, h2, PLV, and MI) on data

simulated from a combined biophysical/physiological

model to generate realistic interictal epileptic spikes

reflected in scalp EEG. We use a new network-based

similarity index to compare between the network identified

by each of the inverse/connectivity combination and the

original network generated in the model. The method will

be also applied on real data recorded from one epileptic

patient who underwent a full presurgical evaluation for

drug-resistant focal epilepsy. In simulated data, results

revealed that the selection of the inverse/connectivity

combination has a significant impact on the identified

networks. Results suggested that nonlinear methods (non-

linear correlation coefficient, phase synchronization and

mutual information) for measuring the connectivity are

more efficient than the linear one (the cross correlation

coefficient). The wMNE inverse solution showed higher

performance than dSPM, cMEM and sLORETA. In real

data, the combination (wMNE/PLV) led to a very good

matching between the interictal epileptic network identified

from noninvasive EEG recordings and the network

obtained from connectivity analysis of intracerebral EEG

recordings. These results suggest that source connectivity

method, when appropriately configured, is able to extract

highly relevant diagnostic information about networks

involved in interictal epileptic spikes from non-invasive

dense-EEG data.

Keywords Epilepsy � Dense-EEG source connectivity �
Epileptic networks

Introduction

Epilepsy is a network disease (Engel Jr et al. 2013). Over

the two past decades, the concept of ‘‘epileptic focus’’ has

progressively evolved toward that of ‘‘epileptic network’’

(Kramer and Cash 2012; Laufs 2012). Indeed, with the

progress of functional neuroimaging techniques, many

studies confirmed that the epileptic zone (EZ) can rarely be

reduced to a circumscribed brain area (Bartolomei et al.

2001) as it very often involves distinct brain regions gen-

erating both interictal (Bourien et al. 2005) and ictal

activity (Bourien et al. 2004). Among the investigation

techniques classically used in the diagnostic of epilepsy,

electrophysiological recordings (typically, magneto- and

electro-encephalography including depth-EEG, referred to
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2 LTSI, Université de Rennes 1, Rennes 35000, France

3 Neurology Department, CHU, Rennes 35000, France

4 AZM Center-EDST, Lebanese University, Tripoli, Lebanon

123

Brain Topogr (2017) 30:60–76

DOI 10.1007/s10548-016-0517-z

http://orcid.org/0000-0003-0307-5086
http://dx.doi.org/10.1007/s10548-016-0517-z
http://crossmark.crossref.org/dialog/?doi=10.1007/s10548-016-0517-z&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10548-016-0517-z&amp;domain=pdf


as M/EEG) are still extensively used to localize and

delineate the EZ in a patient-specific context. Regarding

the numerous methods proposed to process the recorded

data; those aimed at characterizing brain connectivity are

particularly suitable to identify networks involved during

epileptiform activity (both interictal and ictal).

In the context of invasive EEG signals (intracranial

EEG, stereo-EEG and electrocorticoGraphy –EcoG-)

recorded in patients candidate to surgery, these ‘‘connec-

tivity’’ methods have been a topic of extensive research

[see van Mierlo et al. (2014) for recent review]. For

instance, the coherence function was shown to localize the

seizure onset (Gotman 1987), similarity indexes were used

to distinguish a preictal state from the ongoing interictal

activity (Le Van Quyen et al. 2005; Mormann et al. 2000).

Nonlinear regression analysis was applied to intracerebral

signals to characterize connectivity patterns at the seizure

onset (Bourien et al. 2004). Readers may refer to previous

reviews for more detailed information about brain con-

nectivity methods applied to non-invasive (van Mierlo

et al. 2014) and invasive EEG signals (Wendling et al.

2010) in drug-resistant focal epilepsies.

In the context of scalp M/EEG recording, connectivity

methods have received less attention as compared with

invasive EEG. A number of studies performed at the level

of electrodes and focused on ictal periods have been

reported aiming at analyzing seizure propagation (Gotman

1983) or to determine the seizure onset side (Caparos

et al. 2006), for instance. For interictal periods, few

connectivity studies made use of dense EEG and phase

synchronization (Ramon and Holmes 2013) to identify

epileptic sites. One reason for this paucity of studies may

lie in the intricate interpretation of connectivity measures

obtained from scalp recordings. Indeed, this interpretation

is not straightforward as signals are severely corrupted by

the effects of volume conduction (Schoffelen and Gross

2009).

Interestingly, some recent studies showed how to over-

come this limitation. In line with previous cognitive studies

(Astolfi et al. 2007; Babiloni et al. 2005; Betti et al. 2013;

Bola and Sabel 2015; David et al. 2003; David et al. 2002;

de Pasquale et al. 2010; Hassan et al. 2015a; Hassan et al.

2014; Hassan and Wendling 2015; Hipp et al. 2011;

Hoechstetter et al. 2004; Liljeström et al. 2015; Schoffelen

and Gross 2009), the basic principle is to estimate func-

tional connectivity at the level of brain sources recon-

structed from scalp signals. These methods, referred to as

‘‘source connectivity’’ were applied to both interictal EEG

(Coito et al. 2015; Song et al. 2013; Vecchio et al. 2014)

and MEG signals (Dai et al. 2012; Malinowska et al. 2014)

as well as to EEG signals recorded during seizures (Ding

et al. 2007; Jiruska et al. 2013; Lu et al. 2012) or resting

states (Adebimpe et al. 2016; Coito et al. 2016).

