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Abstract
This study aims at estimating the inherent variability of microscale boundary-layer flows and
its impact on air pollutant dispersion in urban environments. For this purpose, we present a
methodology combining high-fidelity large-eddy simulation (LES) and a stationary bootstrap
algorithm, to estimate the internal variability of time-averaged quantities over a given analysis
period thanks to sub-average samples.Adetailed validation of anLESmicroscale air pollutant
dispersion model in the framework of the Mock Urban Setting Test (MUST) field-scale
experiment is performed. We show that the LES results are in overall good agreement with
the experimental measurements of wind velocity and tracer concentration, especially in terms
of fluctuations and peaks of concentrations. We also show that both LES estimates and the
MUST experimental measurements are subject to significant internal variability, which is
therefore essential to take into account in the model validation. Moreover, we demonstrate
that the LES model can accurately reproduce the observed internal variability.

Keywords Atmospheric pollutant dispersion · Internal variability · Large-eddy simulation ·
Microscale meteorology · MUST

1 Introduction

Air pollutants (trace gases and aerosols) released as a result of natural hazards (e.g. wildfires,
Langmann et al. 2009), daily anthropogenic emissions (Crippa et al. 2016), or industrial plant
accidents (Armand and Duchenne 2022; Dumont Le Brazidec et al. 2023) can degrade air
quality and have significant short- and long-term health and environmental impacts (EEA
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2020). They are dispersed over a wide range of lengths and time scales, making air quality
prediction a multi-scale problem (Britter and Hanna 2003).

Simulating microscale dispersion is particularly challenging. Pollutant concentrations can
locally vary by orders of magnitude in time and space due to the complex turbulent flow
dynamics induced by interactions between atmospheric boundary-layer (ABL) processes
and surface heterogeneity. This is particularly the case in urban areas where separation and
recirculation zones are caused by the presence of buildings of varying heights and geome-
try (Fernando et al. 2001; Klein et al. 2007; Hertwig et al. 2019). Relevant insight into these
processes has been obtained viamicroscale Computational FluidDynamics (CFD) (Baklanov
2000; Antonioni et al. 2012; Tominaga and Stathopoulos 2013; Hayati et al. 2017; Topar-
lar et al. 2017). This approach solves the Navier–Stokes equation for the velocity field and
the pollutant concentration transport equation based on Reynolds-Averaged Navier–Stokes
(RANS) formalism (Meroney et al. 1999; Milliez and Carissimo 2007; Koutsourakis et al.
2012) and Large-Eddy Simulation (LES) (Patnaik et al. 2007; Gousseau et al. 2011; Harms
et al. 2011; Vervecken et al. 2015a; Merlier et al. 2018) approaches. In the RANS framework,
all the scales of turbulence are modelled to predict ensemble-averaged flow and dispersion
field, whereas in LES the turbulent scales above the filter scale are explicitly resolved. The
advantage of the latter approach is twofold: (i) it reduces uncertainties related to turbulence
modelling (García-Sanchez et al. 2018) at the expense of higher computational cost; (ii) since
LES provides instantaneous realizations of the physical processes it can represent the effect of
the inherent temporal variability of the ABL on pollutant dispersion. This important knowl-
edge is not accessible with the averaged formalism of the RANS approach. LES is now used
to evaluate operational air quality models (Hertwig et al. 2018; Grylls et al. 2019) and to
parametrize urban canopy flows in mesoscale climate models (Nazarian et al. 2020; Nagel
et al. 2023).

