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Abstract
We propose the multivariate locally stationary wavelet (mvLSW) process to analyze surface
turbulent fluxes in nonstationary atmospheric conditions. Using theoretical spectral charac-
teristics, we generated synthetic data representing stationary and nonstationary turbulence
time series. This data enables us to explore the impact of mesoscale atmospheric flows on the
stationary microscale turbulence field and detect the spectral gap in the time-varying cospec-
tra. Applying this approach to experimental data collected in Fairbanks, Alaska and Bogota,
Colombia, we demonstrated the ability to detect cospectral gaps and compute bandwidth-
limited turbulent fluxes arising from stationary components of the atmospheric flow. These
findings underscore the importance of considering scale-dependent atmospheric forcingwhen
comparing model and experimental data.

Keywords Land-surface atmosphere interactions · Surface turbulent fluxes · Multivariate
locally stationary wavelet process · Nonstationary time series · Spectral gap

1 Introduction

The cross-covariance of turbulent time series allows computing the turbulent fluxes in the
atmospheric surface layer (ASL) (Stull 1988). Such estimates and their interpretation depend
upon the assumption that cross-covariances time series are stationary (Arya and Holton
2001). However, this assumption can be compromised when multiple atmospheric scales
affect the atmospheric flow during the computation period. In order to detect the impacts
of low-frequency atmospheric scales, the ogive test function is often applied to determine
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nonstationarity in turbulent cross-covariance time series (Foken and Kramm 1995; Oncley
et al. 1996). Under stationary atmospheric flow, such test converges to the cross-covariance
value as frequency decreases (Foken and Kramm 1995). Identifying the frequency where this
convergence begins defines an optimal averaging timescale to compute the turbulent fluxes
(Oncley et al. 1996). However, if such convergence does not occur, a finite cross-covariance
cannot be defined, indicating nonstationarity in the turbulent time series (Shumway and Stof-
fer 2017). For instance, nonstationary atmospheric flows can also be present during morning
transitions when turbulent sensible heat flux turns positive over time (Oncley et al. 1996;
Angevine et al. 2020). Similarly, nonstationarity can also manifest when observational time
series reveals local influence of the atmospheric flows with limited sampling of mesoscale
motions in stable atmospheric conditions (Vickers and Mahrt 2003; Acevedo et al. 2014).
Thus, it seems necessary to better understand the impact and interplay of the atmospheric
forcing scales affecting surface turbulent fluxes when such nonstationary behavior is verified.

The wavelet transform has been extensively used to analyze nonstationarity in turbu-
lence time series (Farge 1992; Collineau and Brunet 1993a). Wavelet functions, explored by
Collineau and Brunet (1993a), reveal patterns in univariate time series. They were also able
to identify ramp-like patterns in fast temperature observations associated to the occurrence
of coherent structures (Collineau and Brunet 1993b; Starkenburg et al. 2013) and segregate
low-frequency components in wind speed and temperature signals via data reconstruction
and filtering (Katul and Vidakovic 1996). Alternatively, Howell and Mahrt (1997) adopted a
bivariate multiresolution decomposition wavelet (Mallat 1989) to identify the contributions
to atmospheric fluxes from different timescales. Through this technique, Vickers and Mahrt
(2003) identify the cospectral gap and quantify the mesoscale and local turbulence contribu-
tions to the heat flux. Similarly, Acevedo et al. (2014) determines timescale of submesoscale
processes on turbulence, identifying power-law relationships in the multiresolution spectra
and cospectra. After that, Babić et al. (2017) uses Voronovich and Kiely (2007) to determine
the spectral gap in datasets acquired in complex terrain. They found a convergence in the
spectral gap value when evaluating datasets from anemometers as a function of height. Based
on this convergence they proposed a running mean where the time-window depends on the
spectral gap obtained thus, separating the low varying terms from the turbulence field. And,
more recently, Lehner and Rotach (2023) analyzed turbulence datasets using the method
developed by Vickers and Mahrt (2003) and Voronovich and Kiely (2007) to detect the spec-
tral gap. Then, using similarity relationships, they found a function where the spectral gap
is expressed as a function of wind speed and stability parameter z/L . From this function a
time-dependent cutoff frequency filter was found to detrend the signals and thus separate
non-turbulent components from the signal. In conclusion, multiresolution wavelet analysis
has been demonstrated to be able to disentangle time-variations and energy contributions of
oscillation modes and localized structures across time and space (Farge 1992; Torrence and
Compo 1998).

We investigate the applicability of the multivariate locally stationary wavelet (mvLSW)
process in the framework of nonstationary turbulence time series analysis. Section2 intro-
duces the theoretical framework of the mvLSW process, providing its interpretation in a
turbulence context. Section3 outlines simulation scenarios for both stationary and nonsta-
tionary conditions to aid in interpreting experimental results. Then, we are able to generate
stationary—similarly to Hojstrup (1993)—and nonstationary time series, where the nonsta-
tionarity can be introduced on any atmospheric scale (micro and mesoscale). In this work,
we created the nonstationary scenario by combining spectral and cospectral contributions of
a mesoscale atmospheric signal with theoretical contributions to the stationary microscale.
We use this synthetic signal to illustrate spectral gap detection and separation of atmospheric
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processes at different scales. In Sect. 4, we apply the mvLSW process over real atmospheric
datasets to obtain turbulent sensible heat flux in tropical regions (e.g., Bogota, Colombia)
and in high-latitude continental areas during winter (e.g., Fairbanks, Alaska). Similarly,
in “Appendix 1”, the momentum fluxes—turbulent velocity field covariances and cross-
covariances—are illustrated for Fairbanks. Finally, Sect. 5 discusses potential applications of
the methodology and provides concluding remarks.

2 Multivariate Locally StationaryWavelet Processes for Turbulent Time
Series

This section introduces the mvLSWprocesses described in Park et al. (2014). Themodel rep-
resents the turbulence time series as a linear combination of wavelet functions multiplied by
the transfer matrix. Through this matrix, we obtain the time-varying spectrum and cospec-
trum across time scales, allowing the reconstruction of a bandwidth-limited variance and
cross-covariance signal. By defining the scales containing the microscale, we can reconstruct
the cross-covariance signal associated with the turbulent flux. Additionally, the mvLSW pro-
cesses allow simulating turbulence time series with theoretical spectral characteristics useful
for generating synthetic turbulence signals based on hypothetic atmospheric conditions.

