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Abstract
This study investigates the parameterization of the geostrophic drag law (GDL) for con-
ventionally neutral atmospheric boundary layers (CNBLs). Utilizing large eddy simulations,
we confirm that in CNBLs capped by a potential temperature inversion, the boundary-layer
height scales as u∗/

√
N f , where u∗ represents the friction velocity, N the free-atmosphere

Brunt–Väisälä frequency, and f the Coriolis parameter. Additionally, we confirm that the
wind gradients normalized by the Brunt–Väisälä frequency have universal profiles above
the surface layer. Leveraging these physical insights, we derived analytical expressions for
the GDL coefficients A and B, correcting the earlier form of Zilitinkevich and Esau (Q J
R Meteorol Soc 131:1863–1892, 2005). These expressions for A and B have been vali-
dated numerically, ensuring their accuracy in representing the geostrophic drag coefficient
u∗/G (G is the geostrophic wind speed) and the cross-isobaric angle. This work extends
the range for which the GDL has been validated up to u∗/G = [0.019, 0.047]. This further
supports the application of GDL to CNBLs over a broader range of u∗/G, which is useful
for meteorological applications such as wind energy.

Keywords Atmospheric boundary layer · Conventionally neutral · Geostrophic drag law ·
Large eddy simulations

1 Introduction

The atmospheric boundary layer (ABL) is the lower part of the tropospherewheremost human
activity and biological processes occur (Katul et al. 2011). The flow dynamics in the ABL
are influenced by the Earth’s surface, Coriolis force, and thermal stratification (Monin 1970).
When the potential temperature flux on the surface is approximately negligible and the flow
develops against a stable background stratification, the ABL is considered conventionally
neutral (CNBL, Zilitinkevich and Esau 2002). CNBLs are commonly observed, for example,

B Luoqin Liu
luoqinliu@ustc.edu.cn

1 Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027,
Anhui, China

2 Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, J. M. Burgers
Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 Enschede, AE, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10546-024-00878-6&domain=pdf
http://orcid.org/0000-0002-6020-3702
http://orcid.org/0000-0002-0737-6460
http://orcid.org/0000-0001-6976-5704


37 Page 2 of 15 L. Liu et al.

over sea, above large lakes, and over land during the transition period after sunset or on
cloudy days with powerful winds (Allaerts and Meyers 2017; Liu and Stevens 2022)

For simplicity, we neglect the effects of baroclinicity, clouds, subsidence, and nonsta-
tionarity and focus on the Northern Hemisphere, where the Coriolis parameter f > 0.
Then, it follows from dimensional analysis that the dynamics in CNBLs are governed by
two independent dimensionless parameters, e.g. the Rossby number Ro = u∗/( f z0) and
the Zilitinkevich number Zi = N/ f (Esau 2004), where u∗ is the friction velocity, z0 is
the roughness length, and N is the free-atmosphere Brunt–Väisälä frequency. Note that the
ratio N/ f is sometimes called the inverse Prandtl ratio (Dritschel and McKiver 2015) and
is closely related to the square root of the slope Burger number (Shapiro and Fedorovich
2008). In this study, the coordinate system is oriented such that the streamwise direction is
parallel to the wind direction at the surface, and the spanwise direction is orthogonal to the
streamwise and vertical directions. Thus, the geostrophic drag law (GDL) for CNBLs can be
written as (e.g. Zilitinkevich and Esau 2005; Liu et al. 2021a),

A(Zi) = ln Ro − κUg

u∗
, (1a)

B(Zi) = −κVg

u∗
, (1b)

where κ = 0.4 is the von Kármán constant, A and B are the GDL coefficients,1 and (Ug, Vg)

are the streamwise and spanwise components of the geostrophic wind. If the expressions of A
and B are already known, the geostrophic drag coefficient u∗/G, where G = (U 2

g + V 2
g )1/2

is the geostrophic wind speed, and the cross-isobaric angle α0 = arctan (|Vg/Ug|) can be
determined from Eq. (1).

