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Abstract Recent studies have shown the importance of

graph theory in analyzing characteristic features of func-

tional networks of the human brain. However, many of

these explorations have focused on static patterns of a

representative graph that describe the relatively long-term

brain activity. Therefore, this study established and char-

acterized functional networks based on the synchronization

likelihood and graph theory. Quasidynamic graphs were

constructed simply by dividing a long-term static graph

into a sequence of subgraphs that each had a timescale of

1 s. Irregular changes were then used to investigate dif-

ferences in human brain networks between resting and

math-operation states using magnetoencephalography,

which may provide insights into the functional substrates

underlying logical reasoning. We found that graph prop-

erties could differ from brain frequency rhythms, with a

higher frequency indicating a lower small-worldness, while

changes in human brain state altered the functional net-

works into more-centralized and segregated distributions

according to the task requirements. Time-varying connec-

tivity maps could provide detailed information about the

structure distribution. The frontal theta activity represents

the essential foundation and may subsequently interact

with high-frequency activity in cognitive processing.

Keywords Synchronization likelihood � Graph theory �
Small worldness � Magnetoencephalography � Resting
state � Task state

Introduction

Various techniques have been used in extensive studies of

brain connectivity, which can be divided into structural,

functional, and effective connectivities (Friston 2011). At

the functional level there are two main methods for pro-

cessing connectivity (van den Heuvel and Hulshoff Pol

2010). The first, most-straightforward method is to corre-

late the time series of a particular brain region with those of

all other regions. In this approach the region of interest is

typically called the seed, and the methods used to quantify

linkages in a seed-based algorithm include correlation (Liu

et al. 2010), covariance, mutual information (Ioannides

2001), and synchronization likelihood (SL) (a new measure

for linear as well as nonlinear interdependencies between

signals) (Montez et al. 2006; Stam et al. 2006; Olde

Dubbelink et al. 2008; Bosboom et al. 2009a, b) in the time

domain, and spectral coherence (Stam et al. 2006; Chang

and Glover 2010), and phase locking (Lachaux et al. 1999)

in the frequency domain. The second method does not

employ a model and does away with the need to define a

seed region a priori. In contrast to seed-based methods, this

method looks for general patterns of connectivity across

whole brain regions. Such approaches to seeking the co-

existence of spatial sources include principal component

analysis, independent component analysis (ICA) (De Luca

et al. 2006), factor analysis, and hierarchical, Laplacian,

and normalized cut clustering (Smit et al. 2010).

Interestingly, these biological networks are neither

completely regular (e.g., a diffusively coupled system) nor
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completely random, instead being called ‘‘small worlds’’

(Watts and Strogatz 1998). To represent the properties of

neural networks, some recent studies have applied graph

theoretical methods (Smit et al. 2008). This type of analysis

represents a powerful tool for characterizing the topo-

logical organization of complex networks, and has recently

been applied in studies of human brain networks related to

both health and disease states (Tian et al. 2011). A small-

world graph simply quantifies the structural properties

based on characteristic path length L and clustering coef-

ficient C (Watts and Strogatz 1998). In terms of informa-

tion flow, a high clustering coefficient means that the nodes

are strongly connected to one another (i.e., allowing

modularized information processing functionally), and a

short average shortest path length means that the network is

more tightly integrated between nodes (i.e., allowing ef-

fective interactions or rapid transfer of information be-

tween regions) (Gong et al. 2009). For further quantifying

connectivity profiles so as to provide a more-global de-

scription of the network, studies have investigated several

complex network measurements, including the degree

centrality (strength), shortest path length, clustering coef-

ficient, betweenness centrality, closeness centrality, and

eigenvector centrality (Rubinov and Sporns 2010). Since it

was claimed that a small-world organization is a viable

marker of genetic differences in human brain organization

(Smit et al. 2008), the information of graph characteristics

as well as in the excitability dynamics of cortical network

should be important when looking for functional modules

in human subjects exhibiting differences in cognition or

behavior.