The assembly of turbulent time series forms a matrix with P columns, Xt;T =[
X (1)
t;T , X (2)

t;T , . . . , X (P)
t;T

]′
. Each column represents a turbulent time series of dyadic length

T = 2J for some J ∈ N and the scale j ∈ {1, 2, . . . , J }. For example, when analyzing the
kinematic heat flux w′θ ′, there are two time series (P = 2). One time series is vertical wind
speed fluctuations X (1)

t;T = w′, and the other is the sonic temperature fluctuations X (2)
t;T = T ′

s .
The mvLSW process for the turbulence time series Xt;T is outlined as follows:

Xt;T =
J∑

j=1

∑
k

V j (k/T )ψ j,t−kz j,k, (1)

where {ψ j,t−k} jk is a set of discrete non-decimated wavelets covering the entire time
domain, i.e., k ∈ Z (Chui 1992; Nason 2008). V j (k/T ) is the transfer function matrix

and z j,k = [z(1)j,k, . . . , z
(P)
j,k ] represents random orthonormal increment sequences with mean

vector 0 and cov
(
zij,k, z

i ′
j ′,k′

)
= δi,i ′δ j, j ′δk,k′ (Park et al. 2014). To explain Eq. (1), we

consider the locally stationary process for one dimension, when P = 1. The time series
Xt;T , for clarity, can be expressed as Xt;T = ∑J

j=1
∑

k w̃0
j,k;Tψ j,t−k—a linear combi-

nation of wavelet functions multiplied by random amplitudes (Nason et al. 2000)—where
w̃0

j,k;T = w0
j,k;T z j,k , and {w0

j,k;T } are the set of amplitudes, and {z j,k} is a set of uncorrelated
random variables (Nason et al. 2000). By replacing the set {ψ j,t−k} jk with the harmonic
functions {exp(inωt)|ω ∈ [−π, π], n ∈ Z}, we can obtain a form of the time series in
Fourier representation as Xt = ∑∞

n=−∞ cn exp(inωt) where cn are the amplitudes (Chui
1992). However, harmonic functions can only represent the frequency domain and may limit
their ability to capture time-specific features in atmospheric turbulence records (Strunin and
Hiyama 2004). Thus, wavelets are the right mathematical approach, especially when con-
sidering nonstationary time series cases, given their compact support. A quick introduction
to wavelets can be found in Chui (1992), and their application in atmospheric records, in
Torrence and Compo (1998).
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Within this framework, the matrix V j (k/T ) contains the contribution to time-varying
variances (on-diagonal terms) from each turbulence time series and, also, captures the inter-
dependence between these time series in the time-varying cross-covariance (off-diagonal
terms). Each element of V j (k/T ) is assumed to be a Lipschitz continuous function. This
condition makes possible to define fluxes locally and quantify its variations over time (Nason
et al. 2000; Park et al. 2014). Based on V j (k/T ), Park et al. (2014) define the local wavelet
spectral (LWS) matrix at scale j and rescaled time u = kT−1 as shown in Eq. (2): The
transpose of V j (k/T ) is denoted as V�

j (k/T ):

S j (u) = V j (u)V�
j (u). (2)

In a neighborhood around time interval u ∈ (0, 1) at scale j , S j (u) measures the local
average power of each turbulent time series and their interdependence—the contribution to
variance and cross-covariance. Following Eq. (2), the diagonal elements S(p,p)

j (u) are the

spectrum of individual turbulence time series, while the off-diagonal elements S(p,q)
j (u)

depict the cospectrum between time series. Here, p, q ∈ N P
1 act as indices for turbulent time

series within the matrix Xt;T .
Following Park et al. (2014), we estimate S j (u) via the wavelet periodogram matrix

I j,k = d j,kd�
j,k , where the coefficient vector d j,k = ∑T−1

t=0 Xtψ j,k(t) are the empirical
wavelet coefficient. The expected value of the estimator of S j (u)—i.e., I j,k—differs of the
target quantity S j (u) and, therefore, I j,k is a biased estimator. Additionally, I j,k , as T tends
to be infinite, fails to converge—in terms of probability—to S j (u), implying that I j,k is an
inconsistent estimator. As a result, bias and inconsistency are undesirable statistical properties
because of the inherent statistical inference process. Similarly, to the problem of estimating
the spectral density functionwith harmonics functions (Priestley 1982), the estimator I j,k can
be smoothed and corrected to obtain an estimator asymptotically unbiased and consistent—
details in Park et al. (2014). For clarity, we denote the asymptotically unbiased and consistent
estimator of S j (u) as Ŝ j (u). Now, considering Ŝ j (u) and that the signal has a finite length
size T , difficulties arise when estimating the spectral contribution of the signal around its
boundaries since these estimates are highly uncertain due to the amount of data available
for such an estimation. Therefore, considering these limitations, we compute a curve-dashed
line that indicates the spectral and cospectral region reliable (estimated with a 95% level of
confidence)—the cone of influence described by Torrence and Compo (1998).

Therefore, based on the elements S(p,q)
j (u), we obtain the local cross-covariance band-

limited—from scale m0 to m—between time series p and q at lag τ as follows,

c(p,q)
m0,m(u, τ ) =

m∑
j=m0

S(p,q)
j (u)Ψ j (τ ). (3)

Notably, we obtain the local autocovariance when p = q . The collection of discrete
non-decimated wavelets functions are represented by the discrete autocorrelation wavelet
Ψ j (τ ) = ∑

k ψ j,kψ j,k−τ (Eckley andNason 2005).An interesting feature ofΨ j (τ ) is evident

at τ = 0, where Ψ j (0) = 1 implies c(p,q)
m0,m(u, 0) = ∑m

j=m0
S(p,q)
j (u) (Nason et al. 2000;

Sanderson et al. 2010). In this representation, Eq. (3) reconstructs the local cross-covariance
between scales m0 to m with m > m0. Specifically, the total local cross-covariance appears
when m0 = 1 and m = J . Then, the integrated cross-covariance limited to scales m0 and m
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is,

