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Abstract Currently most subjects can control the senso-

rimotor rhythm-based brain–computer interface (SMR-

BCI) successfully after several training procedures. How-

ever, 15–30 % of subjects cannot achieve SMR-BCI con-

trol even after long-term training, and they are termed as

‘‘BCI inefficiency’’. This study focuses on the investigation

of reliable SMR-BCI performance predictor. 40 subjects

participated in the first experimental session and 26 of them

returned in the second session, each session consists of an

eyes closed/open resting-state EEG recording run and four

EEG recording runs with hand motor imagery. We found

spectral entropy derived from eyes closed resting-state

EEG of channel C3 has a high correlation with SMR-BCI

performance (r = 0.65). Thus, we proposed to use it as a

biomarker to predict individual SMR-BCI performance.

Receiver operating characteristics analysis and leave-one-

out cross-validation demonstrated that the spectral entropy

predictor provide outstanding classification capability for

high and low aptitude BCI users. To our knowledge, there

has been no discussion about the reliability of inter-session

prediction in previous studies. We further evaluated the

inter-session prediction performance of the spectral en-

tropy predictor, and the results showed that the average

classification accuracy of inter-session prediction up to

89 %. The proposed predictor is convenient to obtain

because it derived from single channel resting-state EEG, it

could be used to identify potential SMR-BCI inefficiency

subjects from novel users. But there are still limitations

because Kübler et al. have shown that some BCI users may

need eight or more sessions before they develop classifi-

able SMR activity.

Keywords Brain–machine interface (BMI) � Resting-

state EEG � BCI inefficiency � Biomarker � Classification

Introduction

The rapid development of neuroscience provides a window

for scientists to deeply understand the human brain,

meanwhile the acquired knowledge provides opportunities

to further extend the normal function of human brain.

Brain–computer interface (BCI) is such a technology

which translates the intent of a human brain directly into

control commands without involving peripheral neural

pathways (Wolpaw et al. 2002). Many augmentative

communication and control systems based on BCI have

been developed (Donchin et al. 2000; Li et al. 2010; Wang

et al. 2006; Wolpaw and McFarland 2004). Among them,

sensorimotor rhythm-based BCI (SMR-BCI) has received a

lot of attentions in recent years due to its potential appli-

cations in neurological rehabilitation and in assisting pa-

tients with impaired motor functions (Daly and Wolpaw

2008; Gongora et al. 2013).

Over the past ten years, effective feature extraction and

pattern recognition algorithms have been applied to the

SMR-BCI system to shorten training time and increase

information transfer rates (Lotte and Guan 2011; Lu et al.

2012; Vidaurre et al. 2011; Xu et al. 2014; Zhang et al.

2013). Although these algorithms have significantly
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improved SMR-BCI control performance at the level of

individual subject, the inter-subject variations remain a

substantial problem requiring additional investigation

(Noted that the subject mentioned here is healthy subject,

not patient). In a recent study, 30 out of 80 (37.5 %)

healthy subjects were unable to achieve a classification

accuracy of or above 70 %, which is considered the lower

threshold for reliable communication (Hammer et al.

2012). In another earlier study published in 2003, the

percentage of subjects achieving a classification accuracy

below 70 % was even greater (48.7 %) (Guger et al. 2003).

Therefore, it is of great significance to find reliable

physiological biomarkers to predict individual SMR-BCI

performance (Blankertz et al. 2010), the development of

predictors could indentify the potential SMR-BCI ineffi-

cient subjects, helping them to avoid the frustrating and

costly training procedures. On the other hand, the related

study may in turn be instructive for the establishment of

enhanced training strategies for those low performance

subjects (Vidaurre and Blankertz 2010).

Several variables, including psychological measures,

neuroanatomical and neurophysiological features, have

been proposed to elucidate the neural mechanisms ac-

counting for the variations in SMR-BCI performance in

recent years. Hammer et al. calculated correlations between

online classification accuracy of SMR-BCI and a variety of

psychological tests, including measures of visuo-motor

coordination, attention span, intelligence, and verbal as

well as non-verbal learning abilities (Hammer et al. 2012).