However, many studies have focused on extracting static

graphs for describing relative long-term brain activity,

which is not consistent with the well-known characteristic

that all practical networks change over time both con-

tinuously and irregularly (Mutlu et al. 2012). Averaging

these temporal series of graphs over an extended period of

time represents a limitation of using static graphs in real-

life applications that results in the loss of dynamic infor-

mation (Moewes et al. 2013). Therefore, the present study

aimed to establish and characterize functional networks

based on SL and graph theory. For constructing quasidy-

namic graphs, a long-term static graph was simply divided

into a sequence of subgraphs that each had a timescale of

1 s. The observed irregular changes were then used to

explore differences in human brain networks between

resting and specific activation states using the magne-

toencephalography (MEG) technique, which may provide

insights into the functional substrates underlying logical

reasoning. Resting states form the essential basis of the

brain for most of the ongoing cerebral energy consumption

(Musso et al. 2010). Comparison with those activation-state

processes based on certain resting states may provide

additional information about the underlying cognitive load,

where seldom in the default states of brain function, and

further for several neuropsychiatric disorders.

Methods

Subjects

Fourteen healthy males who were ophthalmologically and

neurologically normal participated in this study. Their ages

ranged from 25 to 32 years (28.5 ± 3.25 years,

mean ± SD). The visual acuity of all subjects was within

the normal range (with correction, where necessary). In-

formed consents that had been approved by the local Ethics

Committee of Yang-Ming University were obtained from

all the participants.

Stimulation Procedure

Because responses in the eyes-open state differ from those in

the eyes-closed state (which represents a more preparatory

state for the former), the experiment for the resting state was

divided into two conditions: relaxation with eyes closed and

relaxation with eyes open. Subjects were instructed to

minimize any movements and to try to think of nothing for

5 min but without falling asleep. In contrast, the experiment

for the activation state involved a math-operation task. Eight

math puzzleswere used as stimulusmaterial (see Fig. 1). The

participants were instructed to provide their answers as ac-

curately and rapidly as possible after the questions had been

presented. Only the sections with the maximum proportions

of correct answers were considered for further data analysis

(among the 8 sections, 1 of them involving the maximum 12

subjects was analyzed in this study). These visual stimuli

were generated inMATLAB (TheMathWorks, Natick,MA)

using functions provided by the Psychophysics Toolbox

(Brainard 1997; Pelli 1997) on a personal computer, and

projected onto a mirror by a projector. During the entire

experiment the subject was positioned supine in a comfort-

able and stable position.

Data Acquisition

Neuromagnetic fields were recorded during the experiment

with a whole-head 160-channel coaxial gradiometer

(PQ1160C, Yokogawa Electric, Tokyo, Japan). The mag-

netic responses were filtered by a bandpass filter from 0.1

to 200 Hz and digitized at a sampling rate of 1200 Hz. For

off-line analysis, the nonperiodic low-frequency noise in

the MEG raw data was reduced using time-shift principal

component analysis with three reference channels (de

Cheveigné and Simon 2007). The resulting data were then
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filtered by a simple 60-Hz Butterworth notch filter after

removing artifacts with amplitudes exceeding 3000 fT/cm

in the MEG signals. After the experimental procedures, the

subject’s head shape and position relative to the MEG

sensor were measured using a three-dimensional digitizer

and five markers.

Data Analysis

The exported MEG data were downsampled (to 600 Hz)

and preprocessed to remove eye movements, blink arti-

facts, and electrocardiography activity by the FastICA al-

gorithm (Hyvärinen et al. 2010). The cleaned data were

then filtered into five frequency bands: delta (0.5–4 Hz),

theta (4–8 Hz), alpha (8–12 Hz), beta (12–25 Hz), and

gamma (25–45 Hz) bands; the first 1 s and the last 3 s of

the original data in each section from all subjects were

ignored to eliminate the possibility of attention transients

associated with stimulus initiation and motor responses

associated with finger movements, respectively, during

task-state stimulation. The SL values between all combi-

nations of the 157 included channels (which excluded the

three reference channels) were calculated by an in-house

program written in MATLAB. First, the SL parameters are

determined in each frequency band as follows: The time-

delay embedding theorem is used to form a state-space

representation of the system dynamics. This step involves

selecting the correct time lag, l, and the dimension of the

embedding vector, m, in state space Xi ¼ xi; xiþl; xi 2l; xiþð
3l; . . .; xiþ m�1ð ÞlÞ. According to Montez et al. (2006), l ¼
fs=3HF and m ¼ 3HF=LF þ 1 while W1 ¼ 2l m� 1ð Þ and

W2 ¼ 10=pref þW1, where HF is the highest frequency, LF

is the lowest frequency, and pref equaled 0.01 in this study.

