Brain Topography, Volume 18, Number 1, Fall 2005 (©2005) 1
DOI: 10.1007/510548-005-7896-x

Multi-Resolution FOCUSS: A Source Imaging Technique
Applied to MEG Data

J.E. Moran*, S.M. Bowyer*#, and N. Tepley*+

Summary: A variety of techniques are available for imaging magnetoencephalographic (MEG) data to the corresponding cortical structures. Each per-
forms a functional optimization that includes mathematical and physical restrictions on source activity. Unlike other imaging techniques,
MR-FOCUSS (Multi-Resolution FOCal Underdetermined System Solution) utilizes a wavelet statistical operator that allows spatial resolution to be
chosen appropriately for focal or extended sources. Control of focal imaging properties is achieved by specifying P in an /p norm distribution template
used to construct the wavelets. In addition, incorporation of a multi-resolution wavelet operator desensitizes the mathematical algorithm to noise,
(regularization). Like the FOCUSS imaging technique, an initial estimate of cortical activity is recursively enhanced to obtain the final high resolution
imaging results. Studies of model MEG data representing all regions of a realistic cortical model are performed to quantify MR-FOCUSS imaging
properties. Thesemodeled data studies included single and multiple dipole sources as well as an extended source model. Thus, MR-FOCUS$ is found
to be very effective for imaging language processing for pre-surgical planning and provides a high-resolution method to image sequential activation

of multiple correlated sources involved in language processing.
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Infroduction

The relationship between MEG sensor amplitudes
and amplitudes of the underlying brain electric sources
is:

b=by+n-Gqy+n 1)

The MEG data, b, is a column vector of M sensor am-
plitudes, which are mixtures of signal, b,, and noise, n.
The sources of the signals and their amplitudes, qs, are
not known. Assuming there are N sources, the column
vectors of the Mby N forward model gain matrix, G, re-
late the M sensor array measurements to the N sources in
units of magnetic measurement amplitude per unit of
source amplitude. For a specific array of sources, compo-
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nents of the gain matrix, G, can be accurately calculated
using a multi-sphere head model matched to local varia-
tion of the skull curvature (Leahy et al. 1998; van den
Broek et al. 1998; Uitert and Van Johnson 2002). How-
ever, for deep brain sources, it may be necessary to utilize
arealistichead model derived from anatomical magnetic
resonance imaging (MRI) studies (Mosher et al. 1999).
Equation 1is converted to a spatio-temporal equation by
replacing vectors, b and q,, with matrices, B and Q,,
whose columns correspond to successive time points.
Equation 1is insufficient for determining the source
amplitudes, q,, because only b is known. As a supple-
ment to Equation 1, two relatively distinct mathematical
models of brain activity are utilized. A multiple current
dipole model of brain activity (Hamaéldinen et al. 1993) is
based on the discrete mapping of function to a few small,
focal regions of cortex. These active regions are modeled
as current dipoles whose locations, orientations and am-
plitudes must be determined. Alternatively, neuronal
activity is treated as a current density continuum that is
modeled by a large lattice of dipole sources within the
gray mater of the brain (Hamaéldinen et al. 1993).
Constraining imaged brain activity to combinations
of a few independent compact sites may be inappropri-
ate for studies of complex mental tasks, pathological ac-
tivity, and sleep (Darvas et al. 2004). For these imaging
applications, a continuum model brain electric activity
accommodates extended and compact sources that may
be simultaneously active. Using either model, brain elec-



tric activity is estimated by minimizing (maximizing) an
imaging metric that includes contributions of individual
brain electric sources proportional to their participation
in the collective fulfillment of equation 1 as well as other
source activity constraints. Ideally, these constraints are
derived from prior knowledge of brain activity.

A current density imaging filter is constructed by
minimizing the norm of weighted source amplitudes
with Equation 1 as a constraint. A prototype current den-
sity imaging filter, H (Baillet et al. 2001; Liu et al. 2002), is
applied to MEG data, b, to obtain an estimate of cortical
activation, qegtimate:

q estimate = HP
H=WWTGT [c;wwT G” +@(nn” )]1

<I>(nnT ) is a regularization function such as AI @

The matrix, W, is an estimate of source activity that
has a covariance matrix, WWT. The matrix GWWTGT is
an estimate of the signal covariance matrix. The spatial
resolution of imaged activity is good only when WWT, is
an accurate estimate of the source covariance matrix. A
popular choice for WWT is the identity matrix, I. Thisisa
very poor source covariance estimate for imaging focal
source activity.

