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Abstract In direct conflict with the concept of auditory

brainstem nuclei as passive relay stations for behaviorally-

relevant signals, recent studies have demonstrated plasticity

of the auditory signal in the brainstem. In this paper we

provide an overview of the forms of plasticity evidenced in

subcortical auditory regions. We posit an integrative model

of auditory plasticity, which argues for a continuous, online

modulation of bottom-up signals via corticofugal pathways,

based on an algorithm that anticipates and updates incoming

stimulus regularities. We discuss the negative implications

of plasticity in clinical dysfunction and propose novel

methods of eliciting brainstem responses that could specify

the biological nature of auditory processing deficits.

Keywords Predictive coding � ABR � Stimulus-

specific adaptation � Auditory � Plasticity

Introduction

In extant cognitive neuroscience models, cortical struc-

tures are argued to be crucial for complex auditory and

speech processing, and subcortical structures are regarded

as passive relay stations of sensory input (Hickok and

Poeppel 2007; Rauschecker and Scott 2009). Such a

cortico-centric bias (Parvizi 2009) has led to a demarca-

tion of cortical structures as ‘higher-level’ and subcortical

structures as ‘lower-level’ despite these structures being

inter-connected by afferent (feedforward) as well as

efferent (feedback) nerve fibers. Over the last two decades

significant progress has been made in our understanding

of human auditory subcortical plasticity by factoring in

the sensory, cognitive, and reward circuitry that underlies

auditory plasticity (Chandrasekaran and Kraus 2010;

Kraus and Chandrasekaran 2010). Work focused on

expert, as well as disordered, populations suggests that a

simple demarcation of auditory function into ‘lower-level’

versus ‘higher-level,’ is outdated. There is rich evidence

against a strictly input–output role for the auditory

brainstem, but a comprehensive theoretical framework is

still lacking. We aim to fill this gap by integrating

research across animal and human auditory neuroscience

to provide an enumeration of the various mechanisms

underlying brainstem plasticity to behaviorally-relevant

signals. We then provide a common theoretical frame-

work and extend this framework to elucidate the nature of

deficits in clinical populations. We define plasticity as the

propensity for the brain to change as a function of

experience.
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Measuring Subcortical Auditory Function in Humans

Human subcortical function can be indexed by several

neuroimaging methods including functional magnetic res-

onance imaging (fMRI), electroencephalography (EEG),

and magnetoencephalography (MEG) (Chandrasekaran and

Kraus 2010; Chandrasekaran et al. 2012a; Cheung et al.

2012; Rinne et al. 2008a; Steinmann and Gutschalk 2011).

While several fMRI studies have examined subcortical

processing of auditory signals, methodological issues

reduce the effectiveness of this approach in studying

brainstem function. First, brainstem nuclei are small,

located deep inside the brain, and are relatively more

susceptible to physiological noise than cortical structures

(Guimaraes et al. 1998); second, the temporal precision of

blood oxygenation level-dependent (BOLD) responses is

on the order of seconds. At this resolution, it is difficult to

study responses to fast temporal events (for e.g., formant

transitions in speech signals). However, recent methodo-

logical advances in imaging methods, specifically, high

resolution neuroimaging and network analyses, suggest

that fMRI methods will have high utility in the future (De

Martino et al. 2013; Ress and Chandrasekaran 2013).

Currently, EEG and MEG methods provide the best

temporal window into subcortical auditory function and

they will form the basis of this review. Although brainstem

responses can be recorded using MEG (Parkkonen et al.

2009), the significant decay of magnetic fields as a function

of distance has largely restricted the use of MEG to the

study of cortical function. EEG, on the other hand, is more

sensitive to activity in the auditory brainstem, and has been

extensively used to index brainstem function. EEG com-

ponents that originate from the auditory brainstem can be

recorded from the scalp. The auditory brainstem response

(ABR, also referred to as brainstem auditory evoked

responses) reflects ensemble activity of neuronal popula-

tions in the brainstem that are tuned to transient features of

sound, such as the onset of sound (Hecox and Galambos

1974), as well as sustained, phase-locked activity to the

auditory stimulus (referred to as the frequency-following

response) (Chandrasekaran and Kraus 2010; Krishnan et al.

2010a; Smith et al. 1975, 1978; Sohmer et al. 1977). Both

onset and sustained components reflect the output of

brainstem and midbrain structures and encode stimulus-

related information with high temporal and spectral pre-

cision (see Fig. 1, for example). In this review, we will

discuss transient and phasic responses to complex auditory

stimuli, and we will collectively refer to this response as

cABRs (complex-ABRs) (Skoe and Kraus 2010b). cABRs

are useful in examining the neural transcription of sound,

and provide a valuable aperture into how auditory experi-

ences transform the representation of linguistic and other

behaviorally-relevant complex signals. In contrast to

cortical responses to complex auditory stimuli, cABRs are

more isomorphic to the acoustic signal (Fig. 1). Conse-

quently, this biological index has been used to examine

how the neural representation of sounds are shaped by

language and music experience (Kraus and Chandrasekaran

2010; Krishnan et al. 2010c; Skoe et al. 2013; Marmel et al.

2011; Krizman et al. 2012), how sensory encoding is

transformed by developmental and aging processes

(Anderson et al. 2012, 2013b, c; Chandrasekaran and Kraus

2010; Skoe and Kraus 2013), and how the representations

of behaviorally-relevant signals are altered in various

clinical disorders (Bradlow et al. 2003; Hornickel et al.

2011; Hornickel and Kraus 2013; Russo et al. 2005;

Tzounopoulos and Kraus 2009).