In general, the GDL coefficients A and B can be parameterized through two approaches.
One is by first parameterizing the eddy viscosity (Ellison 1955; Krishna 1980; Kadantsev
et al. 2021), and the other is by first parameterizing the mean wind velocity (Zilitinkevich
1989a, b; Zilitinkevich et al. 1998; Narasimhan et al. 2024). Then, an asymptotic matching
technique is used to determine the final expressions of the GDL coefficients A and B. For
example, Ellison (1955) derived analytical expressions for A and B by solving the Ekman
equations under the assumption of a linear eddy viscosity profile throughout the boundary
layer. Zilitinkevich (1989b, a) used log-polynomial approximations for the wind and temper-
ature profiles in combination with the requirement that these are asymptotically consistent
with the well-established Monin–Obukhov surface-layer flux-profile relationships to obtain
the GDL and heat transfer laws for stable ABLs. Zilitinkevich et al. (1998) extended the
ideas of Zilitinkevich (1989a, b) to account for the effect of static stability in the free flow
above the ABL. They expressed the GDL coefficients A and B with composite stability
parameters, which are constructed through the interpolation between the Ekman length scale
L f = u∗/ f (Ekman 1905), the external static-stability length scale Ln = u∗/N (Kitaig-
orodskii and Joffre 1988), and the Obukhov length scale Ls = −u3∗/(κβqs) (Obukhov 1946)
with qs denoting the surface heat flux and β = g/θ0 the buoyancy parameter. Here, g is the
gravity acceleration and θ0 is the reference potential temperature. Later, Zilitinkevich and
Esau (2005) proposed the general expressions of the coefficients A and B for stable ABLs
and CNBLs,

1 Note that the GDL coefficients A and B defined by Eq. (1) are identical to ˜A and ˜B (but different from A
and B) in Zilitinkevich and Esau (2005). For the relation between (˜A, ˜B) and (A, B) please refer to Eq. (9) in
Zilitinkevich and Esau (2005).
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A = −amA + ln (a0 + mA) − ln

(

f h

u∗

)

, (2a)

B = f h

u∗
(b0 + bm2

B). (2b)

Here (a, a0, b, b0) are empirical constants, and (mA,mB) are the composite stratification
parameters for the coefficients (A, B), respectively,

m2
A

h2
= 1

L2
s

+ c2na
L2
n

+ c2f a
L2

f

, (3a)

m2
B

h2
= 1

L2
s

+ c2nb
L2
n

+ c2f b
L2

f

, (3b)

where (c f a, c f b, cna, cnb) are empirical constants.
To obtain analytic expressions for A and B, the boundary-layer height h in Eqs. (2)

and (3) has to be parameterized. In general, two ABL-depth scales were proposed for the
ABL dominated by the static stability aloft: one is h ∝ u∗/

√
N f (Pollard et al. 1973),

and the other is h ∝ u∗/N (Kitaigorodskii and Joffre 1988). Using energy considerations,
Zilitinkevich and Mironov (1996) developed a simple equation for the equilibrium height
of the stable ABLs, and gave a comprehensive discussion of the CNBL-depth scales. In
particular, they advocated the scale u∗/N = Ln , where the ABL depth ceases to depend
on the Coriolis parameter if the static stability is sufficiently strong. Note that this scaling
has also been demonstrated by Pedersen et al. (2014) using large eddy simulations (LES).
Using momentum considerations, Zilitinkevich et al. (2002) advocated the scale u∗/

√
N f ,

where the ABL depth depends on the Coriolis parameter regardless of the strength of static
stability. Mironov and Fedorovich (2010) revisited this problem and obtained a more general
power-law formulation for the CNBL depth, viz., h/Ln ∝ (N/ f )δ , where δ is the exponent.
With δ = 0 and δ = 1/2, the formulations by Kitaigorodskii and Joffre (1988) and by Pollard
et al. (1973), respectively, are recovered. However, as convincingly argued by Mironov and
Fedorovich (2010), δ can assume any value in the range 0 ≤ δ < 1. Importantly, δ cannot be
determined by dimensional analysis. An exact solution to the problem in question is needed,
which is still an active research topic. For example, Zilitinkevich et al. (2007, 2012) usually
parameterized the boundary-layer height h as:

L2
f

h2
= 1

c2r
+ Zi

c2n
+ μ

c2s
, (4)

where (cr , cn, cs) are empirical constants and μ = L f /Ls is the Kazanski-Monin parameter
(Kazanski and Monin 1961). Note that for CNBLs Eq. (4) has been well validated against
simulations (Liu et al. 2021a) and field measurement data (Uttal et al. 2002; Zilitinkevich
and Esau 2009).