They found that visuo-motor coordination skills and the

ability to concentrate on a task both exhibited significant

positive correlations with classification accuracy of SMR-

BCI (r = 0.42 and r = 0.50, respectively). Vuckovic et al.

revealed that the score of kinaesthetic motor imagery

questionnaires is correlated well with SMR-BCI classifi-

cation accuracy (r = 0.53) (Vuckovic and Osuagwu 2013).

Halder et al. studied the link between white matter archi-

tecture and SMR-BCI performance, their results demon-

strated that the structural integrity and myelination quality

of the deep white matter structures, such as the corpus

callosum, cingulum, and superior fronto-occipital fascicle,

are positively correlated with individual SMR-BCI per-

formance (Halder et al. 2013). They also investigated the

fMRI activation differences between user groups with high

and low SMR-BCI performance, and found that high per-

formance SMR-BCI users exhibit larger activations in the

supplementary motor area (SMA) and right middle frontal

gyrus during motor observation (Halder et al. 2011).

Currently, scalp EEG is the main source signal for the

SMR-BCI, thus it would be meaningful to identify EEG-

related biomarkers correlated with the variations of SMR-

BCI performance. Blankertz et al. presented that the am-

plitude of the SMR during rest is positively correlated with

subsequent online SMR-BCI classification accuracy

(Blankertz et al. 2010). Their results also indicated that

SMR-BCI performance could be improved by enhancing

the amplitude of the resting-state SMR. Ahn et al. reported

that high theta and low alpha waves during rest were ob-

served for those subjects with low SMR-BCI performance

(Ahn et al. 2013). Grosse-Wentrup et al. investigated the

variations of SMR-BCI performance within a single ses-

sion and found that high-frequency gamma oscillations

originating in fronto-parietal networks could predict the

trial-to-trial performance variations (Grosse-Wentrup and

Schölkopf 2012). The existing EEG-based studies revealed

that subject’s SMR-BCI performance is related with the

power spectrum of low frequency resting-state EEG. It has

been proved that entropy is capable of capturing the

complexity in a series (Inouye et al. 1991; Xu et al. 2013a).

Thus, entropy may be used to capture the complexity in the

power spectral density (PSD) of the resting-state EEG,

which may provide a new measure to predict SMR-BCI

performance.

In the current study, we proposed to use spectral entropy

of the resting-state EEG as a biomarker to predict indi-

vidual SMR-BCI performance, and compared its prediction

performance with SMR predictor (Blankertz et al. 2010)

and alpha-theta ratio (ATR) predictor (Ahn et al. 2013).

Materials and Methods

Experimental Setup

A total of 40 subjects (15 females, aged 21.7 ± 2.6 years,

three left-handed) participated in the experiment. All

participants were asked to read and sign an informed

consent form before participating in the study. After the

experiment, all participants received monetary compensa-

tion for their time and effort.

The experiment consisted of two sessions. All 40 sub-

jects participated in the first session. Among them, 26

subjects returned to participate in the second session, and

the tasks in the two sessions were the same.

The subjects sat in a comfortable armchair 90 cm in

front of a computer screen. They were instructed not to

move and to keep both arms relaxed. Fifteen Ag/AgCl

electrodes (F3, F4, FC3, FC4, Cz, C3, C4, C5, C6, CP3,

CP4, P3, P4, O1, O2) from extended 10–20 system were

selected for EEG recording by using a Symtop amplifier

(Symtop Instrument, Beijing, China). AFz electrode was

adopted as reference, and the signal were sampled at

1000 Hz and band-pass filtered between 0.5 and 45 Hz.

Each experimental session started with a recording of

the resting-state EEG, including 1 run in which the subjects

rested with their eyes open and 1 run rested with their eyes
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closed. The recording sequence for these two rest runs was

randomly balanced among the subjects. Each recording run

lasted 2 min, with a 2 min break between runs.

Following a 2 min break, the motor imagery dataset

including four runs was recorded. The subjects were asked

to perform motor imagery with left or right hand according

to the instructions appearing on the screen (see Fig. 1b).

Each trial started with a 4 s rest period. A yellow bar then

appeared on the left or right side of the screen for 1 s to

instruct the subjects to use their left or right hand to per-

form motor imagery. After the bar turned green, subjects

started to perform the requested hand motor imagery,

which lasted 5 s. The order of the left and right bars was

randomized, and the duration of each trial was 10 s. There

were 50 trials per run and approximately 25 trials for each

motor imagery condition, and there was a 2 min break

between the consecutive two runs. In total, each participant

performed 200 motor imagery trials.