Origins of the cABR

While the origin of the cABR includes multiple subcortical

regions, previous studies suggest that the inferior colliculus

(IC), the primary auditory midbrain nucleus is a major

neural source (Chandrasekaran and Kraus 2010; Krishnan

et al. 2010a; Smith et al. 1975, 1978; Sohmer et al. 1977).

As a convergence hub in the auditory system, the IC

receives substantial efferent connections directly from the

auditory cortex (AC) (Winer 2005, 2006; Winer et al. 1998)

and is an obligatory station for bottom-up signals arising

from other auditory brainstem nuclei. The IC is composed

of three functional subdivisions. These include the tono-

topically and periodotopically organized central nucleus,

which receives bottom-up projections from various brain-

stem nuclei (Baumann et al. 2011), the multisensory lateral

nucleus, and the dorsal nucleus, which receives a large

proportion of the top-down corticofugal connectivity from

primary and secondary auditory cortices (Winer 2006). In

addition, the IC is connected with somatosensory cortex,

other divisions of the midbrain (superior colliculus), cere-

bellum, as well as networks involved in vocalization and

attentional processing (Huffman and Henson 1990). Thus,

in terms of connectivity, the IC is a computational hub that

is influenced by signals from a number of brain structures.

The IC has a wide variety of neural cell types that are

capable of representing sound with high fidelity. For

example, within the central nucleus of the IC, six different

cell types have been distinguished based on their discharge

patterns (Peruzzi et al. 2000). A majority of these cell types

show sustained discharges and others show transient dis-

charges to sound onset. Sustained and onset responders

have different cellular properties, but together, they are

capable of representing complex auditory signals with high

temporal precision. Not coincidentally, the IC is one of the

most metabolically active neural structures in the human

brain (Sokoloff 1977).
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The focus in this article is the environmental conditions

and the biological mechanisms that modulate the repre-

sentation of the incoming signal at the level of the IC. We

functionally define plasticity as a reorganization of the

sensory signal as a function of experience. This reorgani-

zation can occur over a range of time scales—from a

momentary, short-term change involving neural modula-

tion to a more permanent long-term change involving

reorganization of neural circuits. Here, experience is

broadly defined, and extends from on-line context-depen-

dent modulation to learning dependent changes that reflect

long-term engagement with sound.

Neurobiological Mechanisms Underlying Subcortical

Plasticity

Previous studies have demonstrated that the brainstem rep-

resentation of speech sounds are sensitive to language expe-

rience (Krishnan et al. 2010b, c, 2005; Krizman et al. 2012).

More recent studies show modulatory influences related to

musical training (Musacchia et al. 2007; Parbery-Clark et al.

2009; Wong et al. 2007), and short-term auditory training

(Carcagno and Plack 2011; Chandrasekaran et al. 2011; Song

et al. 2008; Anderson et al. 2013c). Krishnan et al. (2005) for

example, showed that native adult speakers of Mandarin

Chinese, relative to native English speakers, have enhanced

representation of Mandarin tone categories, as measured by

the sustained, FFR component of the cABR. Similarly, native

English speakers with long-term music training also demon-

strated enhanced brainstem representation of Mandarin tone

categories, suggesting that plasticity in the representation of

speech signals is not restricted to linguistic experience (Wong

et al. 2007; Bidelman et al. 2011) (see Chandrasekaran and

Kraus 2010 for a review). Moreover, short-term sound-to-

meaning training enhances brainstem encoding of speech, as

reflected by cABRs (Chandrasekaran et al. 2012a; Russo et al.

2005; Song et al. 2008). In addition, there is emerging evi-

dence that the brainstem sensitive to statistical properties of

the stimulus in real-time (Skoe and Kraus 2010a; Skoe et al.

2013), leading to (under some conditions) changes to the

response throughout the recording. For example, Skoe and

Kraus (2013) measured brainstem activity to a five-note

melody containing a repeated note (E3-E3-G#3-B3-E4). Over

the course of the 1.5 h recording, the response progressively

increased in magnitude, with the enhancement being greatest

for the repeating note (i.e., the note that was presented with the

highest probability). Together, this line of research argues

against the outdated view of the brainstem being a passive

relay station. However, to date, there is no single theoretical

framework that can account for the range and timescales of

subcortical plasticity that have been documented in human

and animal models.

Current Models of Auditory Subcortical Function

In current theoretical frameworks, two putative mecha-

nisms are argued to account for modulatory influences on

subcortical nuclei (Table 1): (1) local modulation, which

reflects modifications initiated by operations within the

subcortical circuitry (Gold and Knudsen 2000; Krishnan

Fig. 1 The complex auditory brainstem response (cABR) (bottom)

captures many of the temporal (left) and spectral (right) features of

the stimulus (top). For illustration, the response to a spectrally-

dynamic speech consonant-vowel (CV) speech syllable [(da)] is

plotted. The first 50-ms of the stimulus represent the transition from

stop-burst ‘‘d’’ to the sustained, steady-state vowel ‘‘a’’. As seen in the

spectra in the right panels, low frequencies, including those

associated with pitch and timbre perception, are preserved in the

cABR. In this example, the spectra reflect the envelope of the

spectrally-dynamic CV transition
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and Gandour 2009) and (2) top-down modulation, which

reflects modulations initiated by the cortex via a feedback

network (Suga 2008; Suga et al. 2000, 2002). In the next

few paragraphs, we expand on these two mechanisms.