Methodologies have been developed for altering the
covariance matrix, WWT, to address current density im-
aging blur. One method with great potential utilizes cor-
responding functional MRI (fMRI) results to estimate the
source covariance matrix, WWT (Dale et al. 2000; Liu et al.
1998). However, the efficacy of this approach is limited
because the mathematical relationships between MEG
imaged activity and fMRI imaged activity are poorly es-
tablished (Horwitz and Poeppel 2002). Another ap-
proach uses the MEG imaging results of equation 2 to
recursively update the estimated source covariance ma-
trix, WWT. The Focal Underdetermined System Solver
(FOCUSS) imaging technique (Gorodnitsky et al. 1995;
Gorodnitsky and Rao 1997) uses this recursive update
strategy to enhance imaging compact sources. The algo-
rithm was shown to generate a sparse solution in whicha
few sources, (less than the number of MEG sensors), have
nonzero amplitudes (Gorodnitsky et al. 1995). Localiza-
tion accuracy of FOCUSS is improved when the algo-
rithm is initialized with a source covariance matrix,
WWT, based on prior knowledge of the estimated source
activity (Gorodnitsky and Rao 1997; Rao and
Kreutz-Delgado 1999). Additional control of focal imag-
ing is obtained by formulating the FOCUSS technique as
a constrained minimization of a diversity measure,
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EF(q)=|q|’, which is the I, norm of q. This imposes a
constraint on the statistical distribution of cortical source
amplitudes (Rao et al. 2003). The exponent, P, controls
focal sparseness of solutions constructed by minimizing
EP(q). Imaged activity has fewer nonzero source ampli-
tudes when P is close to 0.

A different recursive imaging strategy utilizes
threshold elimination of low amplitude sources from the
cortical model combined with increased source grid den-
sity in high amplitude regions. Thus, a sequence of corti-
cal models is generated that progressively confines
imaged activity to regions of smaller size but increased
spatial resolution (Okada et al. 1992; Gavit et al. 2001).
Compared to the FOCUSS technique, elimination of low
amplitude sources increases the computational effi-
ciency. Also, spatial and temporal constrains are used to
minimize noise sensitivity of the algorithm (Gavit et al.
2001). Unfortunately, recursive threshold elimination
techniques can become unstable especially when the sig-
nal-to-noise ratio is low.

Recursively applied current density imaging tech-
niques incorporate two mathematical features important
for high resolution MEG source imaging. First, itis rela-
tively easy to incorporate prior knowledge of brain acti-
vation obtained using other MEG imaging techniques or
other imaging modalities such as fMRI. Second, they are
capable of high-resolution imaging of compact source ac-
tivity as well as extended regional activation.

We developed the current density imaging tech-
nique, MR-FOCUSS to alleviate the noise instability prob-
lem associated with recursive algorithms for MEG
imaging. In MR-FOCUSS, the dipole grid of cortical
sources is transformed into a multiresolution wavelet
model of the cortex. In this source basis, the signal con-
tent of the data is preferentially imaged using high spatial
resolution wavelets while noise is excluded. In contrast,
noise is weakly coupled to the lowest resolution wavelet
structures, which act as low-pass spatial filters. The small
amount of noise incorporated in these wavelets is spread
over large regions at very low amplitude. This wavelet
source basis is shared with our 2DII imaging technique
(Moran and Tepley 2000). However, MR-FOCUSS is sig-
nificantly faster than 2DII because the wavelet subspace
basis vectors are calculated once for all MEG data that is
imaged and MR-FOCUSS converges in significantly
fewer steps than 2DII. Further, MR-FOCUSS enables the
focal imaging properties of the algorithm to be selected
by specifying the [, norm of an imaging metric used to
construct the wavelet source template. This method of fo-
cal imaging control is similar to the choice of the [, norm
controlling image sparseness in the FOCUSS algorithm
(Rao et al. 2003).
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Methods

MR-FOCUSS Imaging Algorithm

MR-FOCUSS iteratively updates an estimate of cor-
tical source amplitudes, q®, (the superscript corresponds
to the step number within the iterative solution se-
quence). The forward calculated sensor amplitudes are
b® = Gq® for the source distribution, q@. The residual
vector, r), is the difference between the data, b, and b®.
Starting with an initial estimate of source activity, q©,
the goal of the MR-FOCUSS algorithm is to construct a
source structure estimate, q¢ *1), such that r +1 is a good
estimate of the noise, n. The noise, n, is assumed to be
spatially uncorrelated with the signal, bg, and with all the
forward calculated signals in the gain matrix, G, of active
cortical sources. The imaging algorithm constructs the
vector, b)), by projecting the data, b, onto a
multi-resolution solution subspace, Gp, with 1@ in the
null space of Gp. Therefore, b®, which estimates bg, is or-
thogonal to the residual r), which estimates the noise, n,
and the inner product of these vectors can be rewritten as
the inner product of two orthogonal source vectors, g
and q9.

p® rO- g GT@=q®" g®

_Z[q(x) o], Z[q(x)] =0 withq®

=GT®
©)

The weighted correlation vector, q - 9 = diag(q®) q?
is composed of the element by element products of the
vectors, @ and q¥. The vector q¥ incorporates both
source amplitudes and correlations l%etween signals of
sources and the residual. From equation 3, the probabll-
ity density distribution of the amplitudes of q“l has a
mean of zero.