〈c(p,q)
m0,m〉 =

∫ 1

0
c(p,q)
m0,m(u, 0)du =

∫ 1

0

⎛
⎝

m∑
j=m0

S(p,q)
j (u)

⎞
⎠ du. (4)

The mvLSW process, as indicated in Eq. (1), can represent cross-covariances among tur-
bulent time series, e.g., (w′, T ′

s ). Subsequently, such P-variate time series can be described
by a LWS matrix to depict their spectral and cospectral properties with Eq. (2) across time
and scale. The importance of this duality time-scale emerges in Eq. (3), where the original
cross-covariances can be reconstructed over time, accounting for a sub-band or a full cospec-
tral process representation. This aspect allows us to obtain turbulent fluxes considering only
the microscale atmospheric motion, assuming we have a known scale gap. This approach
might disentangle stationary from nonstationary processes embedded in the cross-covariance
signal, while Eq. (4) estimates the cumulative turbulence flux (e.g., w′T ′

s ).

3 Statistical Simulation of Nonstationary Turbulent Signals

To demonstrate estimating atmospheric turbulence fluxes in nonstationary conditions, we
simulate a bivariate turbulent time series using the mvLSW process. These simulated signals
exhibit spectral and cospectral features outlined by an idealized LWSmatrix S j (u) (Park et al.
2014; Taylor et al. 2019). The theoretical S j (u) includes both stationary and nonstationary
contributions according to the proposed conceptual model. We assume that the stationary
contribution originates from stationary and isotropic turbulence (Vercauteren et al. 2019).
However, the nonstationary contribution arises from the presence of mesoscale motions
(Vickers and Mahrt 2003; Acevedo et al. 2014) where a known scale gap separates these
contributions (Stull 1988; Vickers and Mahrt 2003).

3.1 A Conceptual Model for Spectral and Cospectral Turbulence Characteristics

In theASL, turbulent fluxes are influenced bymicroscale andmesoscale processes. Therefore,
the fluxes can be conceptually idealized as composed of functions representing embedded
time-scale processes and their associate spectral and cospectral variations according to,

S j (u) = Smicro, j (u) + Smeso, j (u) + Smeso↔micro, j (u), for u ∈ (0, 1). (5)

In fact, Eq. (5) is a generalization of Reynolds decomposition where the mean (a low-
frequency signal) is separated from the turbulent component (a high-frequency signal).
However, such decomposition can only be expressed in the well-known two terms—mean
and turbulence—, assuming that the spectral gap exists. Nevertheless, when across scale
interactions are present in the time series, we have to enable the third term, Smeso↔micro, j (u),
to account for the spectral content of the scales-interactions. Then, Eq. (5) breaks down the
total spectral contribution S j (u) into three distinct terms. The first term, Smicro, j (u), relates
to a stationary and isotropic turbulence (Vercauteren et al. 2019); critical to calculate the
microscale flux (Arya and Holton 2001). However, over time, the precision of flux calcula-
tion is affected by the presence of nonstationary components. The second term represents
such components, Smeso, j (u), which are associated with mesoscale fields. Also, it is possible
to observe changes in the fluxes due to bidirectional scale interactions—mesoscale motions
into microscale or the opposite. Therefore, the third term, Smeso↔micro, j (u), accounts for
the interaction between microscale and mesoscale processes (Kang 2009). However, since
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Fig. 1 The LWS matrix S j (u) contains two contributions: a the stationary microscale Smicro, j (u) and b the
nonstationary mesoscale Smeso, j (u). The indexes (p, q) are indicated above each panel. Values of Smeso, j (u)

were scaled to enhance shape details

our focus is on fluxes during a limited-time interaction, the third term, Smeso↔micro, j (u), is
considered negligible. This assumption implies that the spectral gap exist in the spectrum
S j (u) in Eq. (5) and that the microscale component Smicro, j (u) can be estimated accurately.

Under this general model, we aim to simulate a bivariate (P = 2) turbulent time series,
e.g.,w′ and T ′

s , with spectral and cospectral characteristics established as defined by S j (u) =
Smicro, j (u)+Smeso, j (u). To achieve this, we propose a 2× 2 LWS matrix S j (u) (i.e., p, q ∈
{1, 2}) with J = 15 scales, resulting in a bivariate time series of approximately one hour with
a frequency of 10 Hz. Figure1 presents the microscale Smicro, j (u) (Fig. 1a) and mesoscale
Smeso, j (u) (Fig. 1b) of the LWS matrix S j (u).

The stationary microscale contribution Smicro, j (u) (Fig. 1a) follows spectral power laws
in specific timescales as defined by Kaimal and Finnigan (1994) and Katul and Chu (1998).
The dependence of the elements S(p,q)

micro, j (u) on the average atmospheric timescale τ j and on
the exponent α j is illustrated in Eq. (6):

S(p,q)
micro, j (u) = A(p,q)

j τ
−α j−1
j . (6)

The parameter A(p,q)
j is a proportional constant for the spectrum (p = q) and the cospec-

trum (p 	= q) at scale j . At the same time, the dimensionless value α j is linked to a spectrum
power law (Percival 1995). The parameter values used in thiswork are outlined in Table 1. The
values of A(p,q)

j were chosen to ensure obtaining realistic fluxes based on field experiments
(Ortiz et al. 2019; Morales 2020). As for α j values, Kaimal and Finnigan (1994) approxi-
mated the microscale spectrum for low frequencies, f −→ 0 (i.e., τ −→ ∞), as a constant
(α j = 0). However, Katul and Chu (1998) found that a power law with α j = −1 is suitable
for frequency bands associated with turbulence production range. Similarly, α j = −5/3
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Table 1 Parameters for the
theoretical spectrum (p = q) and
cospectrum (p 	= q) elements

S(p,q)
micro, j (u) use in Eq. (6)

Element Scale ( j) A(p,q)
j Power law (α j )