Local Modulation

Local modulation refers to changes in mechanisms local to

subcortical structures as a result of intrinsic (within IC) cel-

lular changes (Dahmen et al. 2010; Escabi et al. 2003), or

modifications induced by changes downstream (e.g. cochlear

trauma) (Mulders et al. 2010). Indeed, electrophysiological

studies in animal models demonstrate that auditory midbrain

neurons rapidly adapt to stimulus statistics (Dahmen et al.

2010; Dean et al. 2005; Escabi et al. 2003; Perez-Gonzalez

et al. 2005). That is, midbrain neurons dynamically adjust

their firing rates to the complex statistics (e.g. mean and

variance) of the sounds being presented.

In humans, Krishnan et al. (2005, 2009b, 2010c) have

argued that experience-dependent effects in scalp-recorded

cABRs are driven by local reorganization of brainstem cir-

cuits to selectively enhance key stimulus features (via excit-

atory and inhibitory synaptic plasticity). As per this account,

cross-language differences in subcortical function between

Mandarin Chinese and English speakers are due to differential

environmental exposure to particular signal features, in this

case curvilinear changes to the fundamental frequency (F0),

across the two groups (Swaminathan et al. 2008; Krishnan

et al. 2005, 2009a). Mandarin Chinese, being a tone language,

uses more dynamic changes in fundamental frequency than

English, a non-tonal language. In support of Krishnan et al.’s

proposal, Jeng and colleagues compared responses from

adults and neonates and showed that FFR tracking of the F0

differed between Chinese- and English-speaking adults but

not between neonates from China and the United States,

suggesting that language-dependent differences depend on

exposure not innate differences between English and Man-

darin (Jeng et al. 2011). Thus, brainstem neural ensembles

likely calibrate over time to preferentially encode frequently

occurring signals in one’s auditory environment. This can be

likened to local changes in barn owl midbrain following

experience with prismatic spectacles that shift the visual field

to accommodate the altered sensory input (Feldman and

Knudsen 1997). Krishnan and colleagues find that language-

dependent plasticity (e.g. Chinese [ English) is especially

pronounced in the response to frequently occurring aspects of

speech (e.g. dynamic portions of pitch contours, that are more

frequently occurring in tone languages such as Chinese), as a

function of long-term listening experience. In the case of the

local modulation model, the environment largely drives

experience-dependent modulations of brainstem function. In

support of the local modulation model, experience-dependent

effects are not evident for linear approximations of Mandarin

pitch trajectories (Xu et al. 2006). These authors argue that the

lack of a cross-language difference in brainstem encoding of

linear approximations, which are judged to be ‘within-cate-

gory’ by native speakers, is related to the fact that these linear

approximations are non-existent in the real-world. Since IC

neurons have not been exposed to these stimuli, they are not

equipped to enhance representation of these artificial

approximations. Based on these results, it was concluded that

such experience-dependent plasticity was not driven by top-

down categorical effects. Rather, enhanced representation

appears to be a function of the stimulus that the IC is ‘tuned’ to

as a function of long-term listening experience. However,

recent studies argue for top-down modulatory influences, and

these will be discussed in the next section.

Top-Down Modulation

In contrast to local reorganization, this type of plasticity

represents changes in subcortical activity resulting from

Table 1 Putative mechanisms underlying subcortical auditory

plasticity

Type of

modulation

Process Mechanism Function

Local Local

reorganization

Calibration to

statistically

frequently

occurring

signals

Enhanced

representation

of signals that

are frequently

occurring

signals

Local and

top-down

SSA Increased

response to

novel stimulus

Enhanced

representation

of novelty

Dynamic range

adaptation

Shift in

neuronal firing

to frequently

occurring

(high

probable)

stimulus levels

Overcomes

incongruity

between

behavioral and

neuronal

dynamic range

Top-down Online

predictive

coding

Tuning via top-

down

feedback

loops based on

expectation

Enhanced

representation

of behaviorally-

relevant signals,

ego-centric

tuning, auditory

enhancement in

adverse

listening

conditions

Selective

attention

Tuning via top-

down

feedback

loops based on

attention

Enhanced global

signal

processing,

inhibition
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cortical output. Top-down modulation is argued to be

critical for ‘ego-centric’ selection, that is, to enhance sig-

nals considered behaviorally-relevant to the organism.

Substantial work on animal models demonstrates

unequivocally that brainstem processing of auditory signals

can be modified by top-down cortical feedback (Suga

2008). One mechanisms for top-down control is executed

via corticofugal pathways, which are efferent feedback

loops that back-project from primary and association

auditory cortical regions directly onto the auditory brain-

stem (Winer 2006). In animal models, inactivation of the

AC disrupts brainstem plasticity (Zhou and Jen 2007; Suga

et al. 2000, 2002; Suga 2008). A recent study found that

when the corticofugal pathways are selectively destroyed,

auditory learning is severely impaired (Bajo et al. 2010).

However, the selective lesion did not disrupt encoding of

sounds learned prior to the lesion, suggesting that plastic

effects are maintained by some form of locally-occurring

mechanism (Bajo et al. 2010).

A number of studies have examined best frequency (BF)

shifts, which reflect experience-dependent changes in the

neuronal processing of sound frequency representation.

When sounds are paired with a behaviorally-salient event

(a shock, for example), experience-dependent reorganiza-

tion of the IC frequency map are significantly larger than

when reorganization is based on acoustic stimulation alone

(Gao and Suga 1998). Thus, the behavioral relevance of a

sound plays an important role in plasticity, and is estab-

lished via cholinergic pathways that connect the nucleus

basalis (NB) with the AC (Suga et al. 2000; Gao and Suga

1998).