Control of the focal imaging properties is introduced
by modeling the probability density distribution of the
components of qq Y with the function:

. b6
i =C 2[32
Pan)=cs @

The function f(qg;) = PPTq®, includes the
multiresolution statistical operator, PP".

The matrix P contains a set of 8 multiresolution
wavelet vectors, which are constructed using a statistical

7P
density distribution template, Mp(z) = [Ae 1] 0<p 52].

The exponent P of the distribution controls the focal im-
aging properties of MR-FOCUSS. The focal imaging pa-
rameter, P, is an input parameter of the MR-FOCUSS
algorithm. The wavelet matrix is designated with the let-
ter, P, because the wavelet vectors incorporate the statis-
tical properties corresponding to the parameter, P, into
the MR-FOCUSS solution. Details of constructing Mp(z)
and multiresolution wavelet matrix, P, are in the appen-
dix. Prior to multiplication by the operator, PPT, the sta-
tistical operator, f(q 9, alters the order index, k, of the

elements of the vector, q 4 @ such that these elements are

placed in rank order (most negative to most positive).
The rank ordered index of each source is related to the
old index by [rank_index = f{k)].

f([ q(1)] ) place in rank order ’l_q 1('2 ke
rank_ index = f(k) )

Inequation 6, the relationships between q(‘) and, q%
and q@1 and the columns of the gain matrix, G are main-
tained by their rearrangement and use in all following
equations.

[2°], = [8° ] s

(i+1) (i+1)
[q ]k - [q ]rank_ index
[gxlgxlgx]k —)[gx’gx/gx]rank_index (6)
The residual, r) estimates the noise, n, when @+

maximizes the probability that all elements of q(‘) are
zero.

q %" =arg maxlog p( q(‘) ): 0) =
a*=argmirff(af )| ™
After applying f(qq 9 in equations 5 and 6:

o -~ 12 .
q %V that minimizes "I’PT qﬂi =q giTPP Tpp Tqﬁ‘) =

q(‘)TPPT 9 with wavelet basis vectors =

P=[POIP11---:P7] PTP=I (8)

Next qﬁi is replaced with diag(q®)G™r® to obtain:



q4" that minimizes
T i) ~T T T i+l
[b Ggo -q8™GIGg ][(;Qb-c;QGQ qd* )]
with:
i+1)T i+
I‘( +1) =bT _q(Q l)Ga
Gg =Gdiag(q? )P =GQ
Q= diag (q @ )P
q(i+1) =Q q gﬂ) (9)

The solution of equation 9 is a least-squares solution
for the multiresolution source amplitudes:

a§” -[636e] GEp
(i+) _ (+) _ g @ (i+1)
q Qqg iag( q q9 (10)

In our implementation of MR-FOCUSS, the matrix
inversion in equation 10 is avoided by a conjugate gradi-
ent solution (Moran and Tepley 2001) of
Ga b= ng Gq qg“) for the source amplitudes, qgu) .
Note the source estimate, qi*1, is a modification of the
source estimate of the previous step, q®), because the first
column vector of the matrix, Q, is vNq® where N is the
number of cortical model sources. Therefore, an
MR-FOCUSS solution includes an attenuated version of
the initial source estimate.

_ The solution of equation 10 minimizes the norm of
q(‘) . However, the local minimum of the norm of the re-
sidual field, ¥ is used to determine the iteration end point
of the MR-FOCUSS algorithm. This algorithm end point is
used to avoid imaging noise. Usually the magnitude of
both q 93 and 1) decrease during the first 3 iterative steps.
The algorithm is terminated when further modification of
the initial source estimate fails to reduce the magnitude of
the residual, rf). If the initial source estimate is very poor,
the amplitude of the residual will often be large. The de-
pendence of MR-FOCUSS solutions on the initial estimate
of source activity is shared with other current density im-
aging techniques (Baillet et al. 2001; Liu et al. 1998; Liu et
al. 2002; Dale et al. 2000). Averaging multiple
MR-FOCUSS solutions constructed from a set of initial
source estimates, which differ by random perturbations of
the source amplitudes can be useful for minimizing the in-
fluence of initialization bias (Moran and Tepley 2000).
Other procedures can be used to extract statistically signif-
icant solution components (Schmidt et al. 1999; Hanson
and Swithenby 2001; Darvas et al. 2004) from multiple bi-
ased solutions. A description of the single current dipole
metric used for source initialization of MR-FOCUSS solu-
tions presented in this paper is included in the appendix.

Moran et al.

Cortical Model

The MR-FOCUSS imaging technique utilizes MRI
anatomical images to construct a model of the subject’s
cortex (Moran et al. 2001). Prior to constructing this
model, the MRI (pixel) coordinates are co-registered to
MEG (cm) coordinates (positive x axis through the
bridge of the nose, positive y axis through the left ear ca-
nal, z axis through the top of the head). The cortical
model consists of 3472 sites distributed such that each
represents an equivalent amount of cortical gray mater,
figure 1A. In equation 1, the columns of the gain matrix,
G, are calculated using multiple spheres fit to local cur-
vature of the skull surface. For each cortical site, three
columns of G correspond to equivalent current dipoles
oriented in X, y, and z directions. Cortical model con-
struction is one module of our MEG_tools imaging soft-
ware (Moran and Tepley 2005).

