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Abstract Electroencephalographic (EEG) oscillations

predominantly appear with periods between 1 s (1 Hz) and

20 ms (50 Hz), and are subdivided into distinct frequency

bands which appear to correspond to distinct cognitive

processes. A variety of blind source separation (BSS)

approaches have been developed and implemented within

the past few decades, providing an improved isolation of

these distinct processes. Within the present study, we

demonstrate the feasibility of multi-subject BSS for

deriving distinct EEG spatiospectral maps. Multi-subject

spatiospectral EEG decompositions were implemented

using the EEGIFT toolbox (http://mialab.mrn.org/software/

eegift/) with real and realistic simulated datasets (the

simulation code is available at http://mialab.mrn.org/soft

ware/simeeg). Twelve different decomposition algorithms

were evaluated. Within the simulated data, WASOBI and

COMBI appeared to be the best performing algorithms, as

they decomposed the four sources across a range of

component numbers and noise levels. RADICAL ICA,

ERBM, INFOMAX ICA, ICA EBM, FAST ICA, and

JADE OPAC decomposed a subset of sources within a

smaller range of component numbers and noise levels.

INFOMAX ICA, FAST ICA, WASOBI, and COMBI

generated the largest number of stable sources within the

real dataset and provided partially distinct views of

underlying spatiospectral maps. We recommend the multi-

subject BSS approach and the selected algorithms for fur-

ther studies examining distinct spatiospectral networks

within healthy and clinical populations.

Keywords Blind source separation � Multi-subject

decomposition � Resting EEG � Simulated EEG �
Wavelets � ICA

Introduction

Scalp electric potentials emerge from the synchronous

activity of cortical populations. These potentials are mea-

sured by electrodes on the scalp (i.e. with electroen-

cephalography (EEG)), and are often characterized by their

oscillatory properties. Scalp oscillations predominantly

appear with periods between 1 s (1 Hz) and 20 ms (50 Hz),

and are subdivided into distinct frequency bands which

appear to correspond to distinct cognitive processes (Buz-

saki 2006; Nunez and Srinivasan 2006). For example,

frontal delta (1–4 Hz) and theta (4–8 Hz) responses

demonstrate increased power when individuals engage in

working memory and cognitive control tasks (Nyhus and

Curran 2010; Harmony 2013), while occipital alpha

(8–12 Hz) increases when individuals close their eyes, are

drowsy, or engage in mental arithmetic (Klimesch et al.

2007). Thus, an improved characterization of these
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oscillations may lead to an improved understanding of

cognition within both healthy and clinical populations.

EEG reflects a mixture of cortical responses which

emerge over a range of frequencies and cortical locations.

A variety of blind source separation (BSS) approaches have

been developed and implemented within the past few

decades, providing an improved isolation of these under-

lying scalp sources. Temporal independent component

analysis (ICA), for example, decomposes the chan-

nel 9 time EEG data into a linear mixture of temporally

independent sources (Makeig et al. 1997; Hyvarinen et al.

2001; Stone 2004). Temporal ICA has been widely applied

and demonstrates considerable utility in separating artifacts

(e.g. eye movements and blinking) from EEG (Makeig

et al. 2004; Onton et al. 2006) and in isolating near-dipolar

scalp maps (Delorme et al. 2012). Spectral decomposition

has been less widely applied, but appears well suited for

separating distinct cortical sources (Hyvärinen et al. 2010).

There are a variety of approaches to spectral decom-

position, with applications toward complex or real valued

EEG spectra and implementations across a variety of

algorithms (Anemüller et al. 2003; Bernat et al. 2005;

Onton et al. 2005; Hyvärinen et al. 2010; Nikulin et al.

2011; Ramkumar et al. 2012; Shou et al. 2012; Kauppi

et al. 2013; Hu et al. 2015). The majority of studies have

focused on single-subject EEG decomposition, but multi-

subject extensions have been increasingly developed and

investigated (Kovacevic and McIntosh 2007; Congedo

et al. 2010; Eichele et al. 2011; Bridwell et al. 2013; Cong

et al. 2013; Lio and Boulinguez 2013; Bridwell and Cal-

houn 2014; Ponomarev et al. 2014; Ramkumar et al. 2014;

Huster et al. 2015). There is considerable utility in further

developing these multi-subject extensions, since they pro-

vide a formal approach for integrating information across

subjects within a common group framework (i.e. BSS is

conducted on the aggregate group matrix and the individual

subject sources are derived by back reconstruction). The

approach has been widely implemented for spatial

decomposition of fMRI (Calhoun and Adali 2012) and may

hold comparable utility for the spectral decomposition of

EEG.

Within the present study, multi-subject spatiospectral

EEG decompositions were implemented using the EEGIFT

toolbox (Calhoun et al. 2001; Eichele et al. 2011), with real

and realistic simulated datasets (the simulation code is

available at http://mialab.mrn.org/software/simeeg). Decom-

positions were evaluated across 12 different algorithms:

WASOBI, COMBI, RADICAL ICA, FBSS or ERBM,

INFOMAX ICA, ICA EBM, FAST ICA, JADE OPAC,

AMUSE, EVD, SIMBEC, and ERICA. These algorithms

generally differ with respect to their assumptions about the

underlying source distributions, whether higher order

statistics are taken into account, and whether they are

parametric or non-parametric (see Table 1 for references,

further description, and parameter settings).