Approximately 3 months after this first session, 26 of

the 40 subjects returned to repeat the same experiments

under the same recording conditions and procedures. All

datasets of the two sessions were saved for further analysis.

SMR-BCI Performance

The SMR-BCI performance of all subjects was obtained

from their motor imagery datasets and characterized by the

SMR-BCI recognition rate. It was evaluated by using the

first 2 runs in the motor imagery dataset as the training set

and the last 2 runs as the test set.

During the training process, all the EEG segments dur-

ing hand motor imagery were selected for analysis, and

those trials with absolute amplitude above 100 lv were

considered to be contaminated with artifacts and will be

removed from the following analysis. Next, the EEG seg-

ments were filtered by a subject-specific optimal band-pass

filter, which was obtained by r2 as below,

r2 ¼
ffiffiffiffiffiffiffiffiffiffi

L1L2

p

L1 þ L2

mean ðX1Þ � mean ðX2Þ
std ðX1 [ X2Þ

� �2

ð1Þ

where X1 and X2 are task-related power spectrum of the

two classes motor imagery EEG data, and L1 and L2 are the

number of trials in the two corresponding classes. The

value of r2 reflects the difference in the power of the two

classes, with the larger r2 value denoting the greater dif-

ference between the two classes. The band-pass filtered

EEG signal were then transferred to three pairs of optimal

spatial filters, estimated by common spatial patterns (CSP)

method for each subject (Müller-Gerking et al. 1999). The

logarithm transformation of the variance of the spatially

filtered signal, resulting in a six-dimensional feature vector,

was used as the final features. Linear discriminate analysis

(LDA) was used as the classifier for task recognition, in

order to discriminate it from the LDA classifier mentioned

in Sect. 2.4, we named it as decoding-LDA. In the end of

the training procedures, the decoding-LDA classifier was

trained by the labeled features extracted from the training

set, and the trained classifier was then used for task

recognition on the test dataset.

For the test process, the same band-pass and spatial CSP

filters determined from the training dataset were used to

filter the EEG signal at first. Then the 6-dimensional log-

variance of the filtered EEG signal was transferred to the

trained decoding-LDA classifier to perform the final

recognition.

Spectral Entropy

Spectral entropy, derived from Shannon entropy, quantifies

the spectral complexity of a time series. Based on the

disparate information hidden in the spectrum of the resting-

state EEG, as reported in previous studies (Ahn et al. 2013;

Blankertz et al. 2010), we proposed to use spectral entropy

to build the biomarker for SMR-BCI performance.

The calculation procedures were shown in Fig. 2. We

discarded the first and last 10 s of data from the 2 min

resting-state EEG recording for each subject and divided

the remaining 100 s data into 10 segments, with 10 s data

per segment. The power spectral density (PSD) P(f) of each

Rest Break Offline training 
runs

Approximately
3 months

The second 
session 

+ + +

4 seconds 5 seconds1 second

Rest Cue                      Motor Imagery

(a)

(b)

Fig. 1 EEG experimental paradigm. a Recording sequence for the

experiment. b Offline experimental paradigm for one trial, consisting

of the following: a 4 s rest period, indicated by both side gray bars; a

1 s cue, indicated by the left/right side yellow bar; and a 5 s motor

imagery task, indicated by the left/right side green bar (Color figure

online)
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segment was estimated using Welch’s method. The PSD

represents the distribution of power as a function of fre-

quency, and the normalization of P(f) with respect to the

total power yields a probability density function. In current

work, we estimated spectral entropy based on the PSD

within 0.5–14 Hz, and the corresponding normalization

was determined by Eq. 2 so that
Pf¼14

f¼0:5 P̂ðf Þ ¼ 1.

P̂ðf Þ ¼ Pðf Þ=
X

f¼14

f¼0:5

Pðf Þ ð2Þ

Finally, the entropy of P̂ðf Þ was calculated using the

following equation:

SH ¼ �
X

f¼14

f¼0:5

P̂ðf Þ logðP̂ðf ÞÞ ð3Þ

where the base of the logarithm is two and the unit of SH is

bits. In essence, spectral entropy represents the uniformity

of PSD, the greater the spectral entropy, the more irregular

the PSD distribution.