Although these approaches all include two steps (M/

EEG inverse problem followed by source connectivity

estimation), they strongly differ from a methodological

viewpoint. Indeed, various algorithms were used to

reconstruct brain sources and both functional and effective

connectivity measures were utilized to assess statistical

couplings among time series associated with reconstructed

sources. Therefore, a central issue is the impact of selected

methods (EEG inverse solution and connectivity measure)

on the topological/statistical properties of identified

epileptic networks activated during paroxysmal activity.

In this paper, we report a quantitative comparison of

methods aimed at identifying cortical epileptic networks

from scalp EEG data. The novelty of this work is twofold.

First, our comparative study includes simulated dense

EEGs generated from physiologically- and biophysically-

plausible models of distributed and coupled epileptic

sources. To our knowledge, no previous study has reported

results on the performance of source connectivity methods

based on a ‘‘ground truth’’ provided by realistic computa-

tional models of interictal EEG signals (recorded later in

time than the dense EEG recordings). Second, in line with a

recent analysis performed on MEG data (Malinowska et al.

2014), networks estimated from real scalp dense EEG are

compared with those obtained from depth-EEG recordings

(SEEG).

Materials and Methods

Inverse Solution Algorithms

Given the equivalent current dipole model, EEG signals

X(t) recorded from M channels can be considered as linear

combinations of P time-varying current dipole sources S(t):

X(t) = GS(t) + N(t)

where G[M, P] is the lead field matrix and N(t) is the noise.

As G is known, the EEG inverse problem consists of

estimating the unknown sources ŜðtÞ from X(t). Several

algorithms have been proposed to solve this problem based

on different assumptions about spatial and temporal prop-

erties of sources and regularization constraints. Here, we

chose to evaluate the four algorithms implemented in

Brainstorm (Tadel et al. 2011).

Weighted Minimum Norm Estimate (wMNE)

Minimum norm estimates (MNE) originally proposed by

(Hämäläinen and Ilmoniemi 1994) are based on a search

for the solution with minimum power using the L2 norm to

regularize the problem. A common expression for MNE

resolution matrix is
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ŜMNE ¼ GTðGGT þ kCÞ�1
G

where k is the regularization parameter and C represents

the noise covariance matrix. The weighted MNE (wMNE)

algorithm compensates for the tendency of MNE to favor

weak and surface sources (Hämäläinen 2005). This is

achieved by introducing a weighting matrix WX in

ŜwMNE ¼ ðGTWXGþ kCÞ�1
GTWXX

that adjusts the properties of the solution by reducing the

bias inherent to the standard MNE solution. Classically,

WX is a diagonal matrix built from matrix G with non-zero

terms inversely proportional to the norm of the lead field

vectors.

Dynamical Statistical Parametric Mapping (dSPM)

The dSPM is based on the MNE solution (Dale et al. 2000).

For dSPM, the normalization matrix contains the minimum

norm estimates of the noise at each source (Caparos et al.

2006), derived from the noise covariance matrix, defined

as:

ŜdSPM ¼ WdSPMŜMNE

where W2
dSPM ¼ diagðŜMNECŜ

T
MNEÞ.

Standardized Low Resolution Brain Electromagnetic

Tomography (sLORETA)

sLORETA uses the source distribution estimated from

MNE and standardizes it a posteriori by the variance of

each estimated dipole source:

ŜsLORETA ¼ WsLORETAŜMNE

where W2
sLORETA ¼ diagðŜMNEGÞ ¼ diagðŜMNEðGGTþ

CÞŜTMNEÞ. The sLORETA inverse method has been origi-

nally described using the whole brain volume as source

space (Pascual-Marqui 2002). For the present study, in

order to ease the comparison with other methods, we

restricted the source space to the neocortical surface.

Standard Maximum Entropy on the Mean (cMEM)

The Maximum Entropy on the Mean (MEM) solver is

based on a probabilistic method where inference on the

current source intensities is estimated from the data, which

is the basic idea of the maximum of entropy. The first

application of MEM to electromagnetic source localization

was reported in (Clarke and Janday 1989). The main fea-

ture of this method is its ability to recover the spatial extent

of the underlying sources. Its solution is assessed by find-

ing the closest distribution of source intensities to a

reference distribution in which source intensities are

organized into cortical parcels showing homogeneous

activation state (parallel cortical macro-columns with

synchronized activity). In addition a constraint of local

spatial smoothness in each parcel can be introduced

(Chowdhury et al. 2013).

Connectivity Measures

We selected four methods that have been widely used to

estimate functional brain connectivity from electrophysio-

logical signals (local field potentials, depth-EEG or EEG/

MEG) (see (Wendling et al. 2009) for review). These

measures were chosen to cover the main families of con-

nectivity methods (linear and nonlinear regression, phase

synchronization and mutual information).

Briefly, concerning the regression approaches, the linear

cross-correlation coefficient is only limited to the detection

of the linear properties of the relationships between time

series. However, mechanisms at the origin of EEG signals

were shown to have strong nonlinear behaviors (Pereda

et al. 2005). Thus, we have selected three nonlinear con-

nectivity measures. The nonlinear regression where the

basic idea is to evaluate the dependency of two signals

from signal samples only and independently of the type of

relation between the two signals. Concerning the phase

synchronization measure, the method estimates the

instantaneous phase of each signal and then computes a

quantity based on co-variation of extracted phases to

determine the degree of relationship. Finally, the mutual

information method is based on the probability and infor-

mation theory to measures mutual dependence between

two variables. More technical details about the four

methods are presented hereafter:

Cross-Correlation Coefficient (r2)

The cross-correlation coefficient measures the linear cor-

relation between two variables x and y as a function of their

time delay (s). Referred to as the linear correlation coef-

ficient, it is defined as:

r2xy ¼ max
s

cov2ðxðtÞ; yðtþ sÞÞ
ðrxðtÞryðtþsÞÞ2

where r and cov denote the standard deviation and the

covariance, respectively.