Within the present study, simulated sources were

designed such that they closely resemble the frequency and

spatial characteristics of real EEG. Thus, the sources are

generated with biologically plausible densities and inter-

dependence. This ensures that the algorithms are evaluated

in a realistic context, and that they are robust to source

characteristics which deviate from algorithmic assump-

tions. The findings illustrate the feasibility of decomposing

multi-subject spatiospectral EEG and demonstrate which

algorithms generate consistent and robust sources within

real and simulated data. The spatiospectral sources are

characterized by distinct spatial and spectral properties,

which potentially correspond to distinct cognitive

functions.

Methods (Simulated Data)

Simulating Realistic EEG with Wavelets

A wavelet-based approach was implemented to generate

simulated EEG data. This approach is based upon the

notion that continuous EEG may be decomposed as a

convolution of a series of basis functions (i.e. wavelets)

which have defined temporal and frequency properties. The

distribution of the associated coefficients was estimated

within select frequency bands from real data. Then, simu-

lated wavelet coefficients were generated by randomly

drawing samples from that distribution. The simulated

coefficients were reconstructed within the separate fre-

quency bands, generating simulated EEG data with tem-

poral and spectral properties that are consistent with the

EEG segment that was used to estimate the coefficient

distributions.

Wavelet coefficients were estimated using the discrete

wavelet transform (DWT) with biorthogonal spline mother

wavelet using the wavedec and wrcoef functions in Matlab

(bior3.9; dyadic decomposition; 5 levels) (http://www.

mathworks.com). Detailed descriptions of the WT are

provided in (Daubechies 1992; Strang and Nguyen 1996;

Mallat 2009). Each level of decomposition returns two

time–frequency representations with half the frequency

band of the input, a course representation (i.e. the

approximation A), and a high frequency representation (i.e.

the detail, D). With a 250 Hz signal, the first level of

decomposition returns an approximation A containing

*0–31.25 Hz and its associated detail, D encompassing

*31.25–62.50 Hz. At the second level, the approximation

AA is *0–15.625 Hz and the detail AD is *15.625–

31.25 Hz. Following this convention, we focus on the

following details and approximations which approximately
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overlap with the characteristic EEG frequencies: delta

(AAAA; *0–3.91 Hz), theta (AAAD; *3.91–7.81 Hz),

alpha (AAD; *7.81–15.62 Hz), and beta (AD;

*15.62–31.25 Hz).

The coefficient distributions were obtained within the

selected levels of decomposition (i.e. within the selected

frequency bands) (Fig. 1b, right). The coefficient distribu-

tions are better approximated by a logistic distribution,

with heavier tails than a Gaussian distribution. The logistic

function mean and standard deviation were estimated for

each of the four coefficient distributions and simulated

coefficients were created by drawing values from each

distribution. Simulated EEG was generated by recon-

structing the simulated coefficients, generating a time

course (Fig. 1c) for each of the four levels. The four levels

may be summed together, generating a simulated EEG time

course with energy within the characteristic EEG fre-

quency bands (Fig. 1d).

Simulated time courses were generated for three simu-

lated subjects for the group spatiospectral decomposition.

Within each simulated subject, wavelet coefficients were

randomly drawn from the logistic distribution estimated

from the original recorded EEG signal (Fig. 1a, b). Thus,

we assume that the spectral characteristics are common and

the time courses are uncorrelated across subjects, as

expected for cortical responses collected across individuals

in the absence of an explicit task (i.e. during rest).

Generating Simulated Scalp Topographies

Simulated scalp EEG topographies were generated by

assigning electrode location(s) as electrical current sources

Table 1 BSS algorithms evaluated in the present study

Algorithm Citation Description Parameters

WASOBI Belouchrani et al. (1997), Yeredor

(2000), and Doron and Yeredor

(2004); Tichavsky et al. (2006)

Reformulation of second-order blind

identification (SOBI) as a weights adjusted

non-linear least squares problem

Autoregressive order: 10; stabilization

(rmax): 0.9

COMBI Tichavsky et al. (2008) Combination of efficient FAST ICA (EFICA)

and WASOBI

WASOBI autoregressive order: 10;

WASOBI stabilization (rmax): 0.9;

EFICA epsilon: 1e-4

RADICAL

ICA

Learned-Miller and Fisher (2003) Non-parametric ICA with entropy estimates

based on spacings

Angles: 150; augmented; off

FBSS or

ERBM

Li and Adali (2010b) Tradeoff between parametric and non-

parametric approaches, combines EBM with a

flexible correlation model

Filter length: 11

INFOMAX

ICA

Bell and Sejnowski (1995) Estimates super-gaussian sources using a fixed

sigmoid nonlinearity score function

Extended: 0; sphering: on; bias: on;

stop: 1e-6; max steps: 512

ICA EBM Li and Adali (2010a) Estimates entropy based on bounding of entropy

estimates, approximates the pdf of a wide

range of densities

Tolerance: 1e-4; max iterations

(fastica): 100, max iterations

(others): 1e3; saddle point detection:

on

FAST ICA Hyvarinen and Oja (1997), and

Hyvarinen et al. (2001)

Maximizes the non-gaussianity of sources with

fixed point iterations

Non-linearity: tanh: epsilon: 1e-4; max

iterations: 1e3; approach: symm

JADE

OPAC

Cardoso and Souloumiac (1993), and

Cichocki et al. (2003)