After the above procedures, ten 15-dimensional spectral

entropy vectors (one dimension for one channel) were

obtained for both eyes open and eyes closed resting-state

EEG runs of each subject. Averaging the ten vectors

yielded 15-length channel spectral entropies, and the rela-

tionships between those spectral entropies and SMR-BCI

performance were analyzed in current study.

SMR-BCI Performance Prediction

Two groups of subjects were screened according to their

SMR-BCI recognition rates, subjects who had achieved

recognition rates above 80 % were assigned to the high

aptitude SMR-BCI user group, and subjects with recogni-

tion rates below 70 % were assigned to the low aptitude

SMR-BCI user group. The subject’s spectral entropy

derived from eyes closed resting-state EEG of channel C3

was selected to predict the corresponding SMR-BCI per-

formance, that is discriminating the user group which it

belonged to. LDA was used to build the prediction model,

in order to discriminate it from the LDA classifier men-

tioned in Sect. 2.2, we named it as prediction-LDA. The

predictor was one-dimension since only channel C3 was

selected, thus the classifier model could be denoted as a

boundary.

In order to test the stability of the predictor’s perfor-

mance, we evaluated its prediction capability under intra-

and inter-session situations, respectively. In the intra-ses-

sion prediction, leave-one-out cross-validation scheme was

used separately for the first and second sessions. One

subject was selected as test sample, the rest of the subjects

were considered as train samples for estimating the clas-

sification boundary, the above procedures were repeated

until each subject has been assigned as test sample for one

time and the prediction accuracy was equal to the per-

centage of correct classifications. During the inter-session

prediction, subjects in the first session were first classified

by the classification boundary estimated from the second

session, and then subjects in the second session were

classified by the classification boundary estimated from the

first session.

Changes in SMR-BCI Performance and Predictors

Between Sessions

For the same subject, SMR-BCI performance usually var-

ied between the first and second sessions, therefore, we

aimed to investigate whether the performance change could

be reflected by the predictors obtained from the resting-

state EEG. Because SMR-BCI performance and the pre-

dictors are of different scales, we defined a measurement

named as change percentage (CP) for a fair comparison as,

CP ¼ 2 � ðS2 � S1Þ=ðS1 þ S2Þ � 100 %: ð4Þ

where S1 represents the SMR-BCI recognition rate, and the

predictors for the same subject in the first session, and S2

represents them in the second session.

Related Work

Two important predictors based on resting-state EEG have

been proposed recently. The first one was developed by

(Blankertz et al. 2010), which was determined by the

maximum difference between the PSD curve and a fit of

Fig. 2 The procedures for calculating spectral entropy
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the 1/f noise spectrum, since the value estimated the

strength of SMR, it was named as SMR predictor. The

second one was proposed by (Ahn et al. 2013), which

equaled to the ratio of alpha band (8–13 Hz) power and

theta band (4–8 Hz) power, and it was named as ATR

predictor in current study. We calculated the above two

predictors from both the eyes closed and open resting-state

EEG, and compared their prediction performance with the

proposed spectral entropy predictor.

Results

SMR-BCI Performance

The SMR-BCI recognition rates calculated from session 1

(40 subjects) and 2 (26 subjects) were shown in Fig. 3. The

average recognition rate of the two sessions was

72.9 ± 14.1 % (71.1 ± 13.9 % for the first session and

75.7 ± 14.3 % for the second session), and it is clear that

the recognition rates covered the full range from chance-

level performance (50 %) to completely control (100 %).

Considering the performance of the 26 subjects who had

returned to participate in the second session recording ex-

periment, we found that the correlation coefficient (CC)

between the recognition rates of the two sessions was 0.83

(p\ 10-6). Although the mean recognition rate in the

second session was 3.7 % higher than that in the first

session, this difference was not significant (two-sample

t test, p = 0.34).