The A and B coefficients from the GDL play a critical role in estimating available wind
resources at higher altitudes through vertical extrapolation (Gryning et al. 2007; Kelly and
Gryning 2010; Kelly and Troen 2016) or at different sites through horizontal extrapolation
(Troen and Petersen 1989; Kelly and Jørgensen 2017), and in predicting the turbulent flows
over wind farms (Li et al. 2022) and canopies. Liu et al. (2021a) numerically revisited the
analytical expressions of A and B for CNBLs proposed by Zilitinkevich and Esau (2005). As
they found significant deviations between the simulation results and the original parameter-
ization of the GDL, the authors updated the empirical constants involved in Eqs. (2)-(4). In
their simulations, only the free atmospheric lapse rate and latitude were varied, and thus only
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a limited range of the geostrophic drag coefficient was covered. Liu et al. (2021b) performed
simulations by varying the lapse rate and roughness length, but they considered only six cases
and didn’t investigate the GDL. To further evaluate the validity of the GDL, systematic sim-
ulations that cover a wide range of atmospheric parameters are required, which we provide
in this study.

The GDL parameterization of Eqs. (2)–(4) has a relatively complicated form, which
includes ten empirical constants for CNBLs. This poses significant challenges in determining
the values of these empirical constants. For example, Liu et al. (2021a) had to empirically
determine the values for a and b such that the asymptotic behavior of A and B is well captured
in the high Zi limit, and the correction constants a0 and b0 are set such that A and B also
capture the low Zi limit well. Although this approach sometimes works, it is difficult to adapt
to other flow configurations, such as wind farms or canopy flows, as it requires a lot of data
and is technically challenging. As a compromise, Li et al. (2022) had to resort to numerically
fitting the GDL coefficients instead of analytically updating the GDL to wind farm flows.
Therefore, it is necessary to further investigate the GDL for CNBLs theoretically.

The organization of the paper is as follows. In Sect. 2 we derive analytical expressions of
A and B. In Sect. 3 we discuss the numerical method and LES setup for CNBLs, which covers
a much wider range of u∗/G than considered previously. In Sect. 4 we validate the derived
expressions of A and B with the simulation data. In Sect. 5 we compare the geostrophic
drag coefficient and the cross-isobaric angle obtained from the simulations and theoretical
predictions. We conclude with a summary of the main findings in Sect. 6.

2 Theoretical Model

2.1 Parametrization of the Boundary-Layer Height

In this study, we use the boundary layer height parametrization proposed by Pollard et al.
(1973). We adopt this parametrization as it is derived frommomentum considerations, which
also form the basis of the GDL derivation. Therefore, we parameterize the boundary-layer
depth as:

h

Ln
= cn

√
Zi, (5)

where the constant cn = 23/4 is determined theoretically by Pollard et al. (1973). Note that
Eq. (5) is an asymptotic case of Eq. (4) since themiddle term of Eq. (4) becomes the dominant
one for Zi � 1.

2.2 Analytical Expression of A

We first determine the expression of A. In the surface layer, the mean streamwise velocityU
can be written as:

κU

u∗
= ln

(

z

z0

)

. (6)

Above the surface layer, Zilitinkevich and Esau (2005) assumed the streamwise velocity
gradient scales as N ,
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1

N

dU

dz
= 1

κ
fu(ξ), ξ = z

h
, (7)

where fu is presumed to be independent of Ro and Zi . We remark that Liu and Stevens
(2022) derived an analytical expression ofU that is valid in the entire boundary layer, which
indicates that fu is independent of Ro. However, the independence of fu from Zi is only
valid asymptotically when Zi � 1. Despite this, we continue to use Eq. (7) to derive the
analytical expression for A, evaluating its performance for Zi � 1.

Integrating Eq. (7) from a height z to the top of the boundary layer, we find:

κ

u∗
[Ug −U (z)] = h

Ln

∫ 1

ξ

fudξ
′. (8)

We further assume the mean streamwise velocity given by Eqs. (6) and (8) matches at some
height ξ = Ln/(c1h), where c1 is an empirical constant. Thus, by substituting Eq. (6) into
Eq. (8), there is:

κUg

u∗
= ln

(

Ln

c1z0

)

+ h

Ln

∫ 1

Ln
c1h

fudξ
′. (9)

Finally, substituting Eqs. (1a) and (5) into Eq. (9) and noting that L f /Ln = Zi , we obtain:

A = ln (c1Zi) − a1
√
Zi, (10)

where a1 = cn
∫ 1

1
c1cn

√
Zi

fudξ ′. Although a1 may depend slightly on Zi , we assume it to

be constant for simplicity. Note that this assumption implies that Ug/(hN ) retains a Zi-
dependence.