Uses the Jacobi technique for joint approximate

diagonalization of fourth order cumulants for

spatial independence

AMUSE Tong et al. (1991) Second order BSS, diagonalizes cross-

covariance matrices

EVD Georgiev and Cichocki (2001) Uses higher order correlations, does not assume

non-gaussianity, non-stationarity or

independence

Time delayed covariance matrices: 5

SIMBEC Cruces et al. (2001) Estimates sources with a contrast function based

on higher order cumulants, with natural

gradient ascent in a Stiefel manifold

Max iterations: 1e3; stop: 1e-;

weights: [0 0 1 0 0 0]; exponents for

cumulants alpha: [1 1 1 1 1 1]

ERICA Cruces et al. (2000) Uses a cumulant entropy cost function, achieves

isotropic convergence and is independent of

source distributions

Max iterations: 1e3; stop: 1e-;

weights: [0 0 1 0 0 0]; exponents for

cumulants alpha: [1 1 1 1 1 1]

WASOBI weights adjusted second-order blind identification, RADICAL ICA robust accurate direct independent components analysis, ERBM

entropy rate bound minimization, EBM entropy bound minimization, JADE joint approximate diagonalization of eigenmatrices, AMUSE

algorithm for multiple unknown signal extraction, EVD eigenvalue decomposition, SIMBEC simultaneous blind extraction using cumulants,

ERICA equivariant robust independent component analysis
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and sinks, and interpolating across the neighboring elec-

trodes. The simulated time series is assumed to represent the

time series of the electrical current source, and multiplying

this time series by -1 generates the time series of the

electrical current sink. Simulated source 1 (*0–3.91 Hz)

was assigned to electrodes Fz (current source) and Cz (sink),

source 2 (*3.91–7.81 Hz) was assigned F5 and F6 (current

sources) and P05 and P06 (sinks), source 3 (*7.81–

15.62 Hz) was assigned P06 and F5 (current sources) and Cz

(sink), and source 4 (*15.62–31.25 Hz) was assigned T7

(current source) and T8 (sink). The current sources and sinks

were identical for the three simulated subjects.

The time series of neighboring electrodes was estimated

by spherical interpolation using the eeg_interp function in

EEGLAB (http://sccn.ucsd.edu/eeglab) (Delorme and

Makeig 2004). Responses were generated for 60 out of 64

channels within a standard electrode layout (peripheral

electrodes I1, I2, M1, and M2 were excluded in order to

simplify the two dimensional topographic representations).

Simulated sources were segmented (3 s epochs, 75 %

overlap) and each epoch was converted to the frequency

domain using a fast Fourier transform (FFT). The average

spatial and spectral characteristics of the simulated sources

are indicated in Fig. 2. Broadly, this approach generates a

simulated scalp distribution and time series which aligns

with the properties of realistic EEG, including the presence

of sources and sinks and the smearing of potentials across

the scalp due to volume conduction (Nunez and Srinivasan

2006).

A Few Notes on Spatiospectral BSS

There are multiple approaches to integrating EEG spectral

information within a BSS framework, including approaches

which operate on complex valued data (Anemüller et al.

2003; Bernat et al. 2005; Onton et al. 2005; Hyvärinen et al.

2010; Nikulin et al. 2011; Ramkumar et al. 2012; Shou et al.

2012; Kauppi et al. 2013; Hu et al. 2015). In the spa-

tiospectral BSS implemented here (Wu et al. 2010; Bridwell

et al. 2013), we focus on spectral amplitudes across channels,

with the assumption that each spatiospectral map at each

epoch is a mixture of spatiospectral source maps. The BSS

algorithm is identical for spatiospectral BSS or temporal

BSS, as it operates on a 2D matrix with repeated observations

(i.e. epochs for spatiospectral BSS, and channels for tem-

poral BSS) along the rows. The approaches differ in the

manner in which the 2D matrix is constructed. Temporal

BSS operates on the [channels 9 time] matrix of EEG

voltages directly. This contrasts with spatiospectral BSS,

where the (frequency 9 channel) information is obtained

within an epoch, vectorized, and stacked across epochs,

generating a 2D [epoch 9 (frequency 9 channel)] matrix

of log transformed Fourier amplitudes for decomposition.

When conducting spatiospectral BSS, it is useful to

consider the (frequency 9 channel) observation (i.e.

epoch) as a map or image. Each pixel within the image

has an intensity, and the location of the pixel indicates the

frequency bin (row) in which the intensity was measured

and its spatial location (column). This is similar to an

image, where an individual pixel also describes the

intensity, but locations are indicated by its position

within both the column and row. In this context, spa-

tiospectral BSS aligns closer conceptually with spatial

BSS than with temporal BSS. For example, a spa-

tiospectral EEG map within a given epoch is akin to a

spatial fMRI map within a given TR. The map is a

mixture of sources, and each EEG epoch, or fMRI TR, is

an observation of that mixture.

It is important to consider the different mixture

assumptions that underlie temporal BSS and spatiospec-

tral BSS, as implemented here. Temporal BSS decom-

poses the [channels 9 time] matrix into a set of temporal

sources and mixing matrices (i.e. topographies). These

assumptions align well with the theoretical generation of

EEG, where the response at a single electrode reflects the

linear mixture of scalp sources (for review see Makeig

et al. 2004). The linear mixture of scalp time courses

might not necessarily translate to a linear mixture of the

spectra of the source time courses. Thus, the assumptions

of spatiospectral BSS are less tied theoretically to the

generation of the underlying signals compared to tempo-

ral BSS of EEG.