Modeled MEG Data

MEG sensor amplitudes were calculated for 72 sim-
ulated dipole sources located throughout a cortical
model constructed from anatomical MRI volumetric
data of a normal subject, figure 1B. The orientation of
each source was adjusted to maximize signal power in
the MEG sensor array, shown in figure 1C. In addition,
source amplitudes were modified such that all had the
same maximum sensor amplitude. MR-FOCUSS solu-

" tions were constructed for these signals with and with-

out added random noise. Noise was normally
distributed with mean of zero and amplitude adjusted
such that the noise power was 150% of the signal power.
A model of signal averaged MEG data was created by
combining the signal of a right anterior dipole source
with an average of 100 epochs of MEG sensor noise in-
cluding environmental artifact.

For these data the MEG sensor noise averaged 17 %
of the dipole signal power. In addition, MR-FOCUSS so-
lutions were constructed for an extended source model
that was created by summing MEG sensor amplitudes
from 270 cortical model sites.

Language Processing Study

MR-FOCUSS was used to image MEG recordings of
cortical activity acquired while a verb generation task
was performed by subjects. The focal imaging parameter
was P = 0.6 and amplitudes above 20% of maximum am-
plitude were included in the final solutions. Twenty so-
lutions were averaged for each time point with the initial
estimate of cortical activity consisted of random ampli-
tudes (Moran and Tepley 2000). The mean initialization
amplitude of sources is zero with random source initial-
ization. Therefore, imaging error associated with a sin-
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Figure 1. (A) The forward model was calculated for 3472
locations distributed to match the cortical gray matter, as
shownin this figure. (B) The 72 dipole sources are uniformly
distributed within the cortical gray mater with orientations
that maximize signal power in the MEG sensor array. (C)
The proximity of the MEG sensor array to the cortical
model is shown.

gle poor source estimate is avoided. Further, imaging
low amplitude source activity is often enhanced because
high amplitude sources have low initialization weights
in some of the 20 solutions. However, MR-FOCUSS im-
ages constructed with this initialization strategy retain a
small amount of random initialization noise (see discus-
sion following equation 10).

In this study, epochs of MEG data were recorded for
eighty presentations of concrete nouns [every day ob-
jects]. During each presentation the subject silently gen-
erated a verb that was linked to the noun (example: book
-read). A single average response of two seconds dura-
tion was created and band pass filtered, 3-70 Hz, with a
notch filter at 60 Hz to remove electronic and patient gen-
erated artifact.

Results: Modeled Data

Statistical Significance of Source Amplitudes

MR-FOCUSS solutions were constructed with focal
imaging parameters, P = [2.0, 1.0, 0.4, 0.2, 0.1, 0.05], for
simulated MEG data, withoutnoise from 72 single dipole
sources, shown in figure 1. A single current dipole met-
ric, described in the appendix, was used to initialize
these MR-FOCUSS solutions. The statistical distribu-
tions of sources versus source amplitudes as a percent of
the maximum source amplitude are shown in figure 2 for
focal imaging parameters, P =[2.0,0.4,0.2 and 0.05]. Dis-
tributions for all 72 MR-FOCUSS solutions were aver-
aged for this figure. In general, these lines are shifted
upward for deep sources and down for those close to the
measurement array. Usually we use a threshold of 20%of
maximum amplitude for including sources in
MR-FOCUSS solutions. With P = [2.0, 0.4, 0.05], these
MR-FOCUSS solutions had approximately [125, 84, 36]
of the 3472 sources above the 20% threshold.

Multiresolution Wavelet Operator

The mechanism by which imaging wavelets control
spatial resolution is shown in figure 3. Four of eight
wavelets sources from the first iteration of an
MR-FOCUSS solution for a right anterior single dipole
source are displayed. As this figure illustrates, the low
spatial resolution wavelet alters all cortical amplitudes
while the other wavelets perform a set of increasingly lo-
calized changes in source amplitudes. The amplitudes of
sources colored red are altered in opposite direction as
amplitude of the blue sources during the solution of
equation 10. The wavelet asymmetry enables large focal
changes of cortical activity to be balanced by a relatively
small alteration of amplitudes across amuch larger set of
sources, as in figure 3B and figure 3C. During subse-
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Figure 2. The relationship between the number of significantly active locationsimaged by MR-FOCUSS and imaging thresh-
old is shown in this figure. Also, the number of significant active sources Is affected by the focal imaging parameter, P,
which controls the statistical distribution of MR-FOCUSS solution amplitudes. For these MR-FOCUSS solutions, less than 3.6 %
of the 3472 locations are above a threshold of 20% of the maximum single source amplitude.

quentiterations, all sources are reassigned to theimaging
wavelets according to the rank order of imaging metric
amplitudes, qﬁi. Construction of the wavelets is de-
tailed in the appendix.