S(1,1)
micro, j 1 to 5 1 × 10−3 −5/3

6 to 7 ≈ 2.845 × 10−3 −1

8 and 9 ≈ 1.094 × 10−1 0

10 to 15 0 –

S(2,1)
micro, j 1 to 5 2 × 10−3 −5/3

6 to 7 ≈ 5.691 × 10−3 −1

8 and 9 ≈ 2.188 × 10−1 0

10 to 15 0 –

S(2,2)
micro, j 1 to 4 5 × 10−3 −5/3

5 and 6 ≈ 8.963 × 10−3 −1

7 and 8 ≈ 1.720 × 10−1 0

9 to 15 0 –

denotes the inertial range of Kolmogorov’s power law at high frequencies. Furthermore, the
average atmospheric timescale in seconds can be expressed in terms of the scale j and the
instrumental sampling rate f—see Eq. (7):

τ j = 1

2 f
(2 j + 2 j+1). (7)

For instance, using the distributive property for f , we obtain the terms 2 j/ f and 2 j+1/ f .
Then, consider j = 1—the finest scale of S j (u)—and f = 10 Hz. The first term yields
0.2 s—the timescale related to the Nyquist frequency f/2 = 5Hz—and the second, 0.4 s.
The values 0.2 s and 0.4 s are the lower and upper timescales for the bandwidth associated
with the scale j = 1. Adding and dividing these values in two, we obtain 0.3 s, the average
atmospheric timescale for j = 1.

The mesoscale contribution Smeso, j (u) (Fig. 1b) was chosen through spectral and cospec-
tral estimations of experimental data that was collected in Bogota, Colombia during a
measurement campaign in 2019 (Ortiz et al. 2019). The region has a weak wind regime
and a heterogeneous topography that caused nonstationary records due to local circulations,
as defined by the Foken and Wichura (1996) test. The nonstationary character is shown
as wave-like motions with amplitude-modulated and time-varying frequencies, like the so-
called “dirty”waves (Nappo et al. 2014). To account for this nonstationarity in our simulation,
low-frequency contributions were extracted from the LWS matrix estimations of the exper-
imental data and added to the theoretical spectrum at scales j ∈ N

15
12. This ensured that the

theoretical spectrum and cospectrum exhibited nonstationary behavior, as outlined in Eq. (5).
The mesoscale contribution Smeso, j (u) was about ten times larger than Smicro, j (u), with a
spectral gap separating them at j ∈ {10, 11}.

3.2 Assessment of Stationary and Nonstationary Fluxes Using Synthetic Signals

Froma specific time-dependent spectrumand cospectrummatrix, e.g.,S j (u), we can simulate
signals using the framework proposed by Park et al. (2014). For further details on simulation
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Fig. 2 Two realizations of a bivariate LSW process: a stationary with Smicro, j (u) and b nonstationary with
S j (u)

Table 2 Summary of RNcov from simulation

Spectrum Mean Sta. Dev. Min. Q1 Median Q3 Max.

Smicro, j (u) (×10−2) 1.1 1.0 0.0 0.6 1.0 1.4 9.5

S j (u) 348.7 1619.6 0.14 14.8 39.0 77.3 18,078.9

The values in the table are in percentages (%)

using the mvLSW R-package see Taylor et al. (2019, 2022). This method allows generating
two simulation cases: one where the contribution is stationary, provided by Smicro, j (u), and
anotherwhere the contribution is nonstationary, providedbyS j (u). For each case,we simulate
200 bivariate time series of length T = 32,768 (i.e., J = 15) with Gaussian innovations
and a least asymmetric Daubechies wavelet of support N = 10. The bivariate time series is
equivalent to a record of two turbulence signals, such as (w′, T ′

s ), sampled at 10Hz with a
duration of 54.6min.

Figure2 displays a realization of these simulations and shows the value of the steadi-
ness test of Foken and Wichura (1996). We denote the value of the steadiness test by
RNcov—according to Foken et al. (2005)—where RNcov > 30% indicates a nonstation-
ary flux measurement (Foken and Wichura 1996; Foken et al. 2005). The Fig. 2 presents a
stationary case with RNcov ≈ 0% (Fig2a) and a nonstationary case with RNcov ≈ 140%
(Fig2b)—these last records must be flagged as part of quality assessment for the eddy-
covariance technique (Foken and Wichura 1996; Foken et al. 2005). In this line, the RNcov

value measures roughly the level of nonstationarity of the atmospheric flow, as we can note
in the statistic summary shown in the Table 2, time-varying cospectrum links to high RNcov

values.
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Fig. 3 Ogive function in a stationary and b nonstationary conditions. Black lines depict the mean ogive
function, and shaded areas show one standard deviation

Table 2 summarizes RNcov values for synthetic signals for both Smicro, j (u) and S j (u)

spectra. Here, we outline the mean, standard deviation, minimum, first quartile (Q1), median,
third quartile (Q3), and maximum for RNcov values. For Smicro, j (u), the RNcov values are
low, withmean of 1.1×10−2% and standard deviation of 1.0×10−2%, indicating a generally
stationary condition which implies an accurate estimate of fluxes. In contrast, S j (u) shows
higher and more variable RNcov values, with a mean of 348.7% and standard deviation of
1,619.6%, these results suggest a nonstationary condition. Furthermore, the median value
for S j (u) is 39.0%, indicating that these simulated fluxes exceed the threshold established
by Foken and Wichura (1996).

On the other hand, Fig. 3 shows the ogive function for stationary (panel left) and nonsta-
tionary (panel right) conditions. The horizontal axis is the average atmospheric timescale τ ,
and the vertical axis is the cumulative cospectrum. The black line is the mean ogive from
simulations, and the shaded area around thismean is a range defined as one standard deviation
from the mean. The dashed horizontal line is the stationary theoretical flux with a value of
〈c(2,1)〉theoretical = 0.034 based on Smicro, j (u).