Spatiospectral BSS is akin to spatial BSS of fMRI in

this regard. For example, spatial independent compo-

nents analysis (ICA), one of the most popular BSS

approaches for fMRI, assumes that each map is a linear

bFig. 1 Generating realistic simulated EEG with wavelets. A sample

of real EEG (a) was decomposed into its time–frequency represen-

tation (b) with the discrete wavelet transform (DWT). The DWT

filters the input by multiple matched filters that are shifted and scaled,

and the coefficients (in b) are computed for each filter by an integral

transform. The original signal can be reconstructed with an inverse

wavelet transform (WT). Simulated realistic EEG may be generated

by fitting the observed coefficients at each scale with a logistic

distribution and generating random samples from that distribution.

The simulated wavelet coefficients can then be reconstructed,

generating a simulated EEG signal (in c) within each of the levels.

These time courses may be summed together, generating a simulated

time course (d) which resembles real EEG (a). Frequency-specific

simulated sources were generated by separately reconstructing the

simulated wavelet coefficients within each of the separate frequency

bands (i.e. generating 4 time-courses (c) for the 4 representations (b)).

The individual time courses were assigned a current source electrode

location and a current sink electrode location (i.e. with the time series

reversed in sign). The responses within the selected current source

and sink electrodes were interpolated across the 60 electrode locations
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mixture of statistically independent source maps,

despite the highly interconnected and interdependent

nature of brain networks. Nevertheless, multi-subject

ICA approaches (Calhoun et al. 2001; Schmithorst and

Holland 2004; Beckmann and Smith 2005; Esposito

et al. 2005; Guo and Pagnoni 2008; Erhardt et al. 2011)

have been usefully implemented with fMRI (for review

see Calhoun and Adali 2012), and with EEG time series

(Eichele et al. 2008, 2011; Bridwell et al. 2014, 2015).

Spatiospectral BSS has been less widely applied within

EEG, but may hold comparable utility. For example, it

provides a promising approach for the multi-subject

decomposition of EEG data collected in the absence of

an explicit task, and generates group components with

interpretable spatial and spectral characteristics (Brid-

well et al. 2013).

Generating Linear Mixtures of Simulated Sources

for Spatiospectral BSS

The simulated sources were segmented into 3 s epochs

(750 samples per epoch) with 75 % overlap between suc-

cessive epochs. The epochs were converted to the fre-

quency domain using a FFT (D = *0.33 Hz). The

complex valued Fourier coefficients were absolute valued

(i.e. converted to the amplitude spectrum), log transformed,

and values corresponding to 1–35 Hz were retained. These

matrices were averaged across epochs separately for each

simulated source, generating four spatiospectral sources

(Fig. 2a) which were linearly combined within each sub-

ject, generating the source mixtures for group BSS.

In order to generate biologically plausible mixing

matrices, the four simulated [channel 9 time] sources were

Fig. 2 Simulated spatiospectral maps. The simulated (chan-

nel 9 time) EEG data was segmented into 3 s epochs (75 % overlap),

decomposed with the fast Fourier transform (FFT), absolute valued,

and log transformed. The epochs were averaged together, generating

the frequency 9 channel matrix in panel a. The matrix is organized

(from left to right) by occipital (O), parietal/central (P/C), temporal

(T), and frontal (F) electrodes (x-axis). The simulated source

amplitudes (i.e. the mixing matrix) were derived from the average

source map generated from an individual simulated subject (panel a),

as described in the ‘‘Methods (Simulated Data)’’ section. The spatial

and frequency characteristics of a single simulated subject are

indicated by the log amplitude averaged across frequencies (panel b)

and the average log amplitude across electrodes (panel c). Decom-

position algorithms differ with respect to their assumptions about the

underlying source densities. Thus, the sources (panel a) were

vectorized, and the source distributions are indicated by the

histograms in panel d, along with excess kurtosis (Color

figure online)
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summed together, generating a single [channel 9 time]

mixture of simulated EEG for each subject. This mixing

approach aligns with the mixing assumptions of temporal

BSS. In order to align with the mixing assumptions of

spatiospectral BSS, the mixed [channel 9 time] matrix

was converted into a spatiospectral [epoch 9 (fre-

quency 9 channel)] matrix as described above. The spa-

tiospectral sources estimated above were then linearly fit to

each individual epoch, and the slope of the linear fit served

as the contribution (i.e. the mixing value) for that source at

that particular epoch. The final spatiospectral mixture was

generated by multiplying the spatiospectral sources by the

mixing matrix and summing across sources. Thus, a 379

(epochs) 9 6360 (60 channels 9 106 frequency bins)

matrix was generated for each simulated subject, repre-

senting the linear mixture of the spatiospectral maps in

Fig. 2a.

The best performing BSS algorithms will be robust to

increasing noise within the observations. Thus, separate

group spatiospectral decompositions were conducted with

increasing noise added to the individual pixels within the

[epoch 9 (frequency 9 channel)] matrix. For a particular

noise level, a random sample was added to each pixel from

a Gaussian distribution with zero mean and a standard

deviation of 1, 5, 10, 15, or 20 % of the median of all

values within the 2D data matrix.

Group Spatiospectral Decomposition

Group spatiospectral decompositions were conducted with the

EEGIFT toolbox (http://mialab.mrn.org/software/eegift/)

version 4.0a. The toolbox provides a formal approach for

integrating the individual EEG recordings into aggregate

group (frequency 9 channel) EEG components. Each indi-

vidual dataset was reduced with PCA (20 components) and

concatenated into an aggregate [20 PCA components 9 3

subjects] 9 [106 frequencies 9 60 channel] 2D matrix. The

aggregate group matrix is then decomposed into an underlying

source matrix and a mixing matrix (for a detailed description

of the Group ICA implementation, please see Calhoun et al.