Correlations with SMR-BCI Performance

The CCs between the spectral entropies from the resting-

state EEG recording and the SMR-BCI performance of the

same session were firstly calculated across channels based

on the merged session (N = 66), nine of 15 channels

showed stronger correlation as presented in Fig. 4. The

strongest correlation between the spectral entropy predictor

and the SMR-BCI recognition rate was captured on chan-

nel C3 from the EEG recording during the resting-state

with closed eyes (r = 0.65, p\ 10-8). Similarly in the two

separate sessions, the highest CCs were also achieved by

channel C3 from eyes closed resting-state EEG with

r = 0.61 (p\ 10-4) for the first session, and r = 0.70

(p\ 10-4) for the second session. Therefore, the spectral

entropy obtained from eyes closed resting-state EEG of

channel C3 was chosen as the predictor in the following

analysis, and the relationship between the predictor and the

SMR-BCI performance was presented in Fig. 5a.

The strongest correlation between the SMR predictor

and the SMR-BCI recognition rate was observed on

channel C4 of the EEG recording during the resting-state

with eyes open (Fig. 4), and Fig. 5b showed the detailed

relationship with CC being 0.29 (p = 0.02). For ATR

predictor, the strongest correlation was achieved on chan-

nel FC3 of eyes closed resting-state EEG (Fig. 4), and the

scatter plot was illustrated in Fig. 5c with CC being 0.51

(p\ 10-4).

Intra-session Prediction

The first and second sessions were analyzed separately in

this section. According to the grouping definition described

in Sect. 2.4, 10(18) subjects were assigned to the high

(low) aptitude SMR-BCI user group for the first session,

while for the second session, the subject number of the high

(low) aptitude SMR-BCI user group was 9(9). The receiver

operating characteristic (ROC) analysis was firstly con-

ducted to evaluate the classification capability of the pro-

posed spectral entropy predictor for the two separate

sessions, where high and low aptitude SMR-BCI users

were defined as positives and negatives, respectively. As

illustrated in Fig. 6, the resulting area under curve (AUC)

was 0.89 for the first session and 0.90 for the second ses-

sion. The optimal operating point was also found so that

the proportions of misclassified positive and negative cases

were the same. At the optimal operating point, the (sensi-

tivity, specificity) were (0.90, 0.83) and (1.0, 0.78) for the

first and second sessions, respectively.

Regarding to the SMR and ATR predictors, the AUCs

were 0.57, 0.74 for the first session and 0.69, 0.80 for the

second session (Fig. 6). At the optimal operating point, the

(sensitivity, specificity) were (0.40, 0.89), (0.50, 0.94) for
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Fig. 3 Distribution of the SMR-BCI recognition rates in 40 subjects.

Horizontal coordinate denotes the subjects, and vertical coordinate

denotes their SMR-BCI recognition rates. The blue solid circles

indicate SMR-BCI recognition rates in the first session, and the red

solid diamonds indicate SMR-BCI recognition rates in the second

session (Color figure online)

684 Brain Topogr (2015) 28:680–690

123



Spectral entropy predictor
SMR predictor
ATR predictor

Eyes closed Eyes open

0.4

0.7

Cz

C3

CP3

C5

FC3 FC4

C6

CP4

C4

0.4
0.7

Cz

C3

CP3

C5

FC3 FC4

C6

CP4

C4

Fig. 4 Correlations between

the three predictors and SMR-

BCI performance. Green line

denotes the spectral entropy

predictor; blue line denotes the

SMR predictor; and red line

denotes the ATR predictor. Left

eyes closed resting-state; right

eyes open resting-state (Color

figure online)
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Fig. 5 The relationships between the three predictors and SMR-BCI

performance. a Spectral entropy predictor; b SMR predictor; c ATR

predictor. Blue square subject from the first session; red square

subject from the second session. Blue line denotes the result of linear

regression analysis for the first session, red line denotes the result of

linear regression analysis for the second session, green line denotes

the result of linear regression analysis for the merged session (Color

figure online)
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Fig. 6 ROC curves for the

three predictors in classifying

the two groups of SMR-BCI

users. a The first session; b the

second session. The horizontal

coordinate denotes the false

positive rate, and the vertical

coordinate denotes the true

positive rate. AUC area under
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the first session, and (0.56, 0.89), (0.67, 0.89) for the sec-

ond session.