MR-FOCUSS Point Spread Function

For imaging filters, H, the point-spread function is
quantified by the blurred image estimate, qegimate = HGq
of a current dipole source, q, where HG (product of the
imaging filter, H, and gain matrix, G) is the resolution
matrix (Liu et al. 2002). For imaging filters, the
point-spread function depends on noise regularization
and how close the prior knowledge matrix, WWT,
matches the source covariance matrix.

MR-FOCUSS does not create an imaging filter.
Rather, the point-spread function of MR-FOCUSS was
quantified by imaging modeled MEG data from 72 single
dipole sources representing all regions of the cortical
model. The MR-FOCUSS point spread depends on the
focal imaging parameter, P used to construct the wavelet

matrix, Pand how closely the initial source estimate, 4@,
matches the actual source distribution.

For each MR-FOCUSS solution, the location of a
source was determined by averaging the ampli-
tude-weighted locations of all source activity above a
threshold of 20%. Next, the point-spread function was
quantified by determining a variance volume surrounding
each location. Variance volumes are constructed by per-
forming a principal component analysis (PCA) of the three
dimensional distribution of source amplitude about the
amplitude weighted location. Orientations of variance
volume axes are aligned with the eigen-vectors and outer
dimensions along these axes by the square root of the
eigen-values of the PCA decomposition (Gavit et al. 2001).
In figure 4, variance volumes are shown for MR-FOCUSS
solutions constructed with imaging parameter, P =2.0 (4A)
and P = 0.05 (4B). For one of the dipole sources, the
MR-FOCUSS solutions are displayed for P = 2.0 (figure 4C)
and P =0.05 (figure 4D). These solutions correspond to the
green variance volume in figure 4A and 4B.
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Figure 3 (Top). Four of eight imaging wavelets are depicted forimaging the signal of an anterior dipole during the first step
of the MR-FOCUSS dalgorithm The amplifudes of red and blue sources are altered in opposite directions. The wavelet (A)
performs low-resolution modifications of the entire cortical structure. In contrast, the wavelet (D) makes high-resolution
modifications of source amplitudes in the vicinity of the dipole location. Wavelets, (B) and (C) alter red structure at rela-
tively high-resolution and blue structure af low-resolution. After each iterative step, sources are reassigned as determined
by the evolving imaging metric amplitudes, qﬁz.

Figure 4 (Bottom). Source activation above a threshold of 20% of maximum single source amplitude is significantly less for
MR-FOCUSS solutions with the focal imaging parameter, P = 0.05 (B and F) compared to P =2.0 (A and E). For Aand B the
MEG data were free of noise. MEG data for E and F contained noise whose power was 150% of the signal power. Variance
volumes for sources above 20% threshold are displayed for MR-FOCUSS solutions of noise free data from all 72 sources. The
variance volumes for focal imaging parameter, P = 0.05 (D) are significantly smaller that those for P = 2.0 (C). The green
variance volume corresponds to the imaged activation shown in A and B.



Dipole Locadlization Accuracy

The localization accuracy of MR-FOCUSS is a func-
tion of source depth, solution threshold and the focal im-
aging parameter used to create the solution. In figure 5,
regression lines for localization error are plotted versus
distance from the cortical surface for different solution
thresholds. The multiple regression lines correspond to
different solution thresholds between 10 and 80% of
maximum amplitude with the thick regression line corre-
sponds to a threshold of 10%. Only the extremes of focal
imaging parameters, P = 2.0 (top), and P = 0.05, (bottom)
are shown. Results for other focal imaging parameters
are between these extremes. The correlation between the
field patterns of the MEG data and corresponding field
patterns of the summed activity of the MR-FOCUSS solu-
tions was 0.996 + 0.004. Because these are modeled data,
the deterioration in performance with depth is not due to
Forward model error. Rather, the location, shape and
size of variance volumes (figure 4) reflect differences inx,
y, an z spatial resolution of the MEG array with depth
and location combined with the relative adequacy of the
initial source estimate.

Sensitivity to Random Noise

In addition to signal, real MEG data contains random
noise, spatially correlated noise, and artifact.
MR-FOCUSS is optimized to be insensitive to random
noise (see equations 7 and 8). Insensitivity of
MR-FOCUSS to noise was demonstrated by imaging the
MEG data for each of the 72 sources mixed with zero mean
random noise such that the noise power was 120% of the
signal power. On average, forward calculated fields of
these MR-FOCUSS solutions excluded 51% (power) of
these very noisy data and their correlation with the em-
bedded noise free MEG data was 0.96 +0.04. The addition
of noise increased the localization error from 7 mm to ap-
proximately 17 mm and variance volume (point spread)
increased by a similar amount. Graphed in figure 6 are av-
erage imaging errors for all 72 sources, which include both
surface and deep sources. The effect of added noise on the
imaging results of one source are shown in figure 4E for P
= 2.0 and figure 4F for P = 0.05.