While the exact role of the corticofugal system is

unclear, various proposals endorse the role of this system in

selective attention (Hairston et al. 2013; Krizman et al.

2012), in extracting the signal in noisy environments

(Parbery-Clark et al. 2009), in promoting auditory learning

(Bajo et al. 2010; Song et al. 2012; Skoe et al. 2013), or

providing a higher signal-to-noise ratio to the AC (Suga

2008). In addition, top-down modulation may also be

important in mediating frequency map plasticity (Suga

2008). Several lines of research demonstrate that short-

term training can result in enhanced neural responsitivity to

training stimuli (Kilgard 2012). This enhancement in the

neural responsitivity change has been hypothesized to be

closely associated with behavioral changes (e.g. increased

discrimination accuracy). However, sensory map expan-

sion can reverse without negatively affecting behavior

(Reed et al. 2011). A recent proposal suggests that the

expansion-renormalization of sensory maps may result

from greater recruitment of various cortical and subcortical

circuitry during initial learning, followed by a pruning,

where the most efficient circuit is selected (Kilgard 2012).

It is, thus, conceivable that one role for the corticofugal

pathway may be in selecting particular circuits within the

brainstem that most efficiently encode the trained stimuli.

Context-Dependent Modulation

Context-dependent modulation refers to changes in stimu-

lus encoding based on the immediate context in which the

stimulus is presented. Such plasticity may be driven by

local as well as top-down modulatory effects. One neuro-

biological mechanism underlying context-dependent

effects is hypothesized to be stimulus-specific adaptation

(SSA). SSA refers to reduced responsitivity to a repeating

stimulus, relative to a novel stimulus (Duque et al. 2012;

Bauerle et al. 2011; Farley et al. 2010; Malmierca et al.

2009; Perez-Gonzalez et al. 2005; Ulanovsky et al. 2004).

Experiments examining the extent of SSA typically use

protocols (passive oddball stimulation) similar to those

used to elicit preattentive change-detection components in

the cortex. In passive oddball paradigms, rare sounds

(deviants) are presented in the context of frequently

occurring (standard) sounds. The cortical AEP change-

detection component, called the mismatch negativity

(MMN) is measured as a larger negative signal for the

deviant relative to the standard, occurring between 150 and

300 ms post stimulus onset (Naatanen et al. 2007). Some

authors have hypothesized that the SSA may be the cellular

basis for the MMN since SSA was originally thought to be

a cortical phenomenon (Ulanovsky et al. 2003, 2004).

However, recent studies suggest that SSA occurs in the

auditory thalamus and all three subdivisions of the IC as

well (Duque et al. 2012; Bauerle et al. 2011; Malmierca

et al. 2009; Perez-Gonzalez et al. 2005).

The fact that SSA is observed in several critical auditory

nuclei suggests that it may be fundamental to auditory

processing. Being able to differentially encode novel

stimuli in the context of repetitively presented stimuli may

have a biological implication. Rare sounds, especially in

the context of repetitively presented sounds may signify

danger, and therefore encoding this information with vigor

may be important for survival. Thus, it is possible that SSA

reflects local processes that are primed to respond to any

significant, immediate change in the sensory environment

by adapting to repetitive stimulation. Malmierca and col-

leagues argue that since a large fraction of the neurons

showing SSA are onset responders, it is unlikely that SSA

in the IC is driven by top-down cortical modulation. The

basis for this argument is that the adaptation occurs rapidly

and likely before corticofugal processes can kick in.

Interestingly, the majority of neurons demonstrating SSA

are located in the dorsal cortex of the IC. Although the

exact function of dorsal cortex of the IC is unclear, con-

nectivity patterns suggest a critical role in top-down control

Brain Topogr (2014) 27:539–552 543
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of the auditory midbrain. Thus, a more sophisticated, top-

down contribution may also play a role in the generation of

SSA. Consistent with this proposal, the SSA is argued to be

a top-down phenomenon, emerging within the AC, and

inherited by subcortical structures (Nelken and Ulanovsky

2007). As a test of this prediction, Bauerle et al. (2011)

created a pharmacological lesion of the AC and examined

SSA at the thalamus (Bauerle et al. 2011). Their results

show a substantial reduction in SSA at the thalamic nuclei,

suggesting some level of top-down involvement. An

alternative explanation is that the lesion encroached

beyond cortex affecting lower structures, with the outcome

resembling a top-down mechanism. In contrast, a follow-up

study deactivated the AC by cooling, and did not find

significantly diminish SSA in the thalamus, suggesting a

local dependence for SSA (Antunes and Malmierca 2011).

Similarly, deactivating the AC had some effects on the IC,

but did not abolish SSA (Anderson and Malmierca 2013).

At this point, the relative contribution of local and top-

down networks to SSA is unresolved.

Another example of contextual modulation comes from

studies examining the neural bases of dynamic range

adaptation (Dean et al. 2005; Wen et al. 2009). Behavior-

ally, the auditory system is sensitive to a large range of

sound pressure levels. However, auditory neurons are

responsive to a much smaller range. Studies examining

midbrain processing show that firing rates of midbrain

neurons shift to the most probable sound level, thereby

improving the precision of sound level encoding. Such

range adaptation occurs at the level of the auditory nerve as

well, but to a lesser extent than at the level of the midbrain,

suggesting an enhancement of neural sensitivity to stimulus

statistics at each ascending level of the auditory system

(Wen et al. 2009). Such processing schema have implica-

tions for speech processing as well since most naturally-

occurring sounds show sound level distribution patterns

similar to those used in the dynamic range adaptation

studies.