Second, a critical Euclidean distance is estimated for dif-

ferent time points: critical distance e is defined as a dif-

ference between embedded vectors closer to each other at a

fixed probability pref, which was chosen independently for

each channel in this step according to

pref ¼
1

N

XN

j¼1

h eX;i � Xi � Xj

�� ��� �

¼ 1

N

XN

j¼1

h eY ;i � Yi � Yj
�� ��� �

;

where h is the Heaviside step function whose value is 1 for

a positive argument and 0 for a negative or zero argument,

and N is the number of vectors. Third, the SL calculation is

performed for different time points as follows: Recurrences

in one system were sought between time points i and j with

the threshold distance. This comparison reflects how close

they have to be in order to be considered in a similar state.

The SL between systems X and Y at time i was defined as

(Stam and van Dijk 2002)

SLi ¼
nXY

ðW2 �W1 þ 1Þ � pref
;

where nXY is the number of simultaneous repetitions in

systems X and Y given by

nXY ¼
Xi�W1=2

j¼i�W2=2

nþ
XiþW2=2

j¼iþW2=2

n;

n ¼ h eX � jXi � Xjj
� �

h ey � jYi � Yjj
� �

:

The obtained SL values (which ranged between 0 and 1)

for each subject and for each frequency band were formed

into 157 9 157 symmetrical binary and weighted matrices,

respectively (but not causally), using a threshold (the whole

range of T values, 0.01\ T\ 1, with increments of 0.001)

so as to keep the average number of edges per node

(K = 5) similar (Tan et al. 2013) and using normalizing on

the interval of [0, 1] to avoid individual differences (Navas

et al. 2013) under the three experimental conditions. The

values obtained for each subject were then averaged over

1 s to form a series of connecting maps. Finally, graph

theory was used to describe different network systems by

reducing their essence with parameters (Smit et al. 2008;

van Diessen et al. 2013) for different time points: for

Fig. 1 Experimental design for the three tasks, showing the time course of serial stimulation. The dotted arrow indicates further stimuli that

were presented in a random order
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binary networks we calculated the small worldness as S ¼
C=Cr

L=Lr
(where Cr is the average cluster coefficient of 10

random graphs with the same number of nodes and edges,

and Lr is the average shortest path length of 10 random

graphs with the same number of nodes and edges) (Stam

2004); while for weighted networks we calculated the de-

gree centrality (strength) as D ¼ 1
n

Pn

i¼1

Pn

i 6¼j

wij (where wij are

the elements of weighted matrices and n is the number of

nodes) (Barrat et al. 2004), the shortest path length as L ¼

1
n

Pn

i¼1

1
n�1

Pn

i 6¼j

min 1
wij

n o
(where min{1/wij} is the lowest sum

of weights between nodes i and j) (Watts and Strogatz

1998), the betweenness centrality as B ¼

1
n

Pn

i¼1

1
ðn�1Þðn�2Þ

Pn

i 6¼j;i 6¼j;j6¼k

njk
gjk

(where njk is the number of

shortest paths between nodes j and k that pass through node
i, and gjk is the number of geodesic paths between nodes j
and k) (Freeman 1979; Opsahl et al. 2010), the eigenvector

centrality as E ¼ 1
n

Pn

i¼1

1
k

Pn

j

wijvj (where k is the largest

eigenvalue and v is the corresponding eigenvector) (New-

man 2004), and the clustering coefficient as C ¼

1
n

Pn

i¼1

P
j 6¼i

P
k 6¼ði;jÞ

wijwikwjk

P
j6¼i

P
k 6¼ði;jÞ

wijwik

(Grindrod 2002; Stam et al. 2009). Sta-

tistical differences were analyzed by a one-way repeated-
measures ANOVA (with Greenhouse–Geisser adjustment)
with three levels (eyes-closed, eyes-open, and math-op-
eration tasks) for brain waves in the five frequency bands.
Bonferroni-corrected post hoc tests (paired t tests) were
conducted only when significant main effects were de-
tected (p\ 0.05).