We remark that, Eq. (10) is the same as the first expression of Eq. (39) in Zilitinkevich and
Esau (2005),which is an asymptotic expression corresponding to Zi � 1.Due to its relatively
simple form, the performance of Eq. (10) at both moderate and high values of Zi is evaluated
below. In addition, by substituting Eq. (5) into Eq. (2a), we get A = ln (cna Zi)−acnacn

√
Zi

in the limit Zi � 1, which is the same as Eq. (10) when cna = c1 and acnacn = a1. This
indicates that the introduction of the correction constant a0 is not necessary for CNBLs.

2.3 Analytical Expression of B

To determine the analytical expression of B, we recall that:

dτy
dz

= f (U −Ug), (11)

where τy is the spanwise component of the total shear stress tensor. First, we focus on the
surface layer. Then, by substituting Eq. (6) into Eq. (11) and combining the result with
Eq. (1a) there is:

κ

f u∗
dτy
dz

= A + ln

(

z

L f

)

. (12)

The bottom boundary condition of Eq. (12) is τy(0) = 0. Integrating Eq. (12) from 0 to z,
one can obtain:

κτy

f u∗
=

[

A − 1 + ln

(

z

L f

)]

z. (13)
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In the surface layer the eddy viscosity approach is valid, such that:

τy = Km
dV

dz
, Km = κu∗z, (14)

where V is the spanwise velocity. By combining Eqs. (13) and (14), there is:

κ2

f

dV

dz
= A − 1 + ln

(

z

L f

)

. (15)

The bottom boundary condition of Eq. (15) is V (0) = 0. Then, by integrating Eq. (15) from
0 to z one can determine the mean spanwise velocity V in the surface layer as:

κ2V

f
=

[

A − 2 + ln

(

z

L f

)]

z. (16)

Next, similar to the derivation of A, we also assume the spanwise velocity gradient scales
as N ,

1

N

dV

dz
= − 1

κ
fv(ξ), (17)

where fv is independent of Ro and Zi . Integrating Eq. (17) from a height z to the top of the
boundary layer, there is:

κ

u∗
(Vg − V ) = − h

Ln

∫ 1

ξ

fvdξ
′. (18)

We further assume the mean spanwise velocity given by Eqs. (16) and (18) matches at the
height ξ = Ln/(c2h), where c2 is an empirical constant. Thus, by substituting Eq. (16) into
Eq. (18), we find:

κVg

u∗
= Ln

κc2L f

[

A − 2 + ln

(

Ln

c2L f

)]

− h

Ln

∫ 1

Ln
c2h

fvdξ
′. (19)

Finally, substituting Eqs. (1b), (5) and (10) into Eq. (19) and noting that L f /Ln = Zi , we
find:

B = 2 + ln (c2/c1)

κc2Zi
+ a1

κc2
√
Zi

+ b1
√
Zi, (20)

where b1 = cn
∫ 1

1
c2cn

√
Zi

fvdξ ′. Similar to a1, we assume b1 to be constant.

We remark that, Eq. (20) is different from the second expression of Eq. (39) in Zilitinkevich
and Esau (2005). In the derivation of Zilitinkevich and Esau (2005) the spanwisve velocity
is not continuous across different layers. As a result, their expression includes only the final
term of Eq. (20), while the first two terms are omitted. As shown below, the prediction
of Zilitinkevich and Esau (2005) with only the final term of Eq. (20) leads to significant
deviations at moderate values of Zi . On the other hand, by substituting Eq. (5) into Eq. (2b),
we find that B = b0cn/

√
Zi + bc2nbc

3
n

√
Zi in the limit Zi � 1. Meanwhile, in the limit

Zi � 1 the 1/Zi term in Eq. (20) will be smallest and thus Eq. (20) can be approximated
as B = a1/(κc2

√
Zi) + b1

√
Zi . Clearly, these two expressions are the same when b0cn =

a1/(κc2) and bc2nbc
3
n = b1. This indicates that the introduction of the correction constant b0

in Eq. (2b) is to improve the prediction of B using Eq. (2b) at moderate values of Zi .
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3 Large-Eddy Simulation