Nonlinear Correlation Coefficient (h2)

The nonlinear correlation coefficient (h2) is a non-para-

metric measure of the nonlinear relationship between two

time series x and y. In practice, the nonlinear relation
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between the two time series is approximated by a piecewise

linear curve.

h2xy ¼ max
s

1� varðyðtþ sÞ=xðtÞÞ
varðy(tþ sÞÞ

� �

where varðyðt þ sÞ=xðtÞÞ, argmin
f

E½yðt þ sð Þ � f ðxðtÞÞ�2Þ
and f(x) is the linear piecewise approximation of the non-

linear regression curve.

Mutual Information (MI)

The mutual information (MI) between signal x and y is

defined as:

MIxy ¼
X

pxy
ij
log

pxy
ij

px
i
py

j

where pxy
ij

is the joint probability of x = xi and y = yj. In

the case of no relationship between x and y, pxy
ij

= px
i
py

j
, so

that the MI is zero for independent processes. Otherwise,

MIxy will be positive, attaining its maximal value for

identical signals.

Phase Locking Value (PLV)

For two signals x and y, the phase locking value is defined

as:

PLVxy ¼ heijuxðtÞ�uyðtÞji
�� ��

where uxðtÞ and uyðtÞ are the unwrapped phases of the

signals x and y at time t. The h:i denotes the average over

time. The Hilbert transform was used to extract the

instantaneous phase of each signal.

The h2, PLV and r2 values range from 0 (independent

signals) to 1 (fully correlated signals).

Data

Simulations

In order to quantitatively assess the performance of source

connectivity approaches, we generated simulated EEG

signals following the procedure described in (Cosandier-

Rimélé et al. 2008), see Fig. 1a. The distributed source

space consisted in a mesh of the cortical surface (8000

vertices, *5 mm inter-vertex spacing) that was obtained

by segmenting the grey-white matter interface from a

normal subject’s structural T1-weighted 3D-MRI with

Freesurfer (Fischl 2012). Dipoles were located at each

vertex of this mesh and oriented radially to the surface at

the midway between the white/grey matter interface and

the pial surface. The time-course of each dipole of the

source space was generated from a modified version of the

physiologically relevant neural mass model reported in

(Bourien et al. 2005; Wendling et al. 2000, 2002).

In brief, this computational model was designed to

represent a neuronal population with three subsets of

neurons (pyramidal cells P and interneurons I and I’)

interacting via synaptic transmission (Fig. 1a). Pyramidal

cells (P) receive endogenous excitatory drive (AMPAergic

collateral excitation) from other local pyramidal cells and

exogenous excitatory drive from distant pyramidal cells

(via external noise input p(t)). They also receive inhibitory

drive (GABAergic feedback inhibition) from both subsets

of local interneurons (I and I’). In turn, interneurons

receive excitatory input (AMPA) from pyramidal cells.

A Gaussian noise was used as external input to neuronal

population. The mean (m = 90) and standard deviation

(sigma = 30) were adjusted to represent randomly varying

density of incoming action potentials (Aps). However, for

the purpose of this study, a modification was made to this

noise model. Indeed, abrupt increase/decrease of the den-

sity of Aps can occur in the external input noise at user-

defined times to mimic transient AP volleys from other

brain regions involved in the generation of interictal

events. Thus, in this model, a simulated IES can be viewed

as the responses of a nonlinear dynamical system (com-

prising positive and negative feedback loops) to transient

pulses superimposed on a Gaussian noise (classically used

in the neural mass modeling approachs).

As in the standard implementation, the shape (spike

component followed by a wave component) can still be

controlled by adjusting excitation and inhibition parame-

ters of each population (gains in feedback loops). However,

the aforementioned modification offers one major advan-

tage: as pulses in the noise input are user-defined, the

occurrence times of simulated IESs are controlled, in

cFig. 1 Structure of the investigation. a Simulated epileptic spikes:

model used to generate epileptic spikes (see ‘‘Simulations’’section for

detailed description), b Identification of interictal epileptic network:

first, a network is generated by the model and considered as the

‘ground truth’. By solving the forward problem, synthetic dense EEG

data are generated. These signals are then used to solve the inverse

problem in order to reconstruct the dynamics of sources using three

different inverse solutions (wMNE, sLORETA, dSPM and cMEM).

The statistical couplings are then computed between the reconstructed

sources using three different methods (r2, PLV, h2 and MI). The

identified network by each combination (inverse/connectivity) was

then compared with the original network using a ‘network similarity’

algorithm [13] and c Intracerebral recordings: the positions of the

intracerebral SEEG signals used in the real application. The

corrdinates of the electrode’s contacts was obtianed by the CT/MRI

coregistration. wMNE weighted minimum norm estimate, sLORETA

standardized low resolution brain electromagnetic tomography, dSPM

dynamical statistical parametric mapping, cMEM standard maximum

entropy on the mean, r2 linear correlation coefficient, PLV phase

locking value, h2 nonlinear correlation coefficient, MI mutual

information, P pyramidal cells, I Inhibitory interneurons
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contrast with the standard implementation where IESs

simply result from random fluctuations of the noise. The

consequence is that this new model feature allows for

simulation multi-focal IESs with well-controlled time

shifts. Indeed, as illustrated in Fig. 1a, we could generate

delayed epileptiform activity in multiple distant patches

just by introducing short delays between the pulses

superimposed on the respective input noises of neuronal

populations at each patch.