2001; Eichele et al. 2011). The approach alleviates issues with

aligning sources from independent decompositions while

enabling evaluation of individual subject differences via

individual back-reconstructed components (Calhoun et al.

2001; Beckmann and Smith 2005; Erhardt et al. 2011).

Group spatiospectral BSS was conducted with 12 dif-

ferent decomposition algorithms (see Table 1). Twenty

spatiospectral decompositions were conducted for each

algorithm in order to evaluate decompositions with

increasing levels of added noise (five levels) and with an

increasing number of estimated components (5, 10, 15, and

20 estimated components). ICASSO analysis was con-

ducted within each of the twenty decompositions in order

to ensure that the sources were stable (15 iterations;

bootstrap resampling; random initializations) (Himberg

et al. 2004).

Algorithm Evaluation

The algorithms were evaluated based on the stability of the

source estimates and the correlation between the simulated

source maps and the BSS source spatiospectral maps. Each

simulated source (n = 4) was correlated with each of the

BSS sources (n = 5, 10, 15, or 20) and the BSS source

with the highest correlation was selected. Sources are

considered highly stable across decompositions if their

stability index Iq is greater or equal to 0.90.

Results (Simulated Data)

Simulating Realistic EEG

A wavelet based approach was implemented to generate

realistic simulated EEG time courses. Wavelet coefficient

distributions were fit to a logistic function for the four

levels of decomposition which contribute to the EEG fre-

quencies of interest. As demonstrated in Fig. 1b(right), the

distribution of wavelet coefficients (indicated by the gray

histogram) can be well approximated by the logistic

function (indicated by the black line). Simulated coeffi-

cients were randomly drawn from this distribution and

converted to the time domain. The temporal characteristics

of the simulated time course (Fig. 1d) closely resemble the

temporal characteristics of real EEG (Fig. 1a).

Realistic scalp topographies were generated by assigning

the simulated time course to source and sink electrodes and

interpolating the simulated time course response across the

remaining electrodes. The average spatiospectral map was

generated for each source (Fig. 2a). The topographic map in

Fig. 2b indicates the sum of the spatiospectral map across

frequencies, and the plots in Fig. 2c indicate the sum across

electrodes. Source 1 is characterized by frontal and cen-

tral/parietal responses within the delta band, source 2 is

characterized by frontal and occipital responses within the

theta band, source 3 is characterized by central/parietal

responses within the alpha band, and source 4 is character-

ized by left and right temporal responses within the beta

band. These images broadly demonstrate that the simulated

source spectral and spatial properties align with the fre-

quency and spatial characteristics anticipated from real EEG.

Simulated Source Distributions and Dependence

BSS algorithms can differ with respect to their assumptions

about source distributions and source interdependence. The
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simulated source distributions (i.e. histograms) are dis-

played in Fig. 1d. Sources 1 and 2 demonstrate a single

peak, source 3 appears to demonstrate two broad peaks,

and source 4 demonstrates multiple peaks. Excess kurtosis

values range from -0.90 to 1.60, with values\0 indicating

reduced concentration around the mean and values [0

indicating greater concentration around the mean (com-

pared to a Gaussian distribution). The sources demonstrate

considerable interdependence (see Fig. 3), with correlations

[0.20 among sources 1 and 2 (r = 0.68), sources 1 and 3

(r = 0.21), and sources 2 and 3 (r = 0.48). Source 4 was

negatively correlated with sources 1, 2, and 3 (r = -0.46,

-0.33, and -0.12, respectively). These source distribu-

tions and dependencies may be less than optimal for certain

BSS algorithms (e.g. INFOMAX ICA emphasizes both

sparsity and statistical independence (Calhoun et al.

2013)). However, the source distributions and dependen-

cies are biologically plausible, since the spatiospectral

maps align with the spatial and spectral properties antici-

pated from real EEG. Thus, algorithm’s which are robust to

these source characteristics will likely be optimal for real

EEG.

Evaluating Group Spatiospectral Decompositions

The BSS algorithm performance was evaluated by identi-

fying the BSS source with the highest correlation with the

simulated source and examining correlations across algo-

rithms. These values are plotted in Fig. 4 for each of the 12

algorithms, 4 sources, 4 estimated component numbers,

and 5 noise levels. For example, the 4 9 5 square in the

upper left hand corner (corresponding to WASOBI and

source 1) indicates the highest correlation between the

estimated sources and source 1 across increasing noise

levels (each column) and increasing component numbers

(each row). The correlation is highest when the component

number approaches the true number of sources (top pixels),

and with decreasing noise (left pixels). The individual

pixels are colored black if the selected component was

unstable (i.e. if Iq\0:90). The algorithms are organized

with the highest overall average correlation on top and the

lowest overall average correlation on bottom.

Optimal performance is indicated by the presence of

bright pixels across all component and noise levels. In

general, AMUSE, EVD, SIMBEC, and ERICA were

Fig. 3 Dependence among

sources. Different

decomposition algorithms are

sensitive to different degrees of

source dependence. The

dependence among the

simulated sources are indicated

by scatterplots with the separate

source values on the x and y

axis. The correlations among

source pairs are indicated within

the upper left of each plot. In

general, there is considerable

dependence among the sources.