Imaging Interference , Multiple Source Activity

MEG data corresponding to the combination of two
dipoles can closely approximate MEG data from one
source, two separate sources, or more than two sources.
This increases the difficulty of generating a sufficiently
accurate initial estimate of source activity.

The MEG signal from the source imaged in figure 4A
was combined with the MEG signal from each of the other
sources to obtain 71 sets of MEG data. MR-FOCUSS solu-
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tions were generated for these data with the initial esti-
mate of source activity obtained using the single current
dipole metric method. The localization error for each of
the two sources was calculated and averaged for each so-
lution. The number of solutions versus two source local-
ization error is plotted in figure 7A. Included is a plot of
the residual power as a percent of the data power, which
is often large when MR-FOCUSS is poorly initialized.
These results show that deterioration of localization accu-
racy is associated with a rise in the amplitude of the resid-
ual power. In figure 7B, the number of solutions versus
localization accuracy is graphed for MR-FOCUSS solu-
tions of each source imaged separately. The average lo-
calization error was 8 mm for single source imaging
results and 18.3 mm for two dipole combinations.

Sensitivity to Real MEG Sensor Noise

MEG data was created by mixing the signal of a cur-
rent dipole in the right temporal cortex with 210 samples
of signal averaged MEG sensor noise. The noise power
averaged 17% of the signal power across a range of a
range of 5 to 42% . MR-FOCUSS solutions with P = [2.0
1.0,0.2, 0.1, 0.05] were constructed for each of the 210 sig-
nal and noise mixtures. Initial source estimates were gen-
erated by the single current dipole metric described in
the appendix. For these solutions, the average center of
imaged activity was 1.0 cm + 0.4 from the actual source
location compared to anaverage localization error of 0.66
cm + 0.3 for single current dipole imaging results.
MR-FOCUSS solutions excluded a significant fraction of
the noise during the imaging of these data. In figure 84,

the residual power, |r ®1°, of MR-FOCUSS solutions ver-

sus actual noise power is plotted. Most of the solution re-
sidual is noise. Therefore, in figure 8B, the correlation of
forward calculated MR-FOCUSS signals with the dipole
signal is greater than with the MEG data that is imaged.
In figure 8C, large changes in residual (noise) power are
associated with relatively small change in localization er-
ror. The percent of total gray mater represented by
sources above a 20% threshold (point spread) decreases
slightly with increased noise.

Imaging Extended Souces

The signal from the extended source, figure 9 (left
panel), was mixed with the 210 sets of MEG sensor noise
described in the previous section. The fit of an
MR-FOCUSS solution to the extended source visualized
in figure 9, was quantified by two methods. The percent
overlap of imaged and modeled source activity was quan-
tified by the percent of the imaged activity above thresh-
old that coincided with locations of the extended source.
For MR-FOCUSS solutions generated with P = [2.0, 0.1
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Figure 5. Imaging accuracy of MR-FOCUSS for surface and deep focal sources is altered by the focalimaging parameter
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and 0.05], and a 20% threshold, the overlap of imaged ac-
tivity on the source model was (78, 94, and 100%). A sec-
ond measure of fit is the percent of the extended source
corresponding to imaged activity. For P = [2.0, 0.1 and
0.05], and a 20% threshold, (51, 35 and 15%) of the mod-
eled source locations exactly matched the imaged activity.

Results: Cortical Language Processing

Language processing is a complex task that involves
both sequential and simultaneous cortical activity in lan-
guage specific regions of the brain. The results presented
are from an ongoing study (Bowyer et al. 2004). MEG
data were collected from 18 right-handed control subjects
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Figure 6. For MEG data including 120% noise, MR-FOCUSS imaging error increased from 7 to 17 mm. The point spread,
quantified by the variance volume, increased by a similar amount. Imaging results for surface and deep sources were av-
eraged for this figure.
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Figure 7. The average multiple source localization error of 71 solutions (A) was 18 mm. The largest errors corresponded to
compilete failure to identify one of the sources. These solutions had high residual error because MR-FOCUSS was unable to
modify the initial poor estimate sufficiently to fit the MEG data. The Single source localization error averaged 8 mm for solu-
tions (B). The higher errors corresponded to deep sources.
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Figure 8. The fraction of the MEG data not imaged increases proportional o the amount of real sensor noise and artifact
(A). Therefore, the signal of imaged activity matches the dipole signal better than the MEG data that s imaged (B). Local-
ization errorincreases by 1 cm when the residual power increases from 5 to 25% of data power (C). The volume of cortexin-
cluded in the solution (point spread), decreases slightly with increased noise (D).

and 24 right-handed, epileptic patients performing the task, maximum activation in the superior temporal gyrus
verb generation task described earlier. For MR-FOCUSS (STG) and planum temporale occurred at 239 + 31 ms af-
images of these subjects performing the verb generation ter visual presentation of the noun. Maximum activation
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Figure 9 (Top). The extended source was modeled by 270 dipoles. The lines in the figure correspond to the orientation of
each source (left). The region including sources above a threshold of 20% of maximum single source amplitude is large for
the MR-FOCUSS solution generated with the imaging parameter, P = 2.0, and significantly smaller forimaging parameter, P

=0.05.