Modulatory influence of stimulus context on auditory

signals appears to occur at every level within the auditory

system, and may involve a complex interaction between

local and top-down modulatory influences. However, no

current theoretical model satisfactorily discusses the rela-

tive contribution of local processes versus top-down tuning

in brainstem plasticity, a topic that has important clinical

implications.

Predictive Tuning Model: An Integrative Account

of Subcortical Auditory Plasticity

Here we posit an integrative account of subcortical plas-

ticity that extends the predictive coding hypothesis, which

has thus far been applied only to cortical responses. In

cortical predictive coding models (Friston 2005), predic-

tion is generated and imposed via top-down feedback sig-

nals. Each level in the sensory system receives input

(bottom-up) from the level below, as well as the level

above (top-down). Processing in a sensory region thus

attempts to reach equilibrium between bottom-up sensory

information and top-down predictions (priors). Prediction

errors, which capture the extent of the mismatch between

the prediction and sensory input, are continuously gener-

ated. The processing goal within each sensory level is thus

to reduce mismatches between levels, i.e., to reduce pre-

diction errors. Predictive coding is continuously opera-

tional in an online fashion, leading to a near instantaneous

updating of predictions based on incoming information and

the history of input.

Our extension of the predictive coding model integrates

several decades of work on top-down modulation in animal

models (Zhou and Jen 2007; Wu and Yan 2007; Winer

2006; Villa et al. 1991; Suga et al. 2000; Suga 2008; de

Boer and Thornton 2008; Bajo et al. 2010), and more

current perspectives gained from Bayesian models of

visual and auditory processing (Friston 2012; Kumar et al.

2011; Feldman and Friston 2010; Garrido et al. 2008,

2009a, b; Hohwy et al. 2008). Current neural models of

vision and audition postulate that perceptual processes are

hierarchical, with each level of hierarchy influencing other

levels (Ahissar and Hochstein 2004). Within the cortex,

there is theorized to be a near-continuous, ongoing com-

parison between predictions based on past experience, with

those generated by the incoming signal, a process carried

out by feedforward and feedback connectivity. Thus,

higher cortical regions fit learned abstractions onto sensory

information from lower level structures (Rauss et al. 2011).

The predictive tuning model has been developed to explain

cortical function in general. However, given extensive

feedforward and feedback connectivity between the cortex,

limbic system, and brainstem, there is a neurobiological

basis to extend this to understand subcortical plasticity.

Expanding the predictive coding hypothesis, our model

posits that there is a continuous, online modulation of

brainstem encoding by the AC via corticofugal pathways

(Chandrasekaran et al. 2009, 2012b; Chandrasekaran and

Kraus 2010). As per our model, in a mature system, short-

term changes in sensory processing within the IC are lar-

gely dominated by top-down corticofugal tuning, although

local processes are still active. Top-down tuning is based

on a predictive algorithm that constantly anticipates the

incoming stimulus stream. Within a processing level, when

the incoming stimulus matches the expectation, signal

representation is enhanced. Enhancement may be in the

form of selective enhancement of behaviorally-relevant

signal properties, or in the form of greater inhibition of

544 Brain Topogr (2014) 27:539–552

123



irrelevant details. In the case of the auditory brainstem,

enhancements could reflect more synchronous phase-

locking to the stimulus, or enhancement of aspects of the

stimulus deemed behaviorally-relevant. When incoming

stimulus fails to match expectation, signal representation is

poorer at the level of the brainstem, and this results in a

prediction error at the cortex. Subcortical representation of

a signal is enhanced if prediction is accurate. Integrating

the various forms of plasticity discussed before, our model

(predictive tuning) makes the following predictions:

Plasticity and Development

Our review of the literature demonstrates the existence of

multiple forms of experience-dependent subcortical plas-

ticity. Therefore, the concept of bottom-up versus top-

down modulation is, we believe a false dichotomy. The

more useful question is the relative dominance of bottom-

up and top-down plasticity as a function of age. The classic

studies on corticofugal plasticity (Suga and colleagues)

have used mature, adult auditory systems as a model. These

studies demonstrate the functional role of top-down pro-

cessing on behaviorally-relevant signals. On the other

hand, studies on auditory deprivation and congenital

hearing loss show that higher-level constructs are abnormal

without sufficient bottom-up input (Kral and Eggermont

2007). In the mature typically-developed auditory system,

there is a general reduction in bottom-up plasticity and a

greater emphasis on top-down mechanisms (Kral and Eg-

germont 2007). Thus, when sensory deprivation occurs

early in life top-down mechanisms do not develop fully and

consequently play a less significant compensatory role

(Conway et al. 2009; Skoe et al., in press). Consistent with

Kral and Eggermont (2007), we posit that bottom-up

plasticity is critical in establishing stored representations;

once these representations are established and stable (in

mature systems), they help guide novel learning via top-

down mechanisms. In other words, during development,

local modulation (bottom-up plasticity) may be a dominant

form of plasticity that is critical in establishing higher-

order behaviorally-relevant constructs (e.g. linguistic con-

structs such as phonological categories, words). Once the

auditory system becomes mature, there is an increasing

dependence for top-down modulation for novel learning.

Contextual Modulation

Contextual modulations in the form of SSA and dynamic

range adaptations continue to operate as an animal matures.

These mechanisms remain fundamental to novelty detec-

tion and by optimally and dynamically adjusting neural

responsitivity to stimulus statistics. Both mechanisms are

present throughout the ascending pathway. However, the

extent to which these mechanism but can be modulated or

overridden by top-down signals is an open question.