Finally, from appropriate setting of the input noise, as

well as excitation and inhibition-related parameters at each

neural mass included in simulated epileptic sources, a set

of epileptiform temporal dynamics was obtained. These

dynamics were assigned to a source made of contiguous

vertices (active source) manually outlined with a mesh

visualization software (Paraview, Kitware Inc., NY, US).

Uncorrelated background activities were attributed to the

other vertices. Once the amplitude of each elementary

dipole was known, EEG simulations were obtained by

solving the forward problem in a 3-layer realistic head

model (inner skull, outer skull and the scalp with con-

ductivity values of 0.33, 0.0042, 0.33 S/m respectively)

using the Boundary Element Method (BEM) with the

OpenMEEG (Gramfort et al. 2010) implemented in

Brainstorm software.

We considered two different scenarios. In the first one

(single network), EEG simulations were generated from a

single source located in the inferior parietal region

(*1000 mm2). In the second one (two interconnected

networks) an additional source (*1000 mm2) was placed

in the middle temporal gyrus. In that case, the temporal

dynamics of the second source were highly correlated

with those of the first source, but with a minor delay

(30 ms). This delay of 30 ms was in the range of

10–50 ms delays that are often observed during interictal

spikes at different intracranial recording location (Alarcon

et al. 1994, 1997; Emerson et al. 1995; Merlet and Got-

man 1999) or at different surface sensors (Barth et al.

1984; Ebersole 1994) or between the peaks of dipole

source activity (Baumgartner et al. 1995; Merlet and

Gotman 1999). This delay was usually interpreted as

reflecting propagation between distant regions in the

brain. For each scenario, 20 epochs of 60 s at 512 Hz

containing 30 epileptic spikes were simulated. Each epoch

was obtained for a new realization of the input random

noise leading to a new realization of epileptic spikes

occurring in background activity. Simulated data were

imported in Brainstorm for further analysis.

Real Data

Real data were selected from a patient who underwent

presurgical evaluation for drug-resistant focal epilepsy.

Seizures were stereotyped, with a sudden start, febrile

motor automatisms of the upper limb, stretching of the

neck and torso and no post-ictal motor deficit. The patient

had a comprehensive evaluation including detailed history

and neurological examination, neuropsychological testing,

structural MRI, standard 32-channels (Micromed, Italy) as

well as Dense-EEG 256-channels (EGI, Electrical Geo-

desic Inc., Eugene, USA) scalp EEG with video recordings

and intracerebral EEG recordings (SEEG). MRI showed a

focal cortical dysplasia in the mesial aspect of the orbito-

frontal region. Dense-EEG was recorded for 1 h, at

1000 Hz following the procedure approved by the National

Ethics Committee for the Protection of Persons (CPP,

agreement number 2012-A01227-36). The patient gave his

written informed consent to participate in this study. This

recording revealed sub-continuous spike activity at the

most left frontopolar basal electrodes. From this interictal

epileptic activity, 85 spikes were visually selected away

from the occurrence of any artefacts (muscle activity,

blood pulsation, eye blinks). Each spike was centered in a

2 s window and all 85 windows were concatenated for

further analysis.

As part of his presurgical evaluation, the patient also

underwent intracerebral SEEG recordings with 9 implanted

electrodes (10 ± 18 contacts; length: 2 mm, diameter:

0.8 mm; 1.5 mm apart) placed intracranially according to

Talairach’s stereotactic method in the left frontal and

temporal region, see Fig. 1c. The positioning of the elec-

trodes was determined from available non-invasive infor-

mation and hypotheses about the localization of his

epileptic zone. From these data, subsets of 25 out of the

118 original leads were selected. This selection was made

according to the following criteria: i) only contacts show-

ing grey matter activity were retained and ii) among them,

only the contact showing the maximal activity was kept

when similar intracerebral activity was observed on several

contacts.

Data Analysis

Scalp-EEG Based Interictal Epileptic Networks

As illustrated in Fig. 1B, source activity was estimated

using four inverse algorithms (dSPM, wMNE, sLORETA

and cMEM, see ‘‘Materials and Methods’’ section). A

baseline of 1 s length was used to estimate the noise

covariance matrix both on simulated and real scalp EEG

data. For real data, source localization was applied on

averaged spikes, taking as time reference the maximum of

the negative peak, while for simulated data the source

localization was applied to non-averaged spikes. The cor-

tical surface was anatomically parcellated into 148 regions

of interest (ROI) (Destrieux et al. 2010) and then
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re-subdivided into *1500 sub-ROIs using Brainstorm.

The 148 ROIs provided initially by the Destrieux Atlas

(using Freesurfer) were quasi equally subdivided to obtain

the 1500 sub-ROIs with 1 cm2 average sizes. Time series

of the reconstructed source activities were averaged over

each of the 1500 ROIs.

After the reconstruction of sources (source localization

and estimation of temporal dynamics), functional connec-

tivity was estimated using four methods (r2, h2, PLV, and

MI, see ‘‘Materials and Methods’’ section). Each quantity

was computed on the set of 2 s single spikes. All connec-

tivity matrices (1500 9 1500) were thresholded as follows.

We computed the strength of each node of the weighted

undirected graph and we kept nodes with the highest 1 %

strength values. The same threshold was applied on the

adjacency matrices for all combinations (inverse/connec-

tivity). The strength was defined as the sum of all edge

weights for each node; all weights were positive and nor-

malized between 0 and 1.

In order to define the reference networks, all the dipoles

were supposed synchronized and the reference network

reflected a fully connected undirected graph. In the case of

double network scenario, a number of 37 sub-regions

(nodes) were considered. The dynamics of the dipoles

associated to these nodes were similar and resulting a

37 9 37 fully connected network where connections (local

and remote) between the 37 nodes have the same weight

value.