Thus, the best performing

algorithms within the present

study should be robust to the

degree of dependence observed

within these realistically

simulated sources
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unable to generate stable sources for all simulated sources,

component levels, and noise levels. Source 4 was success-

fully decomposed with 8 out of the 12 algorithms (WASOBI,

COMBI, RADICAL ICA, ERBM, INFOMAX ICA, ICA

EBM, FAST ICA, and JADE OPAC). Decompositions of

sources 1, 2, and 3 were more variable across the eight

algorithms. In particular, sources 2 and 3 were best decom-

posed with WASOBI and COMBI, which suggests that these

two algorithms best generalize across a range of source

characteristics, noise levels, and component numbers. The

similarity between WASOBI and COMBI suggests that

WASOBI primarily contributes to the improved perfor-

mance of COMBI within the present study.

Methods (Real Data)

Participants

Fifty four healthy individuals participated at the Institute of

Living at Hartford Hospital. The study was conducted in

accordance with an experimental protocol approved by the

Institutional Review Board (IRB). Participants were free

from lifetime psychotic or mood disorder and a family

history of psychotic or BP disorders in first-degree relatives

(Family History Research Diagnostic Criteria (Andreasen

et al. 1977)). Twenty four of the participants were males

and 30 were females. The average age was 36.93 years

(min 19; max 66; SD 12.54).

EEG Acquisition and Preprocessing

Participants were instructed to rest with their eyes open for 5

min. EEG was recorded with a 66-channel Neuroscan sys-

tem (Compumedics, Charlotte, NC). Silver/silver chloride

electrodes were placed according to the International 10–10

system with a mid-forehead ground and nose reference

(sampling rate = 1000 Hz; impedance B5 kX). EEG pre-

processing was conducted in Matlab (http://www.math

works.com) using custom functions, built-in functions, and

the EEGLAB toolbox (http://sccn.ucsd.edu/eeglab).

Approximately 4 min 47 s (287240 samples) of EEG

was processed and analyzed for each subject. Peripheral

electrodes I1, I2, M1, and M2 were excluded from analysis

in order to simplify the two dimensional topographic rep-

resentations and for consistency with the simulated data.

The EEG data was linearly detrended, and forward and

backward filtered with a Butterworth filter (bandpass:

*0.01–50 Hz). The data was referenced to channel Cz and

bad channels were identified based on the data distribution

and variance of channels, as implemented in EEGLAB’s

pop_rejchan function (Delorme and Makeig 2004) and the

FASTER toolbox (Nolan et al. 2010), and spherically

interpolated. An average of 1.70 channels were interpo-

lated (min 0; max 5; SD 1.42).

The EEG data was average referenced and artifacts were

attenuated by conducting a temporal ICA decomposition

on the individual recordings (extended INFOMAX ICA

algorithm in EEGLAB (Bell and Sejnowski 1995; Lee

et al. 1999)), detecting artifactual sources with the

ADJUST toolbox (Mognon et al. 2011), and reconstructing

to the original data space. An average of 1.91 sources were

eliminated (min 0; max 7; SD 1.89).

Fig. 4 Correlation between BSS sources and simulated sources. The

correlations between the simulated sources and BSS sources are

indicated within each square. Correlations are demonstrated for each

algorithm (rows) and source number (columns) within a 4 9 5 block.

The block is organized with increasing (from left to right) added noise

(1, 5, 10, 15, and 20 %) and with an increasing (from top to bottom)

number of estimated components (5, 10, 15, and 20 components). The

correlation within each square is plotted along a color continuum (see

colorbar) if the highest correlated source is stable across multiple ICA

runs (Iq � 0:90). Unstable sources are indicated by a black square.

For example, consider the yellow square within the upper left hand

corner. This square indicates high correlation between one of the 5

sources estimated with the WASOBI algorithm, and simulated source

1, with 1 % added noise. The presence of high correlations within the

remainder of the 4 9 5 block indicates that the WASOBI algorithm

successfully decomposed source 1 over a range of added noise levels

and estimated components (Color figure online)
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Consistent with the simulated data, each individual EEG

recording was segmented into 3 s epochs (750 samples per

epoch) with 75 % overlap between successive epochs. The

epochs were converted to the frequency domain by the FFT

(D = *0.33 Hz). The complex valued Fourier coefficients

were absolute valued (i.e. converted to the amplitude

spectrum), log transformed, and values corresponding to

1–35 Hz were retained.

BSS Model Order

The model order, i.e. the number of estimated components,

is an important consideration in BSS. At the group level, the

number of estimated components has previously been

derived using minimum description length (MDL) criteria

(Li et al. 2007). The number of stable sources may be

additionally used as a guide for model order selection. For

example, our simulations indicate that the maximum number

of stable sources rarely exceeds the true number of under-

lying sources (e.g. the maximum number of stable sources

was five (nine out of 4 9 5 9 12 = 240 decompositions),

which is one more than the true number of underlying

sources). Based on these findings, we have selected a model

order for real EEG decomposition such that the number of

estimated sources (N = 15) is slightly larger than the

maximum number of stable sources (N = 12).

Group Spatiospectral Decomposition

Group spatiospectral decompositions were conducted with

the EEGIFT toolbox (http://mialab.mrn.org/software/

eegift/) version 4.0a. Each individual dataset was reduced

with PCA (20 components) and concatenated into an

aggregate [20 PCA components 9 54 subjects] 9 [106

frequencies 9 60 channel] 2D matrix. The aggregate group

matrix was then decomposed into an underlying source

matrix and a mixing matrix (Calhoun et al. 2001; Eichele

et al. 2011; Erhardt et al. 2011). Fifteen components were

estimated for each decomposition, and ICASSO analysis

was conducted within each of the decompositions in order

to ensure that the sources were stable (15 iterations;

bootstrap resampling; random initializations) (Himberg

et al. 2004). Spatiospectral decompositions were conducted

with the 12 algorithms described previously (Table 1).