Experience-dependent processes may shift what is con-

sidered novel to the individual. As evidence of prediction,

in healthy young adults, the cABR adapts to predictable

stimulation, resulting in smaller amplitudes in predictable

versus unpredictable stimulus conditions (Skoe et al. 2013).

However, in individuals with substantial musical experi-

ence, or in individuals who are exceptional auditory

learners, predictable auditory input is enhanced (Skoe et al.

2013; Parbery-Clark et al. 2011). This finding, in combi-

nation with our earlier work in language-impaired popu-

lations (Chandrasekaran et al. 2009), suggests that

predictive coding manifests in the FFR along a continuum

from adaptation to enhancement depending on the balance

between bottom-up and top-down processes (Fig. 2) (Skoe

et al. 2013).

Predictive Tuning

Predictive tuning may operate at multiple time-scales,

based on the present context (i.e., statistical structure of the

incoming novel sound stream) as well as past learning of

statistically-probable combinations. Our model posits that

predictions are facilitated when the current statistics align

with past experience and learned representations. Specifi-

cally, corticofugal modulation is maximal when the

incoming signal is (a) predictable; (b) behaviorally rele-

vant; and (c) aligns with existing learned representations.

Consistent with these predictions, the sustained component

of the cABR has been shown change depending on the

statistical features of the auditory environment as well as

long-term experience with signal properties (Chandrasek-

aran et al. 2009; Parbery-Clark et al. 2011; Slabu et al.

2012; Skoe et al. 2013; Skoe and Kraus 2010a; Marmel

et al. 2011), with frequent sounds and sound combinations

being represented differently than infrequent ones. This

sensitivity to stimulus statistics reflects both the long-term

history of input (Marmel et al. 2011; Skoe et al. 2013) and

the statistics of incoming sensory input (Chandrasekaran

et al. 2009; Parbery-Clark et al. 2011; Slabu et al. 2012;

Skoe et al. 2013; Skoe and Kraus 2010a). Enriched expe-

rience with sound would likely increase the accuracy of

predictive coding specific to that experience, whereas in

the cases of impoverished experiences with sound, as might

occur in clinical populations, accuracy is expected to be

lower.

The strongest evidence for predictive coding comes

from studies that show neural responsivity to an expected

auditory signal, even though the bottom-up signal is never

received (SanMiguel et al. 2013). We are not aware of such

an experiment in the subcortical auditory domain as of yet.

But there is evidence to suggest that higher-order percepts
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can substantially modify subcortical activity. For example,

Galbraith and colleagues have shown that the FFR is

modulated by perceptual processes. Rapidly and repeti-

tively presented speech can often result in a mental trans-

formation of the signal, a phenomenon referred to as

‘verbal transformation.’ FFRs recorded in individuals with

high verbal transformation (indicated online by the par-

ticipant) were different (smaller in amplitude) from those

recorded from participants who indicated low verbal

transformation (Galbraith et al. 1997). Similarly, FFRs

recorded to backward speech (which is not intelligible) are

different from recordings to forward speech, an effect that

may be driven by phonological and prosodic expectations

(Galbraith et al. 1995). Taken together, these results are

suggestive of predictive modulations of the subcortical

signal.

Role of Auditory Selective Attention

Selective attention may enhance the search for informa-

tion-bearing elements within the signal via corticofugal

pathways. Focused attention can modulate IC activity as

measured by fMRI (Rinne et al. 2008b) as well as EEG

(Galbraith and Arroyo 1993; Galbraith et al. 2003). Strong

correlations have been demonstrated between behavioral

measures of selective attention and FFR components

(Ruggles et al. 2011; Krizman et al. 2012; Hairston et al.

2013). This type of attentional influence, we propose, may

be distinct from the continuous ongoing predictive tuning

that is automatic and continuous. However, it is conceiv-

able that under certain circumstances, the two types of

modulations may be congruent and have a compounding

effect on how brainstem activity is modulated.

Subcortical Plasticity in Clinical Populations

Thus far, we focused on the positive aspect of experience-

dependent brainstem plasticity by examining ‘expert’

auditory systems. However, experience-dependent auditory

reorganization is not always beneficial. For example,

cochlear trauma, in the form of noise exposure or hair cell

damage can result in substantial modification in cellular

function (increased spontaneous discharges) within the

central nucleus of the IC (Hatano et al. 2012; McAlpine

Fig. 2 Effects of stimulus context and probability on the cABR. The

target stimulus ([da], from Fig. 1) was presented under predictable

(red) or unpredictable (black) conditions. In the predictable case (red),

it was presented isochronously amidst identical stimuli (p = 1.00). In

the unpredictable case (black), the target stimulus was one of eight

sounds (p = 0.125) that were presented in pseudo-random order such

that the sounds preceding or following the target were not predictable.