The classification capability was further evaluated by a

leave-one-out cross-validation scheme with the prediction-

LDA classifier, as described in Sect. 2.4. In the first ses-

sion, 75, 57 and 71 % classification accuracies were

achieved for spectral entropy, SMR, and ATR predictors,

respectively. And the accuracies were 89, 61 and 67 % for

the second session.

Inter-session Prediction

The 26 subjects who had returned to participate in the

second session experiment were selected for the following

analysis to investigate the inter-session prediction perfor-

mance of the proposed predictor. Criteria similar to that

mentioned in Sect. 2.4 was used to define the high and low

aptitude SMR-BCI user groups.

The inter-session prediction performance was also

evaluated using the prediction-LDA classifier, and the

classification results were presented in Fig. 7. Figure 7a–c,

showed the classification plots of the first session by using

the classification boundaries obtained from data of the

second session for the spectral entropy, SMR, and ATR

predictors, respectively. The corresponding classification

accuracies were 88, 63 and 75 %, with the classification

boundaries for the three predictors as 0.77, 8.7 and 1.3.

Similarly, the plots of the second session classification for

the spectral entropy, SMR, and ATR predictors with the

first session as training were shown in Fig. 7d–f, respec-

tively. The corresponding classification accuracies were

89, 50 and 72 %, and the classification boundaries were

0.77, 6.0 and 1.4 for the spectral entropy, SMR, and ATR

predictors, respectively.

Consistent Changes in SMR-BCI Performance

and Spectral Entropy Predictor

Considering the 26 subjects, 19 of them achieved higher

performance in the second session, six of them achieved

lower performance in the second session, and equal per-

formance was achieved for the remaining 1 subject. We

further investigated whether the increased or decreased

change in SMR-BCI performance could be reflected by the

predictors obtained from the resting-state EEG. Since there

exist normal fluctuations between sessions in SMR-BCI

performance, firstly we excluded those subjects whose

absolute CP of performance were below 10 %. Finally 10
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Fig. 7 Inter-session prediction performance. a and d Spectral entropy

predictor; b and e SMR predictor; c and f ATR predictor. Upper panel

the boundary determined from the second session was used to classify

the SMR-BCI users in the first session; bottom panel the boundary

determined from the first session was used to classify the SMR-BCI

users in the second session. Blue square denotes the low aptitude

SMR-BCI user; red square denotes the high aptitude SMR-BCI user;

and the green line is the classification boundary (Color figure online)
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subjects were screened out, and the CP of the SMR-BCI

performance and the three predictors between sessions for

the 10 subjects were illustrated in Fig. 8. It showed that

spectral entropy predictor has a consistent change with

SMR-BCI performance for the 9 of 10 subjects. Whereas

for SMR and ATR predictors, the corresponding subject

numbers were both three.

Discussions

The neural mechanisms of the SMR-BCI performance

variations across healthy subjects remain unclear. How-

ever, finding a reliable biomarker to predict SMR-BCI

performance has great value. Based on previous studies

(Ahn et al. 2013; Blankertz et al. 2010), we assumed that

the spectral entropy from resting-state EEG may be served

as a predictor of SMR-BCI performance.

The spectral entropies of channels from brain regions

near the sensorimotor area showed a strong correlation

with SMR-BCI performance. Among them, the spectral

entropy of channel C3 from the eyes closed resting-state

EEG yielded the highest CC (r = 0.65, p\ 10-8) com-

pared with other channels. Since the above results were

obtained from the merged session, in which the 26 subjects

of the second session were depend on the 40 subjects of the

first session, the correlation analysis may be interfered. We

further calculated the CCs between SMR-BCI performance

and resting-state spectral entropies based on the two

separate sessions, the highest CCs were still achieved by

channel C3, and they were r = 0.61 (p\ 10-4) and

r = 0.70 (p\ 10-4) for the first and second sessions, re-

spectively. The highest CCs of the merged and separate

sessions were both achieved on channel C3, and they were

close to each other, suggesting the relationship was robust.

Therefore, we proposed to use the eyes closed resting-state

spectral entropy of channel C3 as an effective predictor for

SMR-BCI performance.