Using state-of-the-art LES, Liu et al. (2021a) simulated the CNBL flow over an infinite flat
surface with homogeneous roughness. These simulations are used to determine the empirical
constants in the original GDL parameterization of Zilitinkevich and Esau (2005). However,
in that study only the free atmospheric lapse rate and the latitude were varied, and thus only
a very narrow range of the geostrophic drag coefficient (u∗/G) was covered. To evaluate the
validity of the GDL in practical applications, extended simulations that cover a wide range of
atmospheric parameters are required. Therefore, we perform 19 new LES in which we vary
the free-atmosphere lapse rate (Γ ), the latitude (φ), the geostrophic wind speed (G), and the
roughness length (z0). This extends the range of u∗/G in simulations from [0.019, 0.026]
up to [0.019, 0.047], which covers about half of commonly observed values in atmospheric
measurements (Hess and Garratt 2002a, b; van der Laan et al. 2020).

The code used to solving the flow field is the same as that adopted by Liu et al. (2021a),
which originates from the work by Albertson (1996), and later contributions by Bou-Zeid
et al. (2005), Calaf et al. (2010), and many others. The grid points are uniformly distributed,
and the computational planes for horizontal and vertical velocities are staggered in the verti-
cal direction. A second-order finite difference method is used in the vertical direction, while
a pseudo-spectral discretization with periodic boundary conditions is employed in the hor-
izontal directions. Time integration is performed using the second-order Adams-Bashforth
method (Canuto et al. 1988). The projection method is used to ensure the divergence-free
condition of the velocity field (Chorin 1968). At the top boundary the vertical velocity, the
sub-grid scale shear stress and potential temperature flux are enforced to zero, while the
potential temperature gradient is imposed by a constant value. In the top 25% of the domain
a Rayleigh damping layer is used to reduce the effects of gravity waves (Klemp and Lilly
1978). At the bottom boundary, we employ a wall model based on the Monin-Obukhov sim-
ilarity theory for both the velocity and potential temperature fields (Moeng 1984; Stoll and
Porté-Agel 2008).

Similar to Liu et al. (2021a), the computational domain size is 2π km× 2π km× 2 km in
streamwise, spanwise, and vertical directions, respectively, and the corresponding grid points
are 288 × 288 × 281. Pedersen et al. (2014) demonstrated that for CNBLs convergence is
obtained in much coarser meshes than required for stable boundary layer simulations. In
our previous work (Liu et al. 2021a, b) we studied grid convergence and obtained similar
conclusions, showing that the employed grid resolution used here is sufficient. The horizontal
domain size is at least six times larger than the boundary layer height such that long streamwise
structures are captured appropriately for all cases. The initial potential temperature profile is
θ(z) = θ0 + Γ z, where θ0 = 300 K and Γ = 0.001 ∼ 0.009 K m−1. The initial velocity
profile is set as the geostrophic wind G = 6 ∼ 20 m s−1. The latitude is φ = 10 ∼ 50◦ and
the roughness length is z0 = 0.0007 ∼ 0.32 m. To reduce the impact of inertial oscillations,
we run the simulations for a long duration with respect to the Coriolis parameter. As shown
in Liu et al. (2021a), friction velocity and cross-isobaric angle show very limited oscillations
when the dimensionless time f t > 9, which is consistent with the conclusion of Pedersen
et al. (2014) that the mean momentum equations reach a steady state balance after f t > 6.
Furthermore, we note that in Liu et al. (2021a) we averaged over a time span Δ( f t) = 1,
while in Liu et al. (2021b) we averaged over Δ( f t) = 2π . The comparison of these data in
Figs. 4 and 5 below demonstrates that the inertial oscillations has been significantly damped.
Therefore, statistics are collected over the interval f t ∈ [9, 10], where the boundary layer
has reached a quasi-stationary state. A summary of these simulations is given in Table 1,
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Table 1 The table summarizes the present simulations