These stimulus conditions affect how low-frequency information is

captured in the auditory brainstem response of different human

populations, as illustrated here. In lifelong adult musicians (bottom,

left) and children who perform above average on standardized tests of

reading ability (top, left), there is a boost in low frequency activity

when the target stimulus is predictable (yellow circles indicate

the region of difference). In contrast, in nonmusicians and ‘‘poor

reader’’ children (\1 standard deviation below average on standard-

ized reading tests), a different effect is observed. In nonmusicians, the

contextual differences are not registered in the brainstem, whereas in

poor readers there is a statistical trend for the unpredictable condition

to elicit a larger response than the predictable one. For the good and

poor readers, the effect is observed in response to the CV transition and

for the adult musicians and non-musicians the effect is observed in

response to the steady-state vowel, which is consistent with previous

work in these populations. Modified from Chandrasekaran et al. (2009)

and Parbery-Clark et al. (2011) (Color figure online)
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et al. 1997; Kitzes 1984). Such local modifications (IC

hyperactivity) have been linked to the percept of tinnitus

(Bauer et al. 2008). Deficient subcortical encoding could

also result from failures in the predictive coding process, in

establishing higher order representations, or a combination

of these mechanisms. From a clinical perspective, auditory

brainstem responses can be acquired relatively fast in dif-

ficult-to-test populations, and they provide a high degree of

individual specificity as well (Chandrasekaran and Kraus

2010). A number of studies have demonstrated deficient

brainstem encoding of complex auditory signals in clinical

disorders of speech, language, and reading (Anderson et al.

2013c; Hornickel et al. 2011; Anderson and Kraus 2010b;

Banai et al. 2009a; Russo et al. 2009b; Wible et al. 2004;

King et al. 2002; Hornickel and Kraus 2013). However, the

mechanisms underlying deficient brainstem encoding have

been difficult to pinpoint. In the next section, we review

findings from clinical studies that have used cABR as an

index of auditory function. It is important to note that

brainstem dysfunction is one of many neurological issues

in clinical populations with auditory deficits. In fact, the

role of auditory cortical deficits has been extensively

studied using electrophysiological indices such as the

mismatch negativity (Näätänen 2003; Bishop 2007).

Although our review focuses on subcortical auditory

function, we do not argue that behavioral dysfunction is

necessarily caused by brainstem dysfunction. Rather, the

goal is to understand influences on subcortical function

from the study of clinical populations.

In individuals with dyslexia, a neurodevelopmental

disorder of reading that affects 5–10 % of all children,

there is higher trial-by-trial variability in brainstem

responses (Hornickel and Kraus 2013). This finding is

consistent with an animal model showing high trial-to-trial

variability in neural responses to speech stimuli elicited in

a knockout mouse model that had reduced expression of

Kiaa0319, a gene associated with dyslexia (Centanni et al.

2013). Further, these children demonstrate (a) less effective

use of stimulus context to modulate ongoing brainstem

activity (Chandrasekaran et al. 2009); (b) poorer brainstem

encoding of speech signals in noise (Anderson et al. 2010b;

Chandrasekaran et al. 2009), and (c) poorer brainstem

encoding of formant structure and timing information

within the speech signal (Banai et al. 2007, 2009b; Kraus

2001; Hornickel et al. 2012). In children with specific

language impairment (SLI), a developmental disorder

where language skills are affected without an obvious

developmental delay in other cognitive domains or hearing

loss, dynamically changing or rapidly presented informa-

tion in the auditory signal is not well represented relative to

children with typical language ability (Basu et al. 2010).

Children with autism show deficient encoding of naturally

occurring curvilinear vocal pitch trajectories (Russo et al.

2008, 2009a). In addition, the brainstem response to speech

signals has also been shown to be a significant predictor of

speech perception in challenging listening environments

(Anderson and Kraus 2010a; Anderson et al. 2010a, b,

2011, 2013b; Chandrasekaran et al. 2009; Parbery-Clark

et al. 2011; Song et al. 2011b; Bidelman and Krishnan

2010). Deficient brainstem encoding in noise has been

associated with poorer speech perceptual ability in younger

and older adults (Anderson and Kraus 2010c; Anderson

et al. 2012; Song et al. 2011a), in individuals with dyslexia

(Chandrasekaran et al. 2009; Hornickel and Kraus 2013;

Hornickel et al. 2009b), as well as individuals with audi-

tory processing deficits (Billiet and Bellis 2011). Taken

together, these results paint a complex clinical picture

related to brainstem encoding of behaviorally-relevant

signals in clinical populations. Why is a measure of

brainstem transcription of sounds predictive of (a) reading

ability (Banai et al. 2009b); (b) speech perception in noise

(Anderson and Kraus 2010a); (c) language learning

(Chandrasekaran et al. 2012b); (d) online auditory learning

(Skoe et al. 2013); (e) auditory selective attention (Hairston

et al. 2013; Krizman et al. 2012); and (f) phonological

processing ability (Hornickel et al. 2009a, 2011; Hornickel

and Kraus 2013)?

We argue that the complex clinical picture arises

because brainstem responses capture multiple mechanisms

that actively process the incoming signal. These mecha-

nisms may be differentially affected, resulting in various

clinical features. First, the local brainstem circuitry itself

may be at fault, resulting in poorer representation of

complex auditory signals within the auditory pathway.

Second, the local brainstem circuitry may be ‘hyperactive’

as a result of abnormal plastic changes induced by defec-

tive bottom-up processes (Bauer et al. 2008; Mulders et al.

2010; Anderson et al. 2013a; Skoe et al., in press). This has

been noted in cases of acoustic trauma to the cochlea,

resulting in hyperactive IC responses, which may be a

neurological basis for the percept of tinnitus. Third, a

deficit in predictive coding may result in less robust

brainstem responses (Chandrasekaran et al. 2009). It has

been theorized that individuals with dyslexia and other

language-based may have a core deficit in the mechanisms

underlying SSA (Chandrasekaran et al. 2009; Ahissar et al.