Quantification of Network Similarity

In order to compare the reference brain network simulated

in the model with the network identified from simulated

scalp EEG by each of the inverse/connectivity combination

(Fig. 1b), we used a network similarity algorithm recently

developed in our team (Mheich et al. 2015a), see supple-

mentary materials for more details about the algorithm.

The main advantage of this algorithm is that it takes into

account the spatial location (3D coordinates) of the nodes

when comparing two networks, in contrast with other

methods based on the sole statistical properties of com-

pared graphs. The algorithm provides a normalized Simi-

larity Index (SI): 0 for no similarity and 1 for two identical

networks (same properties and topology). The connectivity

analysis, the network measures and network visualization

were performed using EEGNET (Hassan et al. 2015a, b).

Depth-EEG Based Interictal Epileptic Networks

Functional connectivity using h2 were directly computed

from SEEG signals at the 25 selected intracerebral elec-

trode contacts. Adjacency matrices (25 9 25) were

obtained and thresholded using the same procedure than

that applied to the graphs obtained for scalp dense EEG

(both simulated and real).

Scalp-EEG-Based Versus Depth-EEG-Based Epileptic

Network Matching

In order to compare the graphs in the three-dimensional

coordinates system of the cortex mesh, the 3D coordinates

of the SEEG were first estimated by the co-registering the

patient’ CT scan and MRI. These points were then pro-

jected on the surface mesh. The transformation from MRIs

(voxels) coordinates to surface (SCS/MNI) coordinates was

realized in brainstorm. The Scalp-EEG-based and depth-

EEG-based epileptic networks were visually compared by

matching the identified regions (nodes) in both networks.

Statistical Analysis

On the simulated data, a Wilcoxon rank-sum test was used

to compare between the SIs obtained for each combination

at each trial, corrected for multiple comparison using

Bonferroni approach.

Results

Simulated Data: Influence of the Source

Reconstruction/Functional Connectivity

Combination

The results obtained in the case of the single network

scenario are illustrated in Fig. 2, for the 16 different

combinations of the source reconstruction and functional

connectivity methods. The visual investigation of these

results revealed that networks identified using the different

combinations of methods were concordant with the refer-

ence network (Fig. 2b). Indeed none of the identified net-

works had nodes in a remote region (Fig. 2a). The

qualitative analysis also showed that the number of nodes

and the connections between them varied according to the

combination of methods used. For a given connectivity

approach, changing the localization method did not dra-

matically modify the network aspect, except for cMEM.

Conversely, for a given source localization approach,

changing the functional connectivity measure changed,

qualitatively, the network. Although this was difficult to

assess visually, h2 combined with MNE or sLORETA was

giving the network that best matched the reference network

while cMEM/MI provided a result that was different from

the reference network.

Quantification of these differences is provided in

Fig. 2c. Overall, values of network similarity were rela-

tively high and ranged from 70 to 82 %. For a given
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connectivity approach, changing only the localization

algorithm slightly modified SI values by 3 % (h2) to 8 %

(MI). For a given source localization approach, the SIs

varied within 9 % (wMNE) to 12 % (dSPM). Results

obtained using MI were on average better than PLV, r2 and

h2. The combination providing the highest similarity values

between the estimated and the actual network was dSPM/

MI (82.2 %) followed by wMNE/MI (82 %) and wMNE-

PLV (82 %). The lowest similarity value was obtained with

the dSPM/h2 combination. The Wilcoxon rank-sum test did

Fig. 2 One network scenario. a Brain networks obtained by using the

different inverse and connectivity methods. b The original network

(ground truth) is shown and c values (mean ± standard deviation) of

the similarity indices computed between the network identified by

each combination and the model network
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not reveal any significant difference between the similarity

values obtained in this first study.

Results obtained in the case of two interconnected net-

works for the 16 combinations of the inverse/connectivity

methods are reported in Fig. 3. Results indicate that the

networks identified by all the combinations are relatively

close to the model network (Fig. 3b) since, similarly to the

previously scenario, there was no node in other distant

regions or in the right hemisphere. The networks did not

qualitatively change much for a given connectivity mea-

sure except for cMEM. Rather, as observed in the first

scenario, the variability between the different combinations

was more related to the choice of the connectivity measure,

given a source localization approach. The results of PLV

(whatever the inverse solution algorithm) provide the

closest result to the reference network. cMEM/MI shows

also a relatively close network to the reference network

while cMEM/h2 indicated, visually, the farthest result from

the reference network.

Values of network similarity are reported in Fig. 3c.

These values were lower than those in the single network

scenario, ranging from 57 to 73 %. For a particular con-

nectivity measure, changing the inverse algorithm modified

the SIs by 1 % (r2) to 8 % (h2) while for a given source

reconstruction algorithm, the SIs varied between 6 %

(dSPM) to 13 % (wMNE). The combination providing the

result closest to the reference network was wMNE/PLV

(73 %). High values were also obtained with sLORETA/

PLV (68 %) and cMEM/PLV (66 %). The cMEM/h2

combination shows the lowest SI value (57 %).

Interestingly, for scenario 2 results obtained with

wMNE/PLV were significantly closest to the actual net-

work than the other ones (Wilcoxon rank-sum test,

p\ 0.01, corrected using Bonferroni).

EEG Source Localization Versus Functional

Connectivity

An essential issue that is addressed in this paper relates to

the difference between the proposed ‘‘network-based’’

approach and the classical approach using source local-

ization only. In Fig. 4, we show two typical examples of

the difference between the proposed network-based anal-

ysis and the classical localization approach. The first

example is for cMEM combined with MI vs. cMEM only.