Results

Test Data Analysis

We applied procedures identical to those of Stam and van

Dijk (2002) to verify the accuracy of our SL program. Two

unidirectionally coupled Hénon systems (Schiff et al. 1996)

were tested. In total, 4096 sampleswere simulated. Four tests

were repeated ten times each, with the following parameters

used in each analysis: l = 1,m = 10,W1 = 100,W2 = 410,

and pref = 0.05. First, the relationship of SL between iden-

tical (Bid = 0.3) and nonidentical (Bid = 0.1) systems with

various coupling strengths, ranging from 0 for uncoupled

systems to 1 for complete coupling in steps of 0.1, was

determined. The average results shown in Fig. 2(a) indicate

that increasing the value of Cp increases SL both for the

conditions. Second, the ability of SL to detect nonlinear

coupling was determined by generating multivariate surro-

gate data in order to demonstrate that SL is sensitive to a

nonlinear structure in the nonidentical coupling systems

(Prichard and Theiler 1994). The average results shown in

Fig. 2(b) indicate that SL increaseswith increasingCp for the

surrogate data. Third, the sensitivity of SL to time-dependent

coupling strength was determined. The value of Cp was

chosen to be 0 except in 1500–2500 samples; that is,

Cp = 0.5 in the interval. The average results shown in

Fig. 2(c) indicate the presence of a sharp increase in SL at

1500 samples and a sharp decrease at 2500 samples. Fourth,

bias of SL in the estimates of dynamical interdependencies

was determined. Random noise signals with and without

low-pass filtering (from 5 to 50 Hz in steps of 5 Hz) were

used to demonstrate that SL is not affected by the bias. The

average results shown in Fig. 2(d) indicate that the SL does

not depend upon the properties of the time series, and always

fluctuates around 0.05, which is the value of pref in the test.

Moreover, in order to verify the accuracy of our program in

calculating parameters, we used the same simple graph ex-

ample as used by Smit et al. (2008).

MEG Data Analysis

For binary networks, the MEG rhythms in each frequency

band were used to calculate SL values and then construct

functional connection maps with appropriate thresholds.

Although the degrees in a map varied with time, the level was

not obvious, inwhich cases grand degreeKwas represented as

the probability distribution over the entire map. In the three

tasks the values of grand degree K were varied from 2.05 to

14.98 as the threshold varied from 1 to 0.01, decreasing for all

the frequency bands except the theta band (Table 1). K was

largest for the delta and gamma bands when the threshold was

1 and 0.01, respectively. However, no significant difference

was found in the delta, alpha, and gamma bands. The main

effects ofK values for tasks were significant (p\ 0.05) in the

theta band, which produced a positive shift to the math-op-

eration situation compared to the other two situations. Thus, in

order to compare different conditions further using graph

theory, grand degree K was kept similar among the eyes-

closed, eyes-open, and math-operation tasks.

Figure 3 shows parameters C/Cr and L/Lr (as graph

properties at K = 5) calculated from the delta, theta, alpha,

beta, and gamma activities of the 12 subjects for the eyes-

closed, eyes-open, and math-operation conditions. No

changes were apparent during the interval in each own task

except in the delta band. Notably, the C/Cr values

decreased (from approximately 4.2 to 1.2) as the fre-

quency increased, whereas the L/Lr values remained at
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approximately 1.1. Also, the variation among subjects de-

creased as the frequency band increased. The ratio of C/Cr

to L/Lr did not differ significantly with the experimental

condition; however, the S values were all larger than 1 and

decayed with frequency (Table 2).

For weighted networks, the MEG rhythms in each fre-

quency band were used to calculate SL values and then

construct functional connection maps with all of the ob-

tained values. Figure 4 shows grand means of D, L, B, E,

and C over the investigated time period calculated from the

Fig. 2 a Changes in SL as

functions of Cp and Bid.

b Changes in SL as a function of

Cp in nonidentical

unidirectionally coupled 10

multivariate surrogate data sets

(shown with different colors).

c Time dependence of SL in

identical unidirectionally

coupled Hénon systems.

d Estimated interdependencies

between two uncorrelated time

series X and Y (Color figure

online)

Brain Topogr (2015) 28:529–540 533

123



delta, theta, alpha, beta, and gamma activities of the 12

subjects for the eyes-closed, eyes-open, and math-operation

conditions. The main effects of the B and C values for tasks

were significant (p\ 0.05) in the theta band, which pro-

duced a negative shift in the eyes-open situation compared

to the other two situations. In contrast, the D, L, and E

values did not differ significantly with the condition.