Figure 10 (Bottom). In this example of MR-FOCUSS imaging of cortical language processing (Verb Generation Task), the
maximum response in the superior temporal gyrus (STG) occurred 247 ms after visual presentation of noun stimulus. Red
represents the most intense cortical activation. Blue corresponds to 20% of the maximum amplitude in the red region.

in the lateral prefrontal cortex (PFC) occurred later at 436
+40 ms. These results are consistent with other language
mapping studies (Helenius et al. 1998; Levelt et al. 1998).
Figure 10 depicts the MR-FOCUSS image of peak cortical
activation in the left STG for one subject at 247 ms after
stimulus onset. The MRI slice display format of figure 10
is useful for relating functional locations to border zones
and regions of eloquent tissue when MEG studies are re-
quested for use in surgical planning.

Discussion

Rank ordered mapping of sources onto a partial
wavelet decomposition matrix, P, differentiates

MR-FOCUSS from other imaging techniques. This is a
non-linear order statistic filtering operation (Haweel and
Clarkson 1992; Fu et al. 1994; Flaig et al. 1998) that mini-
mizes noise sensitivity and provides control over the fo-
cal nature of the imaging results. The studies of
MR-FOCUSS imaging performance show thatadditional
noise regularization is not required.

MR-FOCUSS and other current density imaging
techniques require an initial estimate of cortical activity
in which truth is sufficiently represented. Therefore,
when available, it is useful to utilize other prior knowl-
edge of cortical activity to construct the initial estimate of
cortical activity. This is a major motivating factor for in-
tegrating fMRI and PET images of activation as func-



tional constraints for MEG imaging. To increase the
likelihood of including the real solution, evaluations of
MR-FOCUSS in this study were initialized with a very
low-resolution estimate of cortical activation produced
by the single current dipole metric. The results show
MR-FOCUSS imaging accuracy was relatively high with
this initialization and that imaging failure can be identi-
fied by the associated high residual power. Initialization
bias error can be avoided by initializing MR-FOCUSS
with random source amplitudes. However, this strategy
requires averaging multiple solutions to obtain each
MR-FOCUSS image of activity.

While MR-FOCUSS images a single instance of MEG
array data, temporal differences of source activity can be
used to enhance imaging both spatial locations of sources
and the time course of their signals. This canbe achieved
by using covariance based MEG imaging techniques
such as Multiple Signal Classification (MUSIC) (Mosher
et al. 1992; Mosher et al. 1999; Mosher and Leahy 1999)
and noise normalized beamformers (Sekihara et al. 2001)
to create initial estimates of source activity. However,
even greater gains of MR-FOCUSS imaging performance
and efficiency are obtained by preprocessing the MEG
data with an ICA (Independent Component Analysis)
source separation technique (Moran et al. 2004). These
MEG-ICA field patterns often correspond to signals from
one or a few spatially distinct sources, which can be im-
aged accurately using MR-FOCUSS as implemented in
this imaging evaluation.

Wehave used MR-FOCUSS in MEG imaging studies
of Epilepsy, sensory and motor activity and language
processing. In particular, MR-FOCUSS provides a
high-resolution method to image sequential activation of
multiple correlated sources involved in language pro-
cessing. Determining locations of important functional
regions is particularly important when surgery is being
considered or is required. To facilitate these studies, we
have developed a complete MEG imaging software
package that canbe obtained, at no cost, from our website
(Moran and Tepley 2005). In addition to MR-FOCUSS,
the software includes tools for data visualization, import
of MRI volumetric data, construction of a three dimen-
sional head model and cortical model with approxi-
mately 3500 points distributed to match the distribution
of cortical gray mater extracted from MRI data. The gain
matrix, G, is calculated for the sources. Solutions can be
displayed in MRI overlay or 3D formats and movie se-
quences can be created for imaging results. Graphical in-
terfaces are used for all data import, processing and
display of data as well as imaging using MR-FOCUSS
and other techniques.

Moran et al.