Results (Real Data)

Unique Sources Among BSS Algorithms

Fifteen sources were estimated for each of the 12 decom-

position algorithms. Fifty-two of the 165 estimated sources

were stable Iq � 0:90, and 15 of the 52 estimated sources

were unique. These 15 spatiospectral sources are indicated

in Fig. 5. The algorithms in which the source appeared are

indicated by the 12 pixel grid located below each plot (white

pixels indicate that the source was present and stable within

that particular algorithm, the algorithms are labeled in the

lower right hand corner). For example, source 10, which is

characterized by a response within the alpha frequency band

(i.e. between 8 and 12 Hz), was present within the decom-

positions with WASOBI, COMBI, INFOMAX ICA, FAST

ICA, and JADE OPAC algorithms. These results are sum-

marized across the algorithms and sources within Fig. 6.

The algorithms are organized by their performance within

the simulated data, with the best performing algorithm on

top and the worst performing algorithms on bottom. When

comparing Fig. 4 with Fig. 6, we note that the algorithms

which resulted in unstable components within the simulated

data also generate unstable components within the real

dataset. WASOBI, COMBI, INFOMAX ICA, and FAST

ICA generated 10, 10, 12, and 11 out of the 15 unique

sources, respectively, with the other algorithms individually

contributing 6 unique sources or less. WASOBI and COMBI

appear optimal since they decomposed many of the unique

sources identified within the real data and were the best

performing algorithms within the simulated dataset (Fig. 4).

Source Topographies

Figure 7 illustrates the spatial characteristics of the 15

sources in Fig. 5. Topographic distributions were created

within each of the 15 sources by averaging across channels,

identifying the frequency band within the full width half

maximum surrounding the peak, and averaging each channel

within the selected frequency range. The sources generally

demonstrate widespread responses with peaks often centered

within occipital/parietal and frontal electrode locations. For

example, sources 7, 8, 9, and 10 demonstrate peak frequen-

cies within the alpha band (i.e. 8–12 Hz) with topographic

peaks over frontal and occipital/parietal scalp locations. This

pattern is consistent with the topography of alpha responses

demonstrated previously, including studies implementing

spatiospectral BSS’s (Shou et al. 2012; Bridwell et al. 2013).

In general, the spatial characteristics of the sources generated

from real data appear biologically plausible, and they qual-

itatively resemble the spatial topographies of the simulated

dataset (compare Fig. 2b with Fig. 7).

Discussion

Within the present study, we demonstrate the feasibility of

decomposing multi-subject spatiospectral EEG and identify

the algorithms which generate consistent and inter-

pretable sources. For simulations, the algorithms were
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evaluated with respect to their stability and the similarity

between group sources and simulated sources. WASOBI

and COMBI appeared to be the best performing algorithms,

as they decomposed the four simulated sources across a

range of component numbers and noise levels. RADICAL

ICA, ERBM, INFOMAX ICA, ICA EBM, FAST ICA, and

JADE OPAC decomposed a subset of the sources within a

subset of component numbers and noise levels, while

AMUSE, EVD, SIMBEC, and ERICA generated unsta-

ble sources (Fig. 4). These findings are consistent with a

previous study demonstrating greater reliability of INFO-

MAX ICA, FAST ICA, and JADE compared to SIMBEC

Fig. 5 Spatiospectral maps derived from real EEG. Spatiospectral

BSS was conducted for each of the 12 decomposition algorithms, and

15 unique sources were identified across all algorithms. The unique

sources are indicated in the frequency 9 channel plots above. A

representative source was selected in instances where the spatiospec-

tral map appeared across multiple decompositions. The sources are

organized from low (1, upper left) to high (15, lower right) frequency.

The individual plots are organized (from left to right) by occipital (O),

parietal/central (P/C), temporal (T), and frontal (F) electrodes (x-

axis). The maps are individually scaled so that they each encompass

the full range of the colormap. The units are not indicated, since their

magnitudes are not directly interpretable across different decompo-

sitions. The grid below each source indicates the algorithms which

decomposed that source. A solid white square indicates that the

source was present and stable (with Iq � 0:90), and a solid black

square indicates that it was not present and/or not stable. The

algorithms are labeled in the lower right. The algorithms are

organized based on their performance within the simulated data

(see Fig. 3), with the best performing algorithm on the left, and the

worst performing algorithm on the right
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and AMUSE for spatial fMRI group BSS (Correa et al.

2005) and add to previous studies evaluating different BSS

algorithms for decomposition of EEG (Eichele et al. 2011;

Delorme et al. 2012; Huster et al. 2015).

For real data, we examined the number of stable sources

generated within each algorithm and identified sources

which were consistent across algorithms. INFOMAX ICA,

FAST ICA, WASOBI, and COMBI generated the largest

number of stable sources (12, 11, 10, and 10, respectively)

(Figs. 5, 6). Different algorithms demonstrate different

subsets of sources, indicating that they provide partially

distinct views of underlying spatiospectral maps. Thus, the

algorithms are complementary, and a more comprehensive

picture may emerge by integrating findings across different

algorithms. For example, the full diversity of sources (i.e.

the 15 unique spatiospectral maps in Fig. 5) could be

obtained by integrating results from INFOMAX ICA

(sources 1-11 and 14), RADICAL ICA (sources 12 and 13),

and FAST ICA (source 15) (Fig. 6). Thus, the different

algorithms demonstrate different strengths and weaknesses,

Fig. 6 Stable sources within each BSS algorithm. The grid demon-

strates which sources were present and stable within each of the 12

BSS algorithms. The 15 spatiospectral sources are indicated in Fig. 5.