Case no Γ (K m−1) φ (deg) G (m s−1) z0 (m) α0 (deg) u∗ (m s−1) h (m) A B

1 0.001 50 6 0.09 21.7 0.265 498 1.77 3.34

2 0.001 50 20 0.04 16.4 0.751 1626 1.81 3.01

3 0.003 50 6 0.09 24.0 0.263 412 1.84 3.72

4 0.003 50 6 0.18 25.5 0.281 440 1.83 3.68

5 0.003 50 10 0.04 20.5 0.392 636 1.82 3.57

6 0.003 50 12 0.001 15.3 0.352 583 1.82 3.59

7 0.003 50 12 0.01 17.8 0.416 681 1.84 3.53

8 0.003 50 12 0.02 19.0 0.439 712 1.85 3.57

9 0.003 50 12 0.1 21.7 0.504 818 1.87 3.52

10 0.003 50 16 0.004 16.1 0.512 846 1.93 3.47

11 0.003 50 20 0.0007 14.3 0.557 924 1.86 3.56

12 0.003 50 20 0.04 18.8 0.745 1218 1.86 3.45

13 0.003 50 20 0.32 22.6 0.890 1440 1.82 3.45

14 0.009 50 6 0.09 27.7 0.258 324 1.91 4.33

15 0.009 50 20 0.04 22.6 0.736 910 1.97 4.17

16 0.009 20 8 0.09 32.4 0.294 555 1.91 5.83

17 0.009 20 16 0.01 26.3 0.487 908 2.00 5.82

18 0.009 10 8 0.09 38.9 0.255 677 1.87 7.88

19 0.009 10 16 0.01 32.3 0.432 1128 1.85 7.92

where G = (U 2
g + V 2

g )1/2 is the geostrophic wind speed, α0 = arctan (|Vg/Ug|) is the
cross-isobaric angle (i.e. the total wind angle change across the boundary layer), and h is the
boundary layer height.

It isworth noting that the boundary layer height can be defined based on the vertical profiles
of total turbulent stress, wind speed, potential temperature flux, or potential temperature
(Abkar and Porté-Agel 2013; Allaerts and Meyers 2015; Kelly et al. 2019). For example,
one of the commonly accepted definitions of the boundary layer height is h0.05, which is
defined as the height where the total turbulent stress is 5% of its wall value. In this study, we
also define the boundary layer height h based on the vertical profile of total turbulent stress.
However, since the total shear stress follows a power law with exponent 3/2 (Nieuwstadt
1984), a more appropriate definition of the boundary-layer height is h = h0.05/(1−0.052/3),
which is the height where the total turbulent stress first reduces to zero (van Dop and Axelsen
2007; Liu et al. 2021b).

4 Model Validation

4.1 The Boundary-Layer Height andWind Gradients

Figure 1 compares the dimensionless boundary-layer height h/Ln obtained from atmospheric
measurements (Uttal et al. 2002), numerical simulations (Zilitinkevich et al. 2007; Liu et al.
2021a), and theoretical predictions. The good agreement confirms that the boundary-layer
height h is indeed parameterized well by Eq. (5). Since Zi = N/ f and Ln = u∗/N , Eq. (5)
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Fig. 1 The dimensionless
boundary-layer height h/Ln
versus the Zilitinkevich number
Zi . Solid line: theoretical curve
by Eq. (5) with cn = 23/4;
diamonds: simulation data of
Table 1; circles: simulation data
of Liu et al. (2021a); triangles:
simulation data of Zilitinkevich
et al. (2007); squares:
atmospheric data of Uttal et al.
(2002)

Fig. 2 The profiles of normalized vertical gradient of a streamwise velocity (1/N )(dU/dz) and b spanwise
velocity (1/N )(dV /dz) in CNBLs. For case information see Table 1

also indicates that h/(u∗/
√
N f ) = cn , i.e. the boundary-layer height h scales as u∗/

√
N f .

This result is in agreement with Pedersen et al. (2014), who demonstrated that the scaling of
the boundary layer height with Zi remains constant over time after reaching the statistically
stationary state ( f t > 6).

Figure 2 shows the profiles of normalized vertical gradient of (a) streamwise velocity
(1/N )(dU/dz) and (b) spanwise velocity (1/N )(dV /dz) in CNBLs for large values of Zi .
The good collapse of all symbols indicates that the wind gradients indeed scale as N for
Zi � 1. Note that the asymptotic independence of fu on Zi is valid ξ � 0.2 due to the term
proportinal to 1/ξ involved in fu (see Fig. 2a). In contrast, the asymptotic independence of
fv on Zi is nearly valid in the whole boundary layer (see Fig. 2b).