For the stationary scenario depicted by Smicro, j (u), the ogive function converges toward
the theoretical flux line (Fig. 3a). Such convergence, at larger average timescales, is typi-
cal of stationary conditions. The narrow shaded region indicates a precise flux estimation.
Conversely, the nonstationary case from S j (u) (Fig. 3b) diverges from the theoretical flux
exhibiting significant variability at larger timescales. This is highlighted by the broad shaded
region. This variability stems from the poor sampled cospectral contribution at scales j ∈ N

15
12

and provides an unreliable flux estimation.
Here, we simulated atmospheric turbulence signals using the mvLSW framework under

stationary and nonstationary conditions. These conditions are supported by statistical analysis
of RNcov (Table 2) and the ogives test (Fig. 3). In the next section, we demonstrate how the
cross-covariance signal c(p,q)(u, 0), defined by the LWS spectrum S j (u), can visualize the
stationary and nonstationary behavior in the turbulent flux.
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Fig. 4 Comparison of local flux signals for both stationary (left panel) and nonstationary (right panel) cases.
The black solid lines represent the estimations and the grey dashed lines are their theoretical versions

3.3 Local Covariance and Cross-Covariance in Atmospheric Fluxes

In Sect. 2, the local covariance and cross-covariance signal c(p,q)(u, τ ) is defined using the
LWS matrix S j (u) (see Eq. (3)). The cross-covariance signal measures the interdependence
between two signals across time and scale. In the case of turbulence time series, the local
cross-covariance at τ = 0, c(p,q)(u, 0) with p 	= q can be thought of as a local atmospheric
flux in kinematics units. This local fluxmeasures themean flux at the normalized time interval
(u, u + δu). Following Nason et al. (2000), under stationary conditions, this time-dependent
flux converges to the total integrated atmospheric flux for the measured period and equals
the flux obtained by the eddy-covariance method.

In Fig. 4, we compared the local flux signals denoted by c(2,1)(t, 0) for the realizations
shown in Fig. 2 and its theoretical version defined by S(2,1)

micro, j (u) and S(2,1)
j (u), for both

stationary (left panel) and nonstationary (right panel) cases. The black solid line represents
the estimated local flux signal for both realizations of Fig. 2—for the realizations, first, we
estimate the LWS matrix, then, we reconstruct the flux signal with Eq. (3)—and the grey
dashed line represents the theoretical reconstruction based on the theoretical S(2,1)

micro, j (u) and

S(2,1)
j (u)—see Fig. 1 and Eq. (5).
In the stationary case, the local flux signal remains constant, converging to a total inte-

grated atmospheric flux given by the theoretical value of 〈c(1,2)〉theoretical = 0.034 based
on Smicro, j (u). The estimated signal closely matches the theoretical value with a root mean
square error (RMSE) ofRMSEmicro = 0.003.On the other hand, in the nonstationary case, the
local flux exhibits erratic patterns due to large-scale components integrating the cospectrum,
S(2,1)
meso, j (u) contained in S(2,1)

j (u). Here, estimating local flux is challenging due to the diffi-
culty in determining the coarse-scale of the cospectrum, as seen in the difference between the
estimated signal (black line) and its theoretical (dashed grey line)—see the panel on the right
of Fig. 4. The RMSE value supports this for the nonstationary case is RMSEmeso = 0.042,
which is one order of magnitude higher than RMSEmicro.

This analysis shows that the nonstationary atmospheric flux can be visually assessed
through the local flux signal, denoted by c(2,1)(t, 0). The time pattern of the flux signal is
determined by the spectral representation S(2,1)

j (u), making it an effective way to detect
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nonstationary features. In our simulation, the nonstationary behavior is due to mesoscale
motion. However, this local flux signal can also indicate the presence of nonstationary fea-
tures due to other types of atmospheric phenomena, such as nonstationary motions present
in the microscale, including for example coherent structures. At this point, it is important
to distinguish the contributions to the atmospheric flow from the various atmospheric phe-
nomena that may be present in the airflow. In the case of signals contaminated by mesoscale
motion, we need to identify a specific scale between mesoscale and microscale, commonly
called the spectral gap.

3.4 Local Detection of the Spectral Gap

Accurate estimations of the atmospheric flux involve separating the stationary component
of the flux commonly associated with the microscale motion from the mesoscale motions.
This separation can be achieved by identifying a region of low cospectral intensity related
to turbulent fluxes, also known as a cospectral gap (Stull 1988; Vickers and Mahrt 2003;
Voronovich and Kiely 2007; Babić et al. 2017; Lehner and Rotach 2023). Here, we propose
a method for detecting the cospectral gap that relies on the time-varying features of S j (u)

and adapts the ideas presented by Voronovich and Kiely (2007).
To accomplish this, we define a grid of equally spaced normalized time instants denoted

by ui ∈ {u1, u2, . . .}—the grid spans signal duration. Then, to each ui , we fit a fifth-order
polynomial Pi ( j) across scale j by a least-squares technique—as suggested by Voronovich
and Kiely (2007), Babić et al. (2017) and Lehner and Rotach (2023)—to the cospectrum
elements S(2,1)

j (ui ), elements associated with the turbulent flux. As described in Voronovich
andKiely (2007) andBabić et al. (2017), we apply a set of rules and goodness of fit conditions
to detect the local spectral gap jg,i at each ui . The set rules for each ui are:

1. Pi ( j) was checked for an local extremum E0 in a region defined by the timescale τ j =
τE0 < 200 s;

2. Pi ( j) was checked for critical points as roots, Ri , extrema, Ei and inflection points, Ii
(with I1 < I2 < . . .), at the region τE0 < τ j < T , where T = 2J / f , where f is in Hz,
represents the signal duration in seconds. For instance, in the case of J = 14 and J = 15,
and frequency sampling at 10 Hz, we get T ≈ 27.3min and T ≈ 54.6min, respectively;

3. The derivative at j = I2 was checked to be small |P ′(I2)/P ′(I1)| < 0.5. If this condition
is satisfied, I2 can be accepted as the gap scale;

4. The gap scale jg,i can be found from Pi ( jg,i ) = Pi ( jm)+0.02 [Pi (E0) − Pi ( jm)], where
jm = min{E1, R1, I2}.

The timescales τ j and τE0 are related to j and E0 using Eq. (7). The goodness of fit
conditions ensures that the estimated local spectral gap jg,i is derived from polynomial fits
that explain the spectrum and cospectrum at ui . Therefore, we use the Pi ( j) that satisfy the
next condition:

ε =
∑J

j=1

[
Pi ( j) − S(2,1)

j (ui )
]2

∑J
j=1

[
S(2,1)
j (ui ) − 〈S(2,1)(ui )〉

]2 ≤ 0.25 : (8)

where 〈S(2,1)(ui )〉 is the arithmetic mean of S(2,1)
j (ui ) and J the coarsest scale. Based on the

multiple estimations jg,i for the bivariate turbulent signalsXt;T , we define the mean function
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Fig. 5 Cospectrum S(2,1)
j (u) across time and scale. The black points indicate local estimations of the cospectral

gap jg,i , and the dashed line is the mean cospectral gap jg

jg and the variance Δ j2g of the cospectral gap as,

jg = E[ jg,i ] : (9)

Δ j2g = E[( jg,i − jg)
2] = var( jg,i ). (10)

where E denotes the expected value operator.
Figure5 display the cospectrum S(2,1)

j (u) for nonstationary realizations (Fig. 2b). The
cospectrum measures the interdependence between turbulent signals across time (x-axis)
and average timescale (y-axis), where this average timescale, τ j , is related to the scale, j by
Eq. (7). In the cospectrum, red tones indicate positive correlations, while blue tones indicate
negative correlations. Also, local estimations of cospectral gap jg,i are represented by black
points. The mean function jg—estimated as the arithmetic average—is depicted by a dashed
black line, and the cone of influence is represented by the curve-dashed line.

Depending on the average timescales, the cospectrum of the surface fluxes displays two
separate regions. A stationary region with a homogenous surface that remains constant over
time (0.3 s ≤ τ j ≤ 153.6 s). And a heterogenous surface (τ j > 153.6 s), with time-varying
features and poor intensity estimations, implying a nonstationary behavior. The black points
are located between the two regions, effectively separating them. In this example, we cannot
detect the cospectral gap at each point in time, which is 500 equally spaced time points,
because it does not meet the conditions of the polynomial fit (Voronovich and Kiely 2007).
However, successful local detections seem to be concentrated on a single cospectral gap.
Then, we obtain the mean cospectral gap at the average timescale τ jg = 158.6 ± 31.8 s
(arithmetic mean ± one standard deviation) for the nonstationary realization. Using Eq. (7),
we determined that this timescale corresponds to a scale jg = 10.0 ± 0.3, with Δ jg = 0.3,
which corresponds to the theoretical gap defined by S j (u)—for details, see Sect. 3.1.

With the cospectral gap defined, we can calculate the surface flux for the microscale
contribution. To achieve this, we reconstruct the band-limited covariance signal c(2,1)

1, jg
(u, 0)

with m0 = 1 and m = jg (Eq.3). In this example, the covariance signal displays similar
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behavior to the stationary case shownby the solid black line in Fig. 4. Finally, usingEq. (4),we
obtain a microscale flux 〈c(2,1)

1, jg
〉 = 0.035, with ∼ 3% relative difference from the theoretical

value.
Moreover, by analyzing the time-varying cospectrum S(2,1)

j (u), we can estimate the
cospectral gap locally. These local detections allow us to evaluate the statistical proper-
ties of the cospectral gap and assess its stability over time and convergence on a specific
timescale.

4 Application

4.1 Selection and Preprocessing of Turbulence Time Series

In this section, we apply the mvLSW approach to estimate turbulent heat fluxes under non-
stationary conditions in two distinct regions: Fairbanks, Alaska, and Bogota, Colombia.
Fairbanks is located in the Interior of Alaska region, a high-latitude area at (64◦49’N and
147◦52’W). During winter, the surface energy balance is primarily dominated by surface
radiative cooling; this forcing mechanism initiates the formation of a stably stratified atmo-
spheric boundary layer (ABL) (Malingowski et al. 2014; Fochesatto et al. 2015). Due to
the Fairbank’s topographic features, the stratified ABL is often influenced by shallow cold
flows, a mesoscale motion (Mayfield and Fochesatto 2013; Fochesatto et al. 2015). On the
other hand, Bogota is located in the eastern trifurcation of the Andes at 4◦36’N latitude
and 73◦4’W longitude, a tropical megacity (Ortiz et al. 2019). Its atmospheric conditions
are mainly driven by convection, while the urban canopy shapes air masses at the regional
level. Such atmospheric and topographic conditions suggest that the ABL can be affected by
mesoscale motions induced by anabatic-katabatic winds and landscape channeling (Guerrero
and Jimenez 2014; Ortiz et al. 2019).

In both locations, Fairbanks and Bogota, we collected measurements of the three velocity
components (u, v, w) and sonic temperature (Ts) using sonic anemometers set on eddy-
covariance towers. Both anemometers sample at 10Hz with a resolution of 0.01ms−1. In the
case of Fairbanks, turbulent measurements were taken with the 3D sonic anemometer CSAT3
installed at a 3m tower at UAF-Farm under the ALPACA project (Simpson et al. 2024).
In the case of Bogota, turbulent measurements were taken with the 3D sonic anemometer
Windmaster Pro 3D installed at a 10m tower at Parque Simon Bolivar (Ortiz et al. 2019).

Datasets collected in both sites, Fairbanks and Bogota, have been despiked according to
Starkenburg et al. (2016). A spike count less than 1% was ensured for the selected time
series. Also, we verified that measurements were not flagged by instrumental issues such
as amplitude resolution, dropouts, and discontinuities (Vickers and Mahrt 1997). To avoid
nonstationary behavior caused by changes in wind direction during the measurement period,
we calculated wind direction in N = 30 segments and quantified its variability. Per segment,
we calculated θi = tan−1(v̄i · ū−1

i ) for i = 1, . . . , 30, where v̄i and ūi are the average
crosswind components for the segment i . Now, defining the mean wind direction as θ̄ =
N−1 ∑N

i=1 θi and standard deviation sθ =
√

(N − 1)−1
∑N

i=1(θi − θ̄ )2, we calculated the

coefficient variation as CVθ = sθ θ̄−1, choosing signals that CVθ < 0.2. Finally, with these
considerations, we selected the records where the value of the Foken and Wichura (1996)
test exceeds the threshold RNcov > 30%. Specifically, for Fairbanks heat flux (i.e., w′T ′