To look more closely at the connection maps in the

bands of interest (i.e., theta, alpha, beta, and gamma), a

stricter criterion (i.e., averaged values in the map greater

than 0.1, indicating at least 10 % or 100 ms of the linkages

existed during a 1-s period) was used in representative

normalized series graphs changing with time (Fig. 5). The

number of connections decreased slightly as the band fre-

quency increased. C for the theta band differed sig-

nificantly between the math-operation and the other two

tasks. Apparent connections were found in the math-op-

eration task in a cluster around the frontal area. E and C for

the alpha and gamma bands, respectively, differed sig-

nificantly between the math-operation and the other two

tasks, producing a positive shift in the eyes-closed situation

compared to the math-operation situation. Interestingly, the

time point with significance changed from occurring early

to late as the frequency increased.

Discussion

Test Data Analysis

The two coupled Hénon systems constitute a very simple

test system, but four important simulation results were used

to verify the validity of our program:

1. SL increases when the coupling strength between

identical or nonidentical systems increases. Increasing

Cp increases SL both for identical and nonidentical

systems, though the relationship remains more

complex in the case of maximum coupling for

nonidentical systems.

2. SL detects nonlinear coupling. With the test of two

nonlinearly coupled chaotic systems, SL was shown to

be able to detect the nonlinear coupling.

3. SL is sensitive to time-dependent changes in the

coupling strength. The SL measure allows the detec-

tion of changes in coupling strength between systems

as a function of time.

4. SL is insensitive to bias. Keeping the pref value fixed

should allow SL to avoid the bias problem. This means

that SL is not sensitive to any asymmetry in the coupling.

These four test results are identical to those reported by

Stam and van Dijk (2002), which demonstrates the accu-

racy of our in-house program based on the concept of

generalized synchronization for estimating dynamical in-

terdependencies between time series.

Before using our method in a real-world application, a

simple network graph was used to test the performance in

examining small-world properties. All the values of pa-

rameters C and L were the same with those reported by

Smit et al. (2008), which demonstrates the accuracy of our

in-house program based on the concept of graph theory for

estimating connective phenomenon in a network. A sig-

nificant challenge would be expanding our technique to

multichannel MEG data later.

MEG Data Analysis

All combinations of the 157 MEG channels provided a

157 9 157 matrix of SL values. For binary network ana-

lysis, a threshold to fix degree K was used to eliminate size

and density effects of the graph network. According to van

Wijk et al. (2010), a relatively large average degree for a

network with a low overall connectivity may convert

nonsignificant values into edges, whereas a relatively small

one for a network with a high overall connectivity may

neglect significant connections. Therefore, a series of

Table 1 Grand degree K values (mean ± SD) of binary networks

constructed with minimum and maximum thresholds from the delta,

theta, alpha, beta, and gamma activities of the 12 subjects over the

investigated time period among the eyes-closed, eyes-open, and math-

operation tasks

Thres. Freq. task Delta Theta Alpha Beta Gamma

0.01 Eyes-closed 10.98 ± 7.39 7.69 ± 0.86 11.72 ± 2.19 12.12 ± 0.95 14.98 ± 0.70

Eyes-open 10.08 ± 3.59 7.58 ± 0.68 11.14 ± 1.04 12.03 ± 0.90 14.79 ± 0.67

Math-operation 9.92 ± 2.34 8.28 ± 1.31 10.96 ± 1.37 12.38 ± 1.96 14.88 ± 0.64

1 Eyes-closed 8.43 ± 4.91 2.25 ± 0.06* 2.08 ± 0.02 2.05 ± 0.01 2.06 ± 0.01

Eyes-open 7.45 ± 4.42 2.26 ± 0.07** 2.08 ± 0.02 2.06 ± 0.01 2.07 ± 0.02

Math-operation 5.80 ± 2.72 2.42 ± 0.18*,** 2.08 ± 0.03 2.07 ± 0.06 2.06 ± 0.01

*, ** significant difference (p\ 0.05; one-way repeated-measures ANOVA with Greenhouse–Geisser adjustment and Bonferroni-corrected post

hoc test)
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Fig. 3 Graph parameters C/Cr a and L/Lr, b calculated at K = 5 from the delta, theta, alpha, beta, and gamma activities of the 12 subjects in the

eyes-closed, eyes-open, and math-operation conditions
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K values was first calculated with various thresholds in

each condition for each subject, and then three selections

for each frequency band were made to keep the grand

degrees similar—and as close as possible to 5—in the eyes-

closed, eyes-open, and math-operation tasks. This is based

on the claim of Smit et al. (2008) that K = 5 seems to be

the best representation of most of the variation shared be-

tween all levels of K.