4.2 The Coefficients A and B

Figure 3 shows the comparison of theGDLcoefficients A and B obtained from the simulations
(symbols, see Table 1 and Liu et al. (2021a)), the theoretical predictions of (a) Eq. (10) and
(b) Eq. (20) (solid line), and the theoretical prediction of Zilitinkevich and Esau (2005), i.e.
the final term in Eq. (20) (dashed line). The empirical constants a1 = 0.12, b1 = 0.29, c1 =
0.24, c2 = 0.054 are determined from the simulation data of Liu et al. (2021a) using a least-
squares fitting procedure (e.g. the MATLAB fminsearch function). To evaluate the goodness
of the fit, we introduce the mean absolute percentage error (MAPE),
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Fig. 3 The GDL coefficients a A and b B versus the Zilitinkevich number Zi . Solid line: theoretical curve
of (a) Eq. (10) and (b) Eq. (20) with a1 = 0.12, b1 = 0.29, c1 = 0.24, c2 = 0.054 determined using a
least-squares fitting procedure with the simulation data of Liu et al. (2021a); dashed line: theoretical curve of
Zilitinkevich and Esau (2005), i.e. Equation (20) with only the final term; diamonds: present simulations of
Table 1; circles: previous simulations of Liu et al. (2021a)
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where i is the case number, n = 24 is the total number of the simulations performed by Liu
et al. (2021a), and the superscripts “LES” and “fit” denote the values of X obtained by LES
and the fitting procedure. We find that MAPE (A) = 3.9 and MAPE (B) = 1.3, indicating
the goodness of the fit. Overall, the present theoretical predictions capture the simulation
results of Liu et al. (2021a) and the present study very well. This confirms the validity of the
simplified analytical expressions of A and B given by Eqs. (10) and (20), which have much
less empirical constants than Eq. (2) proposed by Zilitinkevich and Esau (2005). Note that
Fig. 3b also shows clearly that their prediction significantly underestimates the values of B
at moderate values of Zi � 300.

5 Geostrophic Drag Coefficient and Cross-Isobaric Angle

Figure 4 compares (a) the geostrophic drag coefficient u∗/G and (b) the cross-isobaric angle
α0 = arctan (|Vg/Ug|) obtained from the present simulations of Table 1 and the previous
simulations of Liu et al. (2021a, b) with that from the GDL given by Eq. (1), where the GDL
coefficients A and B are parameterized by Eqs. (10) and (20), respectively. Note that the
empirical constants (a1, b1, c1, c2) involved in Eqs. (10) and (20) are determined merely
based on the simulation data of Liu et al. (2021a), where u∗/G covers only a narrow range
of u∗/G ∈ [0.019, 0.026]. The figure shows that the agreement between the simplified
parametrization and all the numerical data with a wide range of u∗/G ∈ [0.019, 0.047] is
very good. In particular, Fig. 4a shows that the range of u∗/G of the simulations of Liu
et al. (2021a) is between 0.019 and 0.026, while that of the present simulations of Table 1
is between 0.028 and 0.047. These simulations together cover about half of the values of
u∗/G commonly observed in atmospheric measurements (Hess and Garratt 2002a, b), and
the good agreement between the theoretical predictions and simulations of Liu et al. (2021b)
and the present study confirms the validity of the GDL for CNBLs in the high geostrophic
drag coefficient regime. Figure4b shows that the cross-isobaric angle varies between 10◦ and
40◦, where all LES data collapse to the theoretical curve. This good agreement is expected as
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Fig. 4 The comparison of a the geostrophic drag coefficient u∗/G and b the cross-isobaric angle α0 =
arctan |Vg/Ug | obtained from various simulation data and the GDL of Eq. (1) with A and B parameterized
by Eqs. (10) and (20). Diamonds: present simulations of Table 1; circles: previous simulations of Liu et al.
(2021a); triangles: previous simulations of Liu et al. (2021b). Note that the empirical constants involved in
Eqs. (10) and (20) are determined only from the simulation data of Liu et al. (2021a) with a limited range of
u∗/G

Fig. 5 The (a) geostrophic drag coefficient u∗/G and (b) cross-isobaric angle α0 = arctan (|Vg/Ug |) versus
the Rossby number Ro for the cases with the Zilitinkevich number Zi = 89. Solid line: theoretical predictions
of Eq. (1) with A and B parameterized by Eqs. (10) and (20); diamonds: present simulations of Table 1;
triangles: previous simulations of Liu et al. (2021b). Note that the empirical constants involved in Eqs. (10)
and (20) are determined only from the simulation data of Liu et al. (2021a) with a limited range of u∗/G

α0 = arcsin [(Bu∗)/(κG)] and B (Fig. 3b) and u∗/G (Fig. 4a) have already been predicted
accurately.