This Figure shows that the information extracted in both

cases was noticeably different. The source connectivity

approach identified a network close to the reference one

(Fig. 4a), with nodes both in the parietal and in the tem-

poral region (Fig. 4b). There were no spurious nodes in

remote regions. In contrast, with the sole source localiza-

tion, after averaging the results over a 50 ms interval

around each of the epileptic peaks, the parietal source was

well retrieved while the temporal source remained almost

unobserved. The second example was wMNE/PLV vs.

wMNE, the figure shows that the network-based approach

was able to identify a network close to the reference with

no spurious connections in distant regions. The source

localization approach identified the two regions different

energies at. Moreover, many spurious sources were

observed in remote regions. Similar results were observed

for single network configuration.

Real Data: Scalp-EEG-Based Versus Depth-EEG-

Based Epileptic Network

The results obtained from real data recorded in a patient are

described on Fig. 5. In this patient, the sources of scalp

EEG interictal spikes were widespread over the left frontal

and temporal regions. Sources with maximum activity were

found in the left frontal pole and orbitofrontal regions but a

substantial activation was also detected in the left temporal

as well as right frontal poles (Fig. 5a, left). When com-

bining wMNE and PLV on the same scalp EEG data, the

source connectivity approach retrieved a 5-nodes network

in the left frontal lobe, involving the mesial (rectus gyrus)

and lateral orbitofrontal region as well as the anterior

cingulate gyrus (Fig. 5a, right). This result was concordant

with that the network identified directly from intracerebral

recordings by computing the functional connectivity

among SEEG signals (Fig. 5b right). Indeed, the depth-

EEG based network involved six nodes in the left mesial

orbito-frontal (rectus gyrus), and anterior cingulate region.

All these nodes were also identified by the visual analysis

(Fig. 5b, left) as regions involved in the main interictal

activity (rectus gyrus) as well as in the propagated interictal

activity (cingulate gyrus).

The similarity indices between networks identified by

each of the combination with the depth-EEG-based net-

work are presented in Fig. 5c. Results showed that the

wMNE/PLV provides the highest SI value (70 %) followed

by wMNE/h2 (47 %) and sLORETA/PLV (47 %). The

cMEM method showed the lowest SI values whatever the

connectivity measure (6, 1, 1 and 1 % for cMEM/MI,

cMEM/PLV, cMEM/h2 and cMEM/r2 respectively).

Discussion

Identifying epileptic brain networks from noninvasive

M/EEG data is a challenging issue. Recently, source

localization combined with functional connectivity analy-

sis led to encouraging findings in the estimation of func-

tional cortical brain networks from scalp M/EEG

recordings (Coito et al. 2015; Jiruska et al. 2013; Mali-

nowska et al. 2014). Nevertheless, the joint use of these
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two approaches is still novel and raises a number of

methodological issues that should be controlled in order to

get appropriate and interpretable results. In this paper, we

reported a comparative study -in the context of epilepsy- of

the networks obtained from all possible combinations

between four algorithms to solve the EEG inverse problem

and four methods to estimate the functional connectivity.

An originality of this study is related to the use of dense

EEG signals simulated data from a realistic model of multi-

focal epileptic zone as a ground truth for comparing the

performance of considered methods. To our knowledge, a

model-based evaluation of source connectivity methods

has not been performed yet. A second—and still novel—

aspect is the use of depth-EEG signals (intracerebral

recordings performed during presurgical evaluation of

drug-resistant epilepsy) to evaluate the relevance of

Fig. 3 Two networks scenario. a Brain networks obtained by using

the different inverse and connectivity methods. b The original

network (ground truth) is shown and c values (mean ± standard

deviation) of the similarity indices computed between the network

identified by each combination and the model network
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networks identified from scalp EEG data. Overall results

obtained on simulated as well on real data indicated that

the combination of the wMNE and the PLV methods leads

to the most relevant networks as compared with the

ground-truth (simulations) or with the intracerebrally-

identified networks (patient data). Results are more

specifically discussed hereafter.

Methodological Considerations

The connectivity matrices were thresholded by keeping the

nodes with highest strength values (strongest 1 %). This

procedure was used to standardize the comparison between

all the combinations. We were aware about the effect of

this threshold and we realized the comparative study using

different threshold values. All threshold values were found

to lead to the same differences between the method (in-

verse/connectivity) combinations.

In this paper, we have averaged the reconstructed

sources within the same region of interest defined by the

parcellation process based on Destrieux atlas. This

approach was frequently used in the context of M/EEG

source connectivity (de Pasquale et al. 2010; Fraschini

et al. 2016; Hassan et al. 2015a). However, such an aver-

aging procedure may increase the noise power since its

computation is performed over sources that, with some

probability, may not exhibit correlation (Brookes et al.

2014) where the need of alternative approaches such as

flipping the sign of the sources in each ROIs before aver-

aging the regional time series (Fraschini et al. 2016) or

developing methods based on probabilistic maps, a widely

approach used in the fMRI-based analysis, for instance.

Although EEG source connectivity reduced the problem

of volume conduction as compared with scalp EEG con-

nectivity, it does not yet provide a perfect solution. The

volume conduction effect is a challenging issue when

performing EEG/MEG inverse solution (Schoffelen and

Gross 2009). In the connectivity context, the main effect of

the volume conduction is the appearance of ‘artificial’

connections among close sources, a problem often referred

Fig. 4 Source localization versus source connectivity. a the reference
network. b Results obtained by the network-based approach (cMEM/

MI and wMNE/PLV). c. Results obtained by the localization based

approach (cMEM and wMNE) using same window of analysis.