To study the organization of functional connections in the

brain, basic graph properties with a specific degree were used

for comparing network topologies. Our results revealed that

the C/Cr values varied with frequency within the range from

4.2 to 1.2, whereas the L/Lr values were maintained at

Fig. 4 Grand averages of parameters D, L, B, E, and C over the

investigated time period calculated from the delta, theta, alpha, beta,

and gamma activities of the 12 subjects for the eyes-closed (ce), eyes-

open (oe), and math-operation (m3) conditions. Asterisks indicate

significance (p\ 0.05) revealed by one-way repeated-measures

ANOVA with Greenhouse–Geisser adjustment. Braces indicate

significance (p\ 0.05) revealed by Bonferroni-corrected post hoc

test between two framed tasks

Table 2 Calculated values of S (mean ± SD) at K = 5 binary net-

works from the delta, theta, alpha, beta, and gamma activities of the

12 subjects over the investigated time period among the eyes-closed,

eyes-open, and math-operation tasks

Task

Frequency Eyes-closed Eyes-open Math-operation

Delta 4.11 ± 1.11 3.82 ± 1.18 4.00 ± 0.71

Theta 3.46 ± 0.27 3.42 ± 0.22 3.48 ± 0.23

Alpha 3.09 ± 0.29 3.07 ± 0.38 3.05 ± 0.34

Beta 3.02 ± 0.43 2.99 ± 0.42 3.04 ± 0.50

Gamma 1.26 ± 0.17 1.25 ± 0.14 1.24 ± 0.10
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approximately 1.1. This is consistent with the small-world

model considered by Watts and Strogatz (1998) and echoes

the reports of Smit et al. (2010), which used electroen-

cephalography to examine the longitudinal genetic architec-

ture of three parameters of functional brain connectivity, and

ofDouwet al. (2011),which claimed that better total cognitive

performance was related to a higher clustering coefficient in

the MEG delta and theta bands. Our statistical comparisons

revealed that the values of small worldness S (i.e., the ratio

between C/Cr and L/Lr) did not differ significantly between

the eyes-closed and eyes-open tasks, although a prominent

effect related to changes in thalamo-cortical and cortico-cor-

tical synchronization should be expected during relaxed

resting; that is, the alpha power being higherwhen the eyes are

closed than when the eyes are open (Wu et al. 2010), and the

ratio ofmean cluster coefficients tomean shortest path lengths

being larger when the eyes are closed than when the eyes are

open (Tan et al. 2013). This may be explained by the concepts

in graph theory that describe the whole property but not the

local distribution of the network. However, these S values did

exhibit that tendency and were all larger than 1, especially in

the low-frequency bands, as the small-world definition is

based on a trade-off between high local clustering and short

path length, which verified the small-world property of human

brain networks. This is in indirect agreement withWang et al.

(2012), who conducted a functional MRI experiment to

demonstrate that the brain functional organizationmaintained

a robust, stable, and efficient small-world configurationduring

internal complicated information processing across task and

resting states.

For weighted network analysis, five parameters were

chosen to detect various aspects of functional integration,

segregation, and centrality: First, the degree,D, of all nodes in

the network is an important marker of network development

and resilience, which describes the strength of network con-

nections (Rubinov and Sporns 2010). Because D is a local

Fig. 5 Time-varying functional connection maps with 157 nodes for

the theta (a), alpha (b), beta (c), and gamma (d) bands of 12 subjects

among the 3 experimental conditions. Numbers indicate end time

points. Colors from blue to red indicate averaged values during a 1-s

period in the map from 0.1 to 1. Green and blue squares indicate

significant differences (p\ 0.05) in C and E, respectively, between

the math-operation and the eyes-closed tasks, with solid and dashed

lines indicating higher and lower values, respectively (Color figure

online)
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measure and does not account for correlations of link strength