SMR-BCI Inefficiency Phenomenon

The SMR-BCI inefficiency phenomenon is one of the

biggest challenges in SMR-BCI research because these

subjects cannot achieve accurate control of SMR-BCI even

after several training sessions (Kübler et al. 2011). Ac-

cording to a report by (Vidaurre and Blankertz 2010),

15–30 % of the users are SMR-BCI inefficiency. This

percentage is high enough that the public may become

doubtful about the usefulness of SMR-BCI technology. In

this case, finding an easy-to-use biomarker has great

meaning, those inefficient subjects could be screened out at

the beginning. In the current study, the SMR-BCI recog-

nition rate of one subject group is below 70 %, which may

be treated as or close to SMR-BCI inefficient subjects.

Note that one subject cannot be easily judged as SMR-

BCI inefficiency by only one training session because

many factors may lead to a poor SMR-BCI performance at

the first time, such as unfamiliarity with the system, un-

suitable motor imagery strategies, and nervousness. Stricter

criteria will be needed to define truly inefficient subjects in

the future study (Blankertz et al. 2010).

Characteristics of the Spectral Entropy Predictor

Spectral entropy measures the uniformity of the power

spectral density. On one hand, a signal with a single fre-

quency component (e.g., a pure sinusoid) produces the

smallest spectral entropy, on the other hand, a signal with

all frequency components of equal power value (e.g., white

noise) produces the greatest spectral entropy (Inouye et al.

1991). The power spectrum of the resting-state EEG is

usually characterized by obvious peaks and valleys dis-

tributed throughout the low frequency band. As for the

subjects with different levels of SMR-BCI performance,

the obvious resting-state EEG power spectrum difference

could be seen in Fig. 9. The peaks located in the alpha

rhythm had the highest amplitude for the group of subjects
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with recognition rates above 80 %, the lowest amplitude

for the group with recognition rates below 70 %, and a

middle amplitude for the group with recognition rates be-

tween 70 and 80 %. It is known that spectral entropy de-

pends primarily on the number of peaks and their

preakness, thus it is powerful for capturing the group dif-

ferences reflected by the distribution of the EEG power

spectrum.

Figure 4 shows that spectral entropy calculated from

resting-state EEG data on channel C3 has the highest

correlation with SMR-BCI performance, regardless of

whether the subjects’ eyes were closed or opened. Notably,

in the merged session, the corresponding CCs between

SMR-BCI performance and the eyes closed resting-state

spectral entropy reached 0.65, 0.52 and 0.50 for channels

C3, Cz, and C4, respectively. It is well known that the C3,

Cz, and C4 channels are located on the sensorimotor areas,

thus the higher CCs on these three channels could be ex-

plained by the neurophysiological fact that motor imagery-

related brain activity dominate in the sensorimotor areas

(Neuper et al. 2006). The impressive prediction perfor-

mance of the C3 spectral entropy is further demonstrated in

Figs. 5 and 6, in which the obvious linear trend and the

large AUC value are shown. Furthermore, the intra-session

classification accuracies were both high for the two sepa-

rate sessions, highlighting the reliable performance of the

spectral entropy predictor in distinguishing the two SMR-

BCI user groups. The superiority of the C3 channel over

the other channels in SMR-BCI performance prediction

may be attributed to the left hemisphere domination for

motor skills (Babiloni et al. 2003; Gao et al. 2011; Rogers

et al. 2004).

Figure 4 also shows that the spectral entropy calculated

from eyes closed resting-state EEG is superior in predicting

the SMR-BCI performance compared with that calculated

from eyes open state. Two advantages are gained by col-

lecting resting-state EEG data with eyes closed. Firstly, the

electrooculography artifact is excluded from the recording,

which is important because the frequency band of the

electrooculography artifact overlaps with the frequency

band we selected to calculate spectral entropy (Fatourechi

et al. 2007); Secondly, closing the eyes reduces unexpected

interference from other cognition activities, which is the

primary reason why subjects are asked to close their eyes in

most resting-state studies, including both MRI and EEG

(Luo et al. 2012; Raichle et al. 2001; Xu et al. 2013b).