s ),
RNcov ≈ 20,000% and for Bogota heat flux, RNcov ≈ 200%.
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In the Fairbanks datasets, we analyzed a nonstationary turbulence record during the win-
ter season—27.3min, i.e., 214 observations—from February 24, 2023, starting at 00:00h.
The measurements were obtained under stable conditions, where the presence of shallow
cold flows (Fochesatto et al. 2015) can considerably affect turbulent heat fluxes (Maillard
et al. 2022; Simpson et al. 2024). Similarly, in Bogotas’ datasets, we studied a nonstationary
record during the winter (i.e., rainy season)—54.6min, i.e., 215 observations—from Octo-
ber 9, 2014, starting at 12:00. The atmospheric conditions during the observations indicate
unstable conditions in the surface layer with some radiation interruption by cloudiness. The
observational site is at the Parque Simon Bolivar in downtown Bogota. This site reflects
fluxes from a typical urban canopy where green spaces are surrounded by large buildings
and structures (Ortiz et al. 2019). Therefore, given the case of two very different atmospheric
conditions, we have chosen to process time series length ∼ 30min and ∼ 60min. In both
cases, it was possible to detect the spectral gap successfully. However, it must be noted that
the search and successful estimation requires an adequate low-frequency sampling strategy
that is limited by the evaluated time frame. This is why this estimation falls outside the 95%
level of confidence when the time series are length-limited.

4.2 Results and Discussions

InFig. 6,we show the cospectrum S(2,1)
j (t) (left panels) and local flux c(2,1)(t, 0) (right panels)

for Fairbanks (upper panels) and Bogota (lower panels) used to estimate the microscale flux.
On the left, the cospectrum S(2,1)

j (t) displays local cospectral gaps jg,i , the average cospectral
gap jg , and the cone of influence—indicated by black points, horizontal long-dashed and
short-dashed lines, each. On the right, the local flux c(2,1)(t, 0) includes its band-limited
c(2,1)
1, jg

(t, 0) and full c(2,1)
1,J (t, 0) reconstruction (microscale and full contribution, each), and

the eddy covariance estimation FEC—via black solid, dark grey short-dashed and light grey
long-dashed lines, respectively.

In both sites, the cospectral gaps are τ jg = 259±203s for Fairbanks and τ jg = 710±240 s
for Bogota, suggesting smaller eddy sizes in Fairbanks’s microscale turbulence compared to
Bogota. This difference is due to the atmospheric conditions being very stable in Fairbanks
(L∗ = 8.0m, in terms of the Obukhov length) and unstable in Bogota (L∗ = −2.5m). These
results are consistent with previous research. For instance, in stable conditions, Vickers and
Mahrt (2003) reports timescale gaps of 30s, approximating the lower boundof the spectral gap
in Fairbanks at 56 s. Voronovich and Kiely (2007) reports timescale gaps between 330s and
800s, which approximates the upper bound of which approximates the upper bound of 462s
at Fairbanks.On the other hand, for daytime, Babić et al. (2017) reports spectral gaps of 1020s
and 1740s, andDonateo et al. (2017) reports scale gaps of 1800s for daytime. These values are
larger than the upper bound of the spectral gap for Bogota,∼ 960 s. However, measurements
in Bogota were made during the winter season affected by high cloud coverage and rain. In
Fig. 6a, c, for both locations, the cospectral gap τ jg split S

(2,1)
j (t) in two cospectral regions—

fine and coarse scales regions. The fine-scale cospectral regions, for Fairbanks (τ jg < 259s)
and Bogota (τ jg < 710 s), are roughly time-invariant, as expected for the microscale; the
coarse-scale cospectral region, for Fairbanks (τ jg > 259s) andBogota (τ jg > 710 s), exhibits
time-localized perturbations, caused by low-frequency wind motions.

Then, in Fig. 6b, d, we note that mesoscale wind motions offsets and distort microscale
local flux signal—the full cross-covariance signal c(2,1)

1,J (t, 0) is, essentially, a shifted version

of c(2,1)
1, jg

(t, 0). These low-frequency motions, combined with the high uncertainty affecting
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Fig. 6 On the left, we show the kinematic heat cospectrum for a Fairbanks (upper) and c Bogota (lower), with
black points indicating the local cospectral gaps jg,i and a dashed line representing the mean cospectral gap

jg . On the right, local flux signals c(2,1)(t, 0) for b Fairbanks (upper) and d Bogota (lower) are depicted using
solid black lines for bandwidth-limited flux and dashed dark gray lines for the full signal flux. The dashed
light grey line is the eddy-covariance flux

local flux signal estimates, obscure the interpretation of the microscale contributions. This is
reflectedwhen comparing the integrated total and the eddy-covariancefluxes against the band-
limited integrated flux (i.e., using the cospectral gap jg). In Fairbanks, the integrated total flux
〈c(2,1)〉Total = 0.05 × 10−3 Km s−1 and eddy-covariance flux FEC = 0.09 × 10−3 Km s−1

indicate a positive kinematic flux. But, when comparing to the reconstructed microscale
flux, 〈c(2,1)〉Microscale = −1.26 × 10−3 Km s−1, a higher heat flux follows more closely the
radiative cooling process and help closing the energy balance (Maillard et al. 2022).

Conversely, in Bogota, the total integrated flux 〈c(2,1)〉Total = −14.9 × 10−3 Km s−1

and the eddy-covariance flux FEC = −13.6 × 10−3 Km s−1 implying a stable condition.
But, integrating the microscale flux, 〈c(2,1)〉Microscale = 18.4 × 10−3 Km s−1, reflects that,
effectively, the flux is positive. This significant difference in the flux estimation is attributed to
a large reduction in solar radiation due to increasing cloudiness at the time of the observations.
This meteorological feature introduces a negative trend in the air temperature. However, it
must be noted here that in that observational site a plausible interpretation of negative fluxes
could be hypothetically verified if precipitation events were to precede the time series (e.g.,
surface cold pools).
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Using the mvLSW approach, both the cospectrum S(2,1)
j (t) and the local flux signal

c(2,1)(t, 0) are crucial in visualizing and interpreting the impact of mesoscale wind motions
on microscale turbulence—as we demonstrate by comparing the band-limited local flux sig-
nal c(2,1)

1, jg
(t, 0)with its full reconstruction c(2,1)

1,J (t, 0). Despite assuming stationarymicroscale
conditions and the presence of a spectral gap for this study, real-world applications (see Fig. 6)
often challenge these assumptions. Figure6b, d illustrate that microscale signals can exhibit
temporal variations. At times, it may be challenging to separate between mesoscale motions
and microscale turbulence, indicating a possible significant time-localized interaction com-
ponent. Nonetheless, this work provides a step forward in employing the mvLSW model to
analyze surface turbulence flux within increasingly complex surface and atmospheric flow
scenarios.