or specific distributions of the weights in the network (Navas

et al. 2013), no significant variation in D with the condition

could be explained. Second, the shortest path length, L, cor-

responds to the ability to rapidly combine specialized infor-

mation from distributed brain regions, since shorter paths

imply a stronger potential for integration (Rubinov and

Sporns 2010). Although L did not differ significantly with the

condition, the mean value in each condition increased from

the low-frequency band to the high-frequency band. Jensen

and Colgin (2007) showed cross-frequency interactions from

the human neocortex, which suggested that slow oscillations

serve to synchronize networks over long distances whereas

fast oscillations are thought to synchronize cell assemblies

over relatively short spatial scales. In that case the mean path

from one node to every other node would require more steps

when gamma-band activity is present. Third, the betweenness

centrality B, is a more sensitive index that quantifies how

much central nodes participate and consequently act as im-

portant controls of information flow. B for the theta band

differed significantly between the eyes-closed and eyes-open

conditions, which suggests the existence of hubs but with a

noisier distribution in the resting state (Navas et al. 2013).

Fourth, the eigenvector centrality, E, is able to capture an

aspect of centrality that extends to global features of the

networkwith the greatest connectivity (Zuo et al. 2012).E did

not differ significantly with the condition, which may be due

to the way we averaged all values, including positive and

negative ones; this is not the most suitable measure for

evaluating changes in network centrality. Fifth, clustering

coefficient C corresponds to the ability for specialized pro-

cessing to occur within densely interconnected groups of

brain regions, with a large number of triangles implying

segregation (Rubinov and Sporns 2010). C for the theta band

differed significantly between the math-operation and eyes-

open conditions, which suggests that local information

transmission ismore efficientwhenperforming a task and is in

line with the economy theory of brain networks, which states

that short-range systemconnections have lower costs (Achard

and Bullmore 2007).

Differences in the theta, alpha, beta, and gamma bands

prompted the drawing of SL maps in order to reveal the

method of frequency processing under each condition.

Linkages in the theta connectivity patterns at the frontal lobe

weremore concentrated during themath-operation task.Also,

apparent network segregation could be found in this fre-

quency band. Langer et al. (2013) revealed that the functional

small-world topology of theta-band coherence varies between

individuals as a function of working memory performance,

especially in parietal and frontal regions, which implies that

the spatial distribution of theta-band signals reflects the pat-

tern of cognitive situations in an individual. Linkages in the

alpha connectivity patterns were dispersed, but centrality

differed significantly only between the eyes-closed andmath-

operation tasks. By comparing eyes-open with eyes-closed

resting states, Chen et al. (2013) found salient functional

networks in the alpha bandwith a more distinct posterior than

anterior focus. The difference in functional connectivity be-

tween two states reflects some intrinsic differences in infor-

mation communication in the human brain (Tan et al. 2013).

Linkages in the gamma connectivity patterns were dispersed,

but at later times the segregation differed significantly be-

tween the eyes-closed and math-operation tasks. Many au-

thors have discussed the involvement of activity at higher

frequencies in several behavioral and pathological situations

of arousal (e.g., Stoffers et al. 2008; Bosboom et al. 2009a, b;

Schoonheim et al. 2013). The weak clustering in the gamma

band relative to the theta band may reflect a specific coupling

as amechanism to transfer information from large-scale brain

networks to the fast, local cortical processing required for

effective computation and synaptic modification, thus inte-

grating functional systems across multiple spatiotemporal

scales (Jensen and Colgin 2007; Canolty and Knight 2010).

Conclusion

This study used SL and graph theory algorithms to quantify

complex brain networks in different frequency bands. For

binary network analysis, parameter S indicates that graph

properties could differ with brain frequency rhythms, with

higher frequencies have a lower small-worldness (i.e., de-

creasing local connectivity and increasing overall efficiency).

For weighted network analysis, parameters B and C indicate

that changes in human brain state altered the functional net-

works into more-centralized and segregated distributions ac-

cording to task requirements. Time-varying connectivity

maps could then provide detailed information about the

structure distribution during eyes-closed, eyes-open, and

math-operation tasks, where low frequencies represent the

essential foundation andmay subsequently interactwith high-

frequency activity during cognitive processing.
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