Session-to-Session Transfer

EEG signal are not stationary, resulting in changes in

spectrum over time. In the current study, the optimal fre-

quency band, spatial filters, and parameters for the de-

coding-LDA classifier were estimated within session when

calculating SMR-BCI performance, in order to alleviate the

effect of non-stationary EEG signal. However, the two

experimental sessions in this study were conducted with

approximately 3 months interval, and it is unknown whe-

ther the predictors calculated from one session is trans-

ferable to another session, i.e., whether it is possible to

predict subject’s SMR-BCI performance based on
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Fig. 9 Average power spectrum of three groups of SMR-BCI users.

Left power spectrum of channel C3; right power spectrum of channel

C4. Red line denotes the group of users whose SMR-BCI recognition

rate are above 80 %; green line denotes the group of users whose

SMR-BCI recognition rate are below 70 %; and the black line denotes

the group of users whose SMR-BCI recognition rate range from 70 to

80 % (Color figure online)
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prediction model established from a different session. In-

spiringly, Fig. 5a demonstrates that the relationships be-

tween SMR-BCI performance and spectral entropy

predictor are similar between the two sessions.

One of the key merits of the spectral entropy predictor is

that it measures the probability distribution of the PSD. In

the different sessions, the absolute power spectrum of

resting-state EEG data may change over time, but the

probability distribution of the PSD may remain relatively

stable. The classification results shown in Fig. 7 demon-

strate that the spectral entropy predictor is reliable in dis-

tinguishing the two SMR-BCI user groups based on the

prediction model estimated from a different session. More

importantly, the classification boundaries for the high and

low aptitude SMR-BCI user groups obtained from the two

different sessions are close to each other. The above result

also implies that it is possible to determine a threshold from

the proposed spectral entropy predictor to classify SMR-

BCI novice users as either high or low aptitude SMR-BCI

users.

For the same subject, the SMR-BCI recognition rates

obtained between sessions are generally different, and CP

above 10 % are found for 10 of the 26 subjects. Then

whether the SMR-BCI performance changes can be re-

flected by the changes in the spectral entropy predictor

becomes a noteworthy issue. We further investigate this

problem, and the results are shown in Fig. 8. For 9 of the

10 subjects, SMR-BCI performance increases (decreases)

with the increase (decrease) of the spectral entropy pre-

dictor. The CP values of spectral entropy predictor are

usually lower than SMR-BCI recognition rates.

SMR, ATR, and Spectral Entropy Predictors

Among the three predictors, spectral entropy predictor

achieves the best prediction performance, ATR predictor

performs well, whereas the performance of SMR predictor

is not good enough. We think the explanation of the dif-

ferences could be found from the definitions of the three

predictors: SMR predictor reflects the peakness of the

spectrum; ATR predictor involves alpha and theta bands

information and equals to the ratio of them; spectral en-

tropy predictor utilizes the probability information of the

spectrum and measures the uniformity of the power spec-

tral density. Compared with SMR and ATR, spectral en-

tropy utilizes a kind of statistical measure to denote the

power spectrum, which may be more robust to reduce noise

effect. In addition, the absolute peakness and band powers

of the resting-state spectrum may be different from person

and person, and may depend on age and sex (Mundy-Castle

1951; Richard Clark et al. 2004), thus SMR and ATR

predictors may be influenced. However, spectral entropy is

a measure based on probability, and it has been proved to

be more stable across subjects in previous studies (Nunes

et al. 2004; Rezek and Roberts 1998).

Limitations

Limitations of this study is that we do not know whether

the proposed spectral entropy predictor could be trans-

ferred from healthy subjects to patient populations such as

amyotrophic lateral sclerosis (ALS) and stroke. Because

diseases may have profound and system-wide effects that

may eliminate or even reverse effects found in healthy

populations (Grosse-Wentrup and Schölkopf 2013).

Conclusions

Understanding the inter-subject SMR-BCI performance

variation is one of the fundamental problems in SMR-BCI

application. In this study, we established an effective

spectral entropy predictor for SMR-BCI performance,

which derived from 2 min eyes closed resting-state EEG.

The proposed predictor provides outstanding classification

capability for high and low aptitude BCI users in both

intra- and inter-session conditions. To our knowledge, this

is the first study that discussed about the reliability of inter-

session prediction. The proposed predictor could help to

identify subject’s potential SMR-BCI performance at the

very beginning, avoiding the frustrating and costly training

procedures for those low aptitude users.
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