Figure 5 shows (a) the geostrophic drag coefficient u∗/G and (b) the cross-isobaric angle
α0 = arctan (|Vg/Ug|) versus the Rossby number Ro = u∗/( f z0). The solid line is the
theoretical predictions of Eq. (1) with A and B parameterized by Eqs. (10) and (20), the
diamonds are the simulations of Table 1, and the triangles are the simulation of Liu et al.
(2021b). The figure focuses on cases with a fixed Zilitinkevich number (Zi = 89), which is
a typical value observed in atmospheric measurements (see Fig. 1). In particular, the figure
focuses on cases with the lapse rate Γ = 0.003 K m−1 and the latitude φ = 50◦. The figure
shows that the geostrophic drag coefficient u∗/G and the cross-isobaric angle α0 decrease
as the Rossby number Ro increases, by either increasing the geostrophic wind speed G or
decreasing the roughness length z0 (Table 1). The collapse of all symbols to a single curve,
which can be accurately predicted by the GDL of Eq. (1), clearly demonstrates the validity
of the simplified parametrization. Note that the empirical constants involved in Eqs. (10)
and (20) are determined only from the simulation data of Liu et al. (2021a) with a limited
range of u∗/G. Therefore, Fig. 5 also indicates that the GDL is very useful in predicting the
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geostrophic drag coefficient and cross-isobaric angle in the relevant meteorological regime
(Hess and Garratt 2002a, b).

6 Conclusions

We investigated theoretically and numerically the GDL for CNBLs. First, we derived the
analytical expressions of A and B based on two assumptions. That is, the eddy viscosity
approach Km = κu∗z is valid in the surface layer, and the wind gradients normalized by
the free-atmosphere Brunt–Väisälä frequency N have universal profiles above the surface
layer. The validity of the first assumption is self-evident, while our physical arguments and
simulation data support the second assumption for the cases with strong stability (i.e. Zi �
1). The resultant expressions of A and B are very simple, which involve only four empirical
constants, i.e. (a1, b1, c1, c2). The values of these empirical constants are determined using
a least-squares fitting procedure with the simulation data of Liu et al. (2021a) with a limited
range of u∗/G.

To demonstrate the validity of the GDL over a wider range of the geostrophic drag coeffi-
cient (u∗/G = [0.019, 0.047]) than considered previously (Liu et al. 2021a), we performed
19 simulation cases in which we simultaneously vary the free-atmosphere lapse rate, the
latitude, the geostrophic wind, and the roughness length. The validity of the GDL over an
extended range of u∗/G is thus confirmed by the nearly perfect collapse of the GDL coef-
ficients A and B obtained from carefully performed LES to a single curve when plotted
against the Zilitinkevich number Zi . In addition, we show through LES that the GDL with
the simplified parameterization of A and B derived in the limit Zi � 1 accurately captures
the geostrophic drag coefficient and the cross-isobaric angle for both the moderate and high
values of Zi considered by Liu et al. (2021a, b) and the present study.

Our findings are relevant for meteorological applications such as wind energy. For exam-
ple, Li et al. (2022) showed that the GDL also applies for flows over extended wind farms, but
the A and B values are different from that over flat terrains. Based on this finding, the authors
proposed an analytical model of fully developed wind farms in CNBLs, and found that the
theoretically predicted wind farm power output agrees well with the numerical simulations.
Updating the parametrization of A and B in the original GDL by Zilitinkevich and Esau
(2005) is challenging as it involves updating numerous empirical constants. Therefore, Li
et al. (2022) had to numerically fit A and B coefficients rather than directly updating the GDL
coefficients. While this approach is practical, it limits theoretical exploration and analysis.
The GDL parametrization we provide offers more flexibility and applicability for a variety
of flow scenarios, including wind farms and canopy flows. This adaptability may facilitate
further theoretical exploration and analysis of such situations where the GDL can be applied.
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