2006; Oganian and Ahissar 2012; Wijnen et al. 2012), and

in extracting predictable elements from the environment

(Evans et al. 2009). Such a deficit could result in ineffec-

tive contextual modulation of the incoming signal. Indeed,

we showed that children with developmental dyslexia

failed to ‘tune’ predictable signals, but did not differ from

typical readers in contexts that were unpredictable

(Chandrasekaran et al. 2009). Interestingly, we found that

the ability to use prior context to modulate cABRs were

highly correlated with performance in a speech-in-noise
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task, which required participants to tune into the signal

while ignoring the background noise. Finally, deficient

long-term stored representations may also lead to poorer

brainstem responses, as a result of a failure to ‘tune’ the

brainstem via corticofugal pathways, to critical informa-

tion-bearing elements within the signal. In such cases a

clinical profile may typically show no deficit in quiet lis-

tening conditions, but the addition of background noise

may disproportionately disrupt subcortical encoding. Thus,

deficient or ‘fuzzy’ learned auditory category structures, as

a result of neurological dysfunction, or typical aging, could

result in deficient brainstem encoding.

Determining the Neurobiology of Auditory Subcortical

Deficits

In animal models the relative contribution of top-down

modulation versus local processes is discerned using

pharmacological modifications, cortical cooling, or abla-

tion methods. However, none of these invasive methods are

appropriate in humans. How do we discern the relative

contribution of local versus top-down tuning deficits in

clinical populations? By modifying traditional analysis

methods used in eliciting auditory brainstem responses and

examining responses to stimuli of various behavioral rel-

evance, the underlying mechanisms may be unveiled.

Traditionally, cABR recordings have involved repetitive

presentation of thousands of stimuli. However, due to

several advances in analyses procedures, recent studies

examining cABRs have used more sophisticated designs

borrowed from the study of cortical auditory responses

(Chandrasekaran et al. 2009; Skoe and Kraus 2010a; Slabu

et al. 2012; Skoe et al. 2013). This has opened the possi-

bility of using more sophisticated paradigms that can target

online processing. For example, the impact of contextual

effects can be discerned by using a passive oddball para-

digm and comparing responses to ‘standards’ and ‘devi-

ants’ (Slabu et al. 2012). Finally, parametrically varying

the behavioral-relevance of the incoming signal, and pre-

senting signals in a variety of adverse listening conditions

may be useful ways to target the role of higher-order

constructs on subcortical signal encoding.

Model Limitations and Future Directions

Many of the propositions of the predictive tuning model are

derived from invasive studies on animal models. These

studies have yielded critical insights into the mechanisms

underlying subcortical plasticity. However, in human

models, invasive studies are not possible and our current

state of knowledge is largely derived from far-field EEG

recordings. This leads to several caveats. In animal models,

the neural locus (e.g. spatial resolution) can be clearly

established. Further, near instantaneous neural responsi-

tivity to auditory stimulation can be assessed. In contrast,

spatial resolution of EEG is poor, and the noisy nature of

the far-field method requires averaging across hundreds of

trial. Thus, the EEG methodology may not be able to

sufficiently capture intricate dynamics and subtle top-down

effects that drive experience-dependent plasticity. There-

fore, the extent to which many of the model proposals can

be effectively tested in human models is unclear. Yet, we

believe that our integrative model can serve as a test-bed to

bridge the large gap between model systems. One way of

moving forward is to use multimodal approaches in human

studies to overcome the limitations of single methods.

Recently, short-term experience-dependent plasticity in the

human IC was effectively captured using fMRI and EEG

responses collected from the same participant (although not

simultaneously) (Chandrasekaran et al. 2012a). Since fMRI

has reasonable spatial resolution, and EEG has excellent

temporal resolution, the combined information provided by

the two methods may more effectively inform mechanisms

underlying experience-dependent plasticity.

Conclusions

While the concept of auditory subcortical structures as

passive input–output pathways is outdated, current under-

standing of the mechanisms underlying subcortical plas-

ticity in humans requires more substantial empirical work.

Here, we outlined various forms of neural modulation

evidenced in animal models. Specifically, local reorgani-

zation, contextual modulation, and experience-dependent

modulations can all influence subcortical auditory pro-

cessing. We posited the role of predictive tuning in medi-

ating both local and top-down brainstem plasticity. The

extent to which these mechanisms can be evaluated in

humans may provide useful insights into the nature of

auditory processing deficits in clinical populations.
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Näätänen R (2003) Mismatch negativity: clinical research and

possible applications. Int J Psychophysiol 48(2):179–188

Naatanen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch

negativity (MMN) in basic research of central auditory process-

ing: a review. Clin Neurophysiol 118(12):2544–2590. doi:10.

1016/j.clinph.2007.04.026

Nelken I, Ulanovsky N (2007) Mismatch negativity and stimulus-

specific adaptation in animal models. J Psychophysiol

21(3):214–223. doi:10.1027/0269-8803.21.34.214

Oganian Y, Ahissar M (2012) Poor anchoring limits dyslexics’

perceptual, memory, and reading skills. Neuropsychologia

50(8):1895–1905. doi:10.1016/j.neuropsychologia.2012.04.014

Parbery-Clark A, Skoe E, Kraus N (2009) Musical experience limits

the degradative effects of background noise on the neural

processing of sound. J Neurosci 29(45):14100–14107. doi:10.

1523/JNEUROSCI.3256-09.2009

Parbery-Clark A, Strait DL, Kraus N (2011) Context-dependent

encoding in the auditory brainstem subserves enhanced speech-

in-noise perception in musicians. Neuropsychologia 49(12):

3338–3345. doi:10.1016/j.neuropsychologia.2011.08.007
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