5 Conclusions

This study introduces the mvLSWmodel as a theoretical framework for analyzing turbulence
fluxes under complex atmospheric and surface conditions. Specifically, we simulate a sce-
nario where mesoscale wind motions impact the stationary microscale turbulence. Through
this simulation, we generated a synthetic time series providing stationary and nonstationary
turbulence conditions. This was achieved employing theoretical spectrum and cospectrum—
a theoretical LSW matrix—that replicates these scenarios. For the nonstationary case, we
split the cospectral components associated with the mesoscale and microscale, adapting the
Voronovich and Kiely (2007) algorithm for gap detection to the time-variant cospectrum.
Based on this method, we identify the spectral gap locally in time, allowing us to investigate
its statistical properties and time-variant behavior. Although this simulation study assumes
microscale stationarity and the presence of a spectral gap, the mvLSWmodel is adaptable to
other complex case studies through accurate spectral modeling. Such case studies can include
nonstationary microscale phenomena e.g., intermittent turbulence, coherent structures, and
conditions where local and regional winds affect turbulence flux. Also, this methodology
can potentially be used to analyze airborne collected turbulence flux measurements, where
air masses with different scales of motion are recorded in short periods of time (Strunin
and Hiyama 2004). Finally, the mvLSW methodology seems effective in examining com-
plex atmospheric conditions where surface turbulent fluxes are affected by scale-dependent
atmospheric forcing (see Sect. 4 and “Appendix 1”). Further applications can be envisioned
using the statistical modeling methodology to introduce a specific atmospheric scale forc-
ing and compare the model with experimental data. Overall, these findings underscore the
importance of considering scale-atmospheric forcing when computing turbulent fluxes and
compare them with high resolution model outputs.

Appendix 1: Momentum Turbulent Fluxes

Following Sect. 4, this appendix presents the analysis of the momentum turbulent fluxes,
specifically for Fairbanks. Figure7 shows the spectrum and cospectrum of u′, v′, w′, u′v′,
u′w′ and v′w′. We note that the spectral gap for most of the variances and cross-covariances
occurs around the average timescale of τg ∼ 300 s, except for the cospectrum u′v′, which
occurs around τg ∼ 150 s. This is important because it describes a mesoscale perturbation
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Fig. 7 Spectrum of the turbulent velocity fields (u′, v′, w′). The upper panels are the spectrum components

S(u′,u′)
j (t), S(v′,v′)

j (t) and S(w′,w′)
j (t). The bottom panels are the spectrum components S(u′,v′)

j (t), S(u′,w′)
j (t)

and S(v′,w′)
j (t). The x-axis indicates the time in seconds; the y-axis is the average timescale τ j related to the

timescale bandwidth associated with the scale j . The black points mark local cospectral gaps jg,i , and a
dashed line represents the mean cospectral gap jg for the spectrum and cospectrum

Fig. 8 Local variance and cross-covariance of the turbulent velocity field (u′, v′, w′). The upper panels are
the local variances c(u

′,u′)(t, 0), c(v′,v′)(t, 0) and c(w
′,w′)(t, 0). The bottom panels are the cross-covariance

c(u
′,v′)(t, 0), c(u′,w′)(t, 0) and c(v′,w′)(t, 0). The x-axis indicates the time in seconds; the y-axis is the strength

of the dependence. For each case, it is shown the local variance and cross-covariance, fully reconstructed
(dashed gray line) and partially reconstructed (solid black line)—we referenced as a partial reconstruction
when the local cross-variance is reconstructed from the finest scale m0 = 1 to the spectral gap m = jg

spread across all fields. However, it must be clarified that not all fields are expected to be
perturbed simultaneously.

Similarly, and based on the results of Fig. 7, Fig. 8 presents the time series of the recon-
structed of u′, v′, w′, u′v′, u′w′ and v′w′ momentum fluxes. Here, we note a clear difference
between the total and microscale flux across all variables. In these cases, the time series were
computed using the time-averaged spectral gap found and indicated in the dashed line in
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Fig. 7. Such difference relates to the existing energy in the cross-spectrum (see Fig. 7) at low
frequencies.

Acknowledgements The authors acknowledge the support from the Universidad del Valle Sede Cali under
the research grants code CI-21134, 124-2020 and MInCiencias (Colombia) for partial funding via the 4DAir-
MOLIS Project (contract No. 1150-852-71525). Fochesatto G.J. acknowledges support from NSF-grants
2117971, 2146929, and 2232282 from Physical Dynamic Meteorology, US-National Science Foundation.

Author Contributions D.A. and J.F. wrote and designed the main manuscript text. C.O. critically revised all
the statistical components of the manuscript. R.J., J.F. and C.O. made substantial contributions in design and
interpretation of data. All authors reviewed the manuscript.

Funding Open Access funding provided by Colombia Consortium

Data Availibility No datasets were generated or analysed during the current study.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

AcevedoOC, Costa FD, Oliveira PES, Puhales FS, Degrazia GA, Roberti DR (2014) The influence of submeso
processes on stable boundary layer similarity relationships. J Atmos Sci 71(1):207–225. https://doi.org/
10.1175/JAS-D-13-0131.1

AngevineWM, Edwards JM, LothonM, LeMoneMA, Osborne SR (2020) Transition periods in the diurnally-
varying atmospheric boundary layer over land. Boundary-Layer Meteorol 177(2–3):205–223. https://
doi.org/10.1007/s10546-020-00515-y

Arya P, Holton J (2001) Introduction to micrometeorology. ISSN, Elsevier Science
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