The grid columns are also displayed under each of the sources in

Fig. 5. A solid white square indicates that the source was present and

stable (with Iq � 0:90) for the algorithm listed on the left. The

algorithms are organized based on their performance within the

simulated data (see Fig. 3), with the best performing algorithm on top,

and the worst performing algorithms on bottom

Fig. 7 Source topographies.

Topographic distributions were

generated within each of the 15

sources by averaging across

channels, identifying the

frequency band within the full

width half maximum

surrounding the peak, and

averaging each channel within

the selected frequency range.

The maps are scaled so that they

each encompass the full range

of the colormap. The units are

not indicated, since their

magnitudes are not directly

interpretable across different

algorithms
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and isolate different subsets of sources. Integrating infor-

mation across algorithms may overcome the limitations of

any individual algorithm.

The 15 components derived from real data each

demonstrate frequency and spatial properties that are

characteristic of EEG. Sources 2 and 3 demonstrate a

response within the delta band (1–4 Hz) which peaks over

frontal and parietal/occipital electrodes (source 2), or over

frontal/temporal electrodes (source 3). Interestingly, these

sources were decomposed with 7 out of the 8 algorithms

(COMBI, RADICAL ICA, ERBM, INFOMAX ICA, ICA

EBM, FAST ICA, and JADE OPAC) which successfully

decomposed a subset of sources within the simulated

dataset (compare Figs. 4, 6). Source 6 demonstrates a peak

response within the theta band (4–8 Hz) over frontal and

parietal/occipital electrodes, while sources 8–12 demon-

strate peaks within different regions of the alpha band

(8–12 Hz), but with similar topographies. In general, the

sources within the present study closely resemble the

sources identified with group spatiospectral ICA of a sep-

arate 32 channel EEG dataset (Bridwell et al. 2013).

Temporal ICA is the most widely applied approach to

EEG decomposition, but is limited with respect to its

ability decompose EEG oscillations (i.e. its ability to sep-

arate signal from signal). Instead, temporal ICA is better

suited to separating EEG artifact, since it has the most non-

Gaussian distribution (Hyvärinen et al. 2010). A number of

approaches have been developed to better emphasize dis-

tinct EEG oscillations within BSS, including second-order

blind identification (SOBI) (Belouchrani et al. 1997; Tang

et al. 2005; Tang 2010), approximate joint diagonalization

of cospectra (AJDC) (Congedo et al. 2008), recursive

multi-dimensional decomposition (R-MDD) (Orekhova

et al. 2011), hierarchical Bayesian learning (Wu et al.

2011), and functional source separation (FSS) (Porcaro

et al. 2010). Spectral ICA has also demonstrated consid-

erable utility in decomposing EEG oscillations (Hyvärinen

et al. 2010), consistent with the present findings.

The current group spatiospectral BSS approach discards

phase information and may be implemented in instances

where experimental events are not aligned across subjects,

or in the absence of an explicit task (i.e. during rest). With

spatiospectral BSS, differences across tasks will emerge as

differences in the mixing matrix weights instead of dif-

ferences within the sources (i.e. as with group temporal

ICA). In the case of tasks, it’s important to note that the

temporal resolution depends on the choice of epoch length

and overlap. For example, with a 75 % overlap and

3000 ms epoch length, weights were obtained for each

source at 750 ms intervals. Increasing the overlap or

reducing the epoch length would provide an improved

resolution of spatiospectral maps which precede and follow

a particular experimental event. These findings will help

clarify the relationship between spatiospectral maps and

cognitive function.

Multi-subject spatiospectral decomposition, as imple-

mented here, implicitly assumes that spatiospectral sources

are similar across subjects. Realistic data deviates from this

assumption, as there is considerable variability in the

topography and peak frequency of EEG responses across

individuals (Klimesch 1999). Previous studies have

examined the influence of inter-subject variability on group

spatial fMRI ICA, and group temporal EEG ICA stimula-

tions (Allen et al. 2012; Huster et al. 2015). Group ICA

appears robust to inter-subject differences within spatial

fMRI simulations, with decompositions often reflecting an

optimal tradeoff between estimating a given source at the

group level and preserving differences in the individual

subject back-reconstructed sources (Allen et al. 2012).

Group ICA of temporal EEG also appears robust to inter-

subject differences in timing, with sources successfully

decomposed with up to *200 ms of temporal jitter across

subjects (Huster et al. 2015). It will be important for further

studies to examine the nature and degree in which these

inter-subject differences are preserved in group spa-

tiospectral decompositions.

Summary and Conclusion

The findings demonstrate the feasibility of multi-subject

BSS for deriving distinct EEG spatiospectral maps. A

subset of BSS algorithms produced consistent and robust

sources within real and simulated EEG datasets. Within

simulations, WASOBI and COMBI appeared to be the best

performing algorithms, as they decomposed the four

sources across a range of component numbers and noise

levels. RADICAL ICA, ERBM, INFOMAX ICA, ICA

EBM, FAST ICA, and JADE OPAC decomposed a subset

of the sources within a subset of component numbers and

noise levels. INFOMAX ICA, FAST ICA, WASOBI, and

COMBI generated the largest number of stable sources

within the real dataset, and the different algorithms pro-

vided partially distinct views of underlying spatiospectral

maps. The multi-subject BSS approach, and the selected

algorithms, will be useful for further studies examining

distinct spatiospectral networks within healthy and clinical

populations.
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