Results were averaged over a 50 ms interval around each of the spike

peaks. Red color represents the sources with the highest energy (Color

figure online)
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to as ‘source leakage’. The use of a high spatial resolution

(high number of ROIs) may increase this problem. A few

approaches have been proposed recently to deal with the

source leakage by either normalizing the edges weights by

the distance between the nodes or removing the edges

between very close sources. Although, these approaches

have some advantages, it was shown that, in most cases,

they also remove ‘real’ connections (Schoffelen and Gross

2009). In this context, some connectivity methods such as

PLV have been shown to reduce the volume conduction

(Hipp et al. 2011). This may explain the good performance

of this method. Indeed, in the double network scenario,

Fig. 5 Application on real data. a Scalp EEG: results of the source

localization approach using wMNE (right) and source connectivity

using wMNE/PLV (left), b Intracerebral EEG: regions visually

identified by the epileptologist (right) and the network obtained by

computing the functional connectivity between the intracerebral EEG

signals (left), c Similarity indices: the SI values obtained between the

network identified by each of the combination and the intracerebral-

EEG-based network
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PLV was able to detect the long-range connections

between parietal and temporal networks.

Four inverse/connectivity algorithms were evaluated in

this paper. It is worth mentioning that some other inverse

algorithms like MUSIC-based and beamforming as well

some connectivity measures such as power envelope cor-

relation (O’Neill et al. 2015) were not included in this

study. Moreover, we were focusing in this paper on eval-

uating different families of ‘functional’ connectivity

methods regardless the directionality of these connections.

Nevertheless, we consider that the analyses of the ‘effec-

tive’ connectivity methods that investigate the causality

between brain regions may be of interest in the context of

epilepsy (Coito et al. 2015, 2016). In this perspective,

methods such as the granger causality, the transfer entropy

could be added to expand this comparative study. In

addition, all methods evaluated in the paper were bivariate,

multivariate methods such as those based on the MVAR

model were not included in our study. Different method-

ological questions appear when using MVAR-based

approaches. First, the successful estimation of MVAR such

as Partial Directed Coherence (PDC) or Directed Transfer

Function (DTF) depends largely on the fitted MAR model,

since all information is resulting from the estimated model

parameters. In practice, this issue is difficult and directly

related to the choice of an optimal model order and an

optimal epoch length. Concerning the optimal model, most

of the criteria were originally proposed for univariate AR

modeling and no consensus was reported about multivari-

ate ones. The second crucial question is how to choose the

proper window size specially that MVAR model assumes

that the underlying process is stationary, while neuro-

physiological activity are transient and may rapidly change

their states representing high nonstationary behaviors

(Pereda et al. 2005). Nevertheless the MVAR (when

carefully applied) could provide complementary informa-

tion not only about the link exists between two signals but

also if one structure drive another of if there is feedback

between these structures (Kuś et al. 2004). The direction-

ality could be also defined as ‘time-delay’ between two

regional time series which can be computed using linear or

nonlinear correlation coefficients. As our main objective in

this study was to compare inverse algorithms and ‘func-

tional’ connectivity methods using same criteria (here we

used similarity between reference and estimated undirected

graphs), we didn’t investigate the time-delays in the pre-

sented quantitative analysis. In addition this feature cannot

be computed for all the selected methods (the case of the

phase synchronization method for instance). We believe

that the directionality, estimated from Granger causality or/

and time delays, is indeed an interesting supplementary

feature in the context of epileptic seizure propagation and

will be a potential element for further analysis.

The head model used in this study was computed using

the Boundary Element Method (BEM) with three layers

(skin, skull and brain). This model was widely used in the

context of M/EEG source estimation (Fuchs et al. 2007) as

a compromise between computational cost and accuracy.

Nevertheless, other methods exist to compute the head

model such as the Finite Element Method (FEM) or adding

other layers such as cerebrospinal fluid (CSF). These

methods can possibly have effect of the resultant network

(Cho et al. 2015). The evaluation of the above mentioned

parameters/factors may be the topic of further

investigation.

Identification of Interictal Epileptic Networks

from Scalp Dense-EEG Data

A salient feature of epilepsy in general and epileptic net-

works is the increased synchronization among intercon-

nected neuronal populations distributed over distant areas.

This ‘‘hyper’’- synchronization often leads to an increase of

brain connectivity, not only during the transition to seizures

but also during interictal periods, as shown in many studies

based on intracranial recordings (see (Wendling et al.

2010) for review). In this context, the combination of the

M/EEG source imaging with the functional connectivity

measures has recently disclosed promising findings to

identify pathological brain networks, at the cortical level

(Dai et al. 2012; Lu et al. 2012; Malinowska et al. 2014;

Song et al. 2013).

However, two factors seem to be crucial for reliable

estimation of EEG source connectivity: (i) the number of

scalp electrodes and (ii) the combination between the

inverse solution algorithm and the functional connectivity

measure. Concerning the number of electrodes, it was

reported that the increase of the spatial resolution by using

dense EEG may dramatically improve the accuracy of the

source localization analysis (Michel and Murray 2012;

Song et al. 2015). In addition, the use of dense EEG, as

compared to classical montages (32 or 64 electrodes), is

needed to accurately identify functional brain networks

from scalp EEG (Hassan et al. 2014). To overcome this

issue, dense-EEG (256 electrodes) recordings were used in

this study. The main feature of this system is the excellent

coverage of the subject’s head by surface electrodes

allowing for improved reconstruction of the cortical

activity from non-invasive scalp measurements, as com-

pared with more standard 32-128 electrode systems (Song

et al. 2015). Regarding the combination of inverse/con-

nectivity methods, most of reported studies have empiri-

cally selected a combination while this selection was

shown to have a dramatic impacts on results, in term of

identified network topology (Hassan et al. 2014). The

present analysis brings further confirmation of this high
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variability observed when different inverse solutions and/or

connectivity measures are being used in the pipeline

leading to cortical networks from EEG signals.