Appendix

Construction: Multiresolution Basis Vectors

The MR-FOCUSS wavelet vectors are created using
the statistical djstribution of an imaging metric template,
Mgp(z) =| Ae 14" ,0<p <2| The coefficient, P is specified
such that the focal imaging properties of MR-FOCUSS are
matched to theimaging task. For the density distribution,
M;(z), plotting the amplitudes, [z, j=1,.., N], (horizontal
axis) versus element rank order, N =[1,..N], (vertical axis)
creates a cumulative distribution graph, N(z), with the el-
ement rank order represented as a function of the metric
amplitude. Alternatively, the cumulative distribution can
be represented as Z(N), where the metric amplitude is a
function of the rank order of the elements. The second
representation of the cumulative distribution is used in
MR-FOCUSS. In figure 11, the vertical lines mark the bor-
ders of eight equal intervals of the metric amplitude
range, (horizontal axis) resolved by the first four octaves
of a Haar wavelet transform [48] of N(z). However, the
grouping of sources along the vertical axis, determined by
the corresponding horizontal lines in figure 11, is required
for MEG imaging. Itis important to note that sources with
large amplitudes are in much smaller groupings, (high
resolution). A Haar transform of the cumulative distribu-
tion with respect to source amplitude, N(z), (along the
horizontal axis) is equivalent to a MR-FOCUSS wavelet
transform of the cumulative distribution with respect to
source index, Z(N), (along the vertical axis). For MEG im-
aging, sources are easily mapped to these MR-FOCUSS
wavelets, P, by reordering the gain matrix, G, and source
vector, q%, according to the rank order of the imaging met-
ric, qrq , that is updated each recursive step. Additional
details of the construction of the MR-FOCUSS wavelet ba-
sis, P = [Py, Py ,... P1], from Mp is is described in the 2DII
reference(Moran and Tepley 2000).

The assignment of sources to these wavelets creates
a set of 8 multiresolution source structures. [qx =
diag(qY)px, k=0, .., 7], where q®@ has been placed inrank
order of i 1magmg metnc amphtudes, , and each qy
has a gain vector ggix= Gdlag(q ngk These
multiresolution gain matrix vectors, Gg = [ggo,--- 8w+
8q7], have quadrupole characteristics because the wave-
let structures alter the contribution of one set of sources
relative to another set of sources. Good noise rejection
and spatial resolution are obtained by using only four oc-
taves of wavelets (8 wavelet vectors). Using 16 wavelet
vectors slows MR-FOCUSS calculations significantly
without altering the results. With 4 wavelets, spatial res-
olution is often degraded.

For an N dimensional vector space, the N by N
multiresolution basis, P = [Py, Py, .., Py], is a complete
orthonormal basis with:
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Figure 11. The cumulative distribution of imaging metric amplitudes is shown for the generalized Gaussian distribution, (P =
1.0).The verticallines correspond to segments of the distribution resolved by four octaves of aHaar wavelet transform with
respect to the metric amplitude axis. The horizontal lines show the corresponding non-uniform MR-FOCUSS wavelet divi-

sion of the cortical sources.

PTP=I\=PPT
Iy is an N by N identity matrix

For the low resolution subspace, P = [Py, Py, ... Py],
with L <N, the matrix relationships become:

PP=I,
I, is an L by L matrix
(( 1 1 )
m T omy
Lo 0 0
1 1
PPT = 0 0
1 1
0 0| : -
L
\ o )

my,...,my, are the number of element in structures at
finest resolution level

Current Dipole Metric Initialization

MR-FOCUSS requires an initial estimate of cortical
activity, q©, which is subsequently modified by the
MR-FOCUSS algorithm until the residual field has been
significantly depleted of signal. Thus, it is important to
use a good estimate of the true source distribution for
q©@, which is based on the maximum amount of prior in-
formation of brain activity. Some prior information can
be implemented as a binary statistical constraint. For ex-
ample, in our MR-FOCUSS implementation, the cortical
model is constructed such that sites within cortical gray
mater have a 100% probability of being capable of gener-
ating MEG signals and all other locations have 0% proba-
bility. However, the x,y,z amplitudes, qi = (G Quyr icz)
for these gray mater source locations must be estimated
using other imaging techniques then modified by an esti-
mate of P(qy | b, 0), the probability of qy activity given
the MEG data, b and other prior information parameters,
0. For example, 6 could be the orientation of the source
relative to the cortical surface or an fMRI activation
z-score. Typical, only other MEG imaging techniques
are used to calculate an initial estimate of activity, qy, for
each cortical model location. Then, Bayes’ rule can be
used to calculate P( q, | b) such the MR-FOCUSS initial-
ization becomes: '



q(0) __'_p(bl ‘lk)'P(‘lk)'[‘Ikrk =1,L,N]

where
P(qx |b) U q;(,),')P(qk)

P(b) = normalization constant

Bayes' Rule

For the MR-FOCUSS imaging results in this paper,
an initial estimate of qy for each source location was ob-
tained using a best-fit single equivalent current dipole
(ECD) in a spherical conductor matched to the local skull
curvature. These calculated ECD amplitude tend to be
large for sources deep in the brain and relatively small for
those near the cortical surface due to the approximate in-
verse distance squared relationship between source am-
plitude and magnetic field strength measured by a
magnetometer detector. However, real probability dis-
tribution of brain activity amplitudes, P(qy), is expected
to be independent of location. If independent cortical
sources are composed of randomly active neurons with
stable average firing rates then the probability, P(qy), isa
Poisson distribution. For the MR-FOCUSS technique a
Poisson distribution model of P(qy) was approximated
by a Normal distribution with the same mean and stan-
dard deviation as the calculated ECD amplitudes. Fur-
ther, for each source location the ECD correlation
coefficient between the MEG data and the forward
model of the individual source activity was used as an es-
timate of.P(b| qk) .
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