A major advantage of the EEG source connectivity

approach as presented here is that reconstructed sources

and associated networks were identified for the whole

brain. Then graph-based metrics (strength values) were

computed to characterize the networks and the similarity

index was used to compare the networks obtained from

various method combinations. In addition, functional con-

nectivity was applied directly to the reconstructed signals

and not on derived components. In this regard, this study

differs from (Malinowska et al. 2014) where connectivity

was estimated on signals components obtained by ICA

decomposition. Although the methodological issue of

measuring connectivity between independent components

still holds, a future interesting study will compare the

results obtained from the ICA-based approach to those

reported here from source connectivity.

EEG Source Localization Versus Functional

Connectivity

Source localization methods have been widely applied to

interictal epileptic spikes (Becker et al. 2014). The goal of

these approaches is the localization of brain generators of

epileptic activity from scalp recordings. A fundamental

question that is addressed in this paper relates to the dif-

ference between the source connectivity and the source

localization approach. This study indicated that the infor-

mation extracted from dense-EEG recordings in both cases

can differ dramatically. First, the connectivity is an addi-

tional step to the simple source reconstruction/localization.

Second, the fundamental difference between both methods

is that the source localization ignores all possible com-

munications between brain regions. When performing

source localization analysis, the sources with highest

amplitude (averaged at given time period or computed at

the instant of peak amplitude of the signal) are classically

kept. However, to some extent (depending on threshold),

this approach may neglect the possible contribution of

‘‘low energy’’ sources participating into the network

activity.

Conversely, the hypothesis behind the network-based

approach (typically when phase synchronization methods

are used as connectivity measure) is that sources can be

synchronized regardless their amplitude. To this extent, we

believe that the network-based approach allows for reveal-

ing networks that are more specific to epileptic networks, as

hyper-synchronization phenomena constitute a typical

hallmark of such networks. An illustrative example in this

paper is the poor involvements of the temporal lobe region

when the sole source localization approach (in the case of

cMEM) was applied while both parietal and temporal net-

works (as a priori introduced in the EEG generation model)

are retrieved by the connectivity-based approach (cMEM/

h2). Note that we have averaged the source localization

results in a time window of 50 ms to cover the time delay of

30 ms set in the model between the two brain regions. Dif-

ferent time window were used to avoid the effect of the

window length. All tested windows (30 ms, 40 ms, 50 ms

and 60 ms) showed similar observations i.e. the absence of

the temporal sources (not shown here). The fact that epilepsy

is considered as a network disease can explain the low

performance of some of the inverse methods as these

methods were originally developed to localize ‘local’

epileptic foci characterized by high-energy sources regard-

less the interrelationships between brain regions. Our results

show that EEG source connectivity methods are more suited

in the case of multi-focal epileptic zone. More generally,

they support the recent tendency in brain disorder research

which is the necessity to move from localizing ‘pathological

areas’ to identifying ‘altered networks’ (Diessen et al. 2013;

Fornito et al. 2015).

Epilepsy as a Network Disorder

There is increasing evidence that epileptic activity involves

brain networks rather than a single well circumscribed

region and that these dysfunctional networks contribute to

both ictal and interictal activity (Bourien et al. 2004, 2005;

Coito et al. 2015; Engel Jr et al. 2013; Hipp et al. 2011).

Functional connectivity was widely applied to depth-EEG

data to predict seizures (Mormann et al. 2000) and identify

epileptic networks in partial epilepsies (Bartolomei et al.

2001). These studies showed alterations of synchronization

in brain networks during interictal to ictal transition

(Wendling et al. 2003) as well as during seizures (Diessen

et al. 2013; Jiruska et al. 2013; Schindler et al. 2008). Most

of these studies were performed using invasively-recorded

data in patient’s candidate to surgery. Interestingly, our

results show that pathological networks involved during

epileptiform activity can also be identified from scalp EEG.

Indeed, we have evaluated the performance of a rela-

tively new approach aiming at identifying epileptic brain

networks from scalp EEG. The application of the method

on real data showed the good performance of this method

in term of network identified from scalp EEG as compared

with those identified from intracerebral EEG. Note that the

comparison was done only by computing h2 between the

intracerebral signals based on a large number of studies

showing that h2 is one of the most adapted metrics to

compute functional connectivity between intracerebral

recordings (Bettus et al. 2008; Wendling et al. 2010).

Although it is obviously difficult to conclude on a single

patient analysis, results showed good matching between
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scalp-EEG based networks and both the depth-EEG based

networks and the expert judgment. Therefore, future work

will consist in the application of the EEG source connec-

tivity on a big database of real dense EEG data recorded

from epileptic patients. In these patients candidate to sur-

gery, we plan to use also intracerebral EEG signals as a

reference to validate the identified networks. In addition,

due to the excellent temporal resolution of the EEG, the

dynamic behaviors of the epileptic networks will be also

explored (Hassan et al. 2015a; Mheich et al. 2015b).

Finally, the capacity to describe epileptic activity not

only according to the sites where epileptiform activity is

generated but also according to the abnormal functional

relationships between these sites can definitively improve

the surgical approach. We speculate that in order to better

understand and ultimately prevent seizures, it is essential to

identify and then remove/disconnect pathological nodes of

the network (exhibiting abnormal hyper-synchronization

capability). The proposed method contributes to this aim

and reported results constitute a first step toward the

development of more efficient non-invasive diagnostic

methods for clinical epileptology.
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