Experimental validation is required to assess the quality and fidelity of CFD approaches
(Meyers et al. 2008; Schatzmann and Leitl 2011; Blocken and Gualtieri 2012). Among the
limited number of full-scale experiments available, the MUST (Mock Urban Setting Test)
field experiment (Yee and Biltoft 2004) is an attractive test case to assess LES reliability for
microscale air pollution prediction because (i) it features an idealized urban canopy made up
of a regular array of shipping containers, simplifying the model construction; (ii) the experi-
mental test site is isolated which reduces uncertainties on the inflow wind; (iii) observations
of wind, turbulence, and tracer concentration are available at different locations throughout
the field; and (iv) several studies comparing CFD model predictions with experimental mea-
surements using both RANS (Hanna et al. 2004; Milliez and Carissimo 2007; Donnelly et al.
2009; Kumar et al. 2015) and LES (Camelli et al. 2005; Dejoan et al. 2010; Santiago et al.
2010; König 2014; Nagel et al. 2022) approaches are already reported in the literature.

However, despite their high computational cost, CFDmicroscale atmosphericmodelsmay
still lack accuracy because of the different uncertainties involved (Montazeri and Blocken
2013; Wise et al. 2018; García-Sanchez and Gorlé 2018). The uncertainties of an LES model
can be grouped into three categories: (i) aleatory uncertainties, i.e. irreducible uncertainties
inherent to the stochastic nature of the physical system under consideration; (ii) structural
uncertainties, i.e. uncertainties due to the choice of the code and the underlyingmodel assump-
tions such as turbulence modelling; and (iii) boundary conditions uncertainties, i.e. linked
to meteorological forcing, representation of the urban geometry and characterization of the
pollutant source. Aleatory uncertainties come from the ABL internal variability, due to its
turbulent nature and changes in the meteorological conditions (García-Sanchez and Gorlé
2018). To reduce these uncertainties, it is necessary to acquire and simulate periods long
enough to achieve statistical convergence of the flow and transport phenomena. This is possi-

123



Internal Variability of LES for Urban Pollutant Dispersion Page 3 of 36 9

ble in wind-tunnel experiments and numerical simulations, but not in experimental field-scale
campaigns (Schatzmann and Leitl 2011). Longer acquisitions are indeed affected by tran-
sient phenomena such as large-scale fluctuations of theABLor day-night cycle. Inmicroscale
studies, it is therefore common to select periods that minimize the influence of the large-scale
fluctuations; for instance, 200-s quasi-stationary periods have been extracted from each 15-
min trial of the MUST experiments (Yee and Biltoft 2004). However, temporal averages are
then calculated over relatively short periods and are thus subject to sampling errors, which
correspond to the microscale internal variability of the physical system. With LES models,
time windows obtained by simulation are often limited by the computational cost, imply-
ing that the time-averaged LES estimates are also subject to microscale internal variability
(Sood et al. 2022). Studies report internal variability as one of the reasons for the discrep-
ancies between field-scale experiments and CFD simulations or wind-tunnel experiments
and express the need to go beyond deterministic point-wise model/observations comparison
(Schatzmann and Leitl 2011; Harms et al. 2011; Dauxois et al. 2021). Quantifying internal
variability would therefore be a major methodological advance for robust atmospheric CFD
model validation when data are acquired over limited periods, but also for model sensitivity
analysis and multi-model comparisons.

Themain contribution of this study is to provide amethod for quantifying the internal vari-
ability of microscale boundary-layer flows and pollutant dispersion. The proposed approach
relies on sub-averages resampling using the stationary bootstrap algorithm from Politis and
Romano (1994) to take into account of temporal correlations in the data. It is a promising
and efficient technique that does not require long acquisition and relies on minimal statistical
assumptions. Since LES provides a temporal representation of the resolved wind fluctua-
tions, this method can also be used to estimate the aleatory uncertainty of LES predictions in
any kind of context. As an illustration, the internal variability is then estimated in a neutral
case of the MUST field experiment to provide confidence intervals for both LES predictions
and observations of wind velocity and pollutant concentration statistics. This enables robust
validation of the model as it avoids misleading conclusions and makes it possible to disso-
ciate errors due to model biases from those explained by internal variability alone. Finally,
assessing this internal variability is useful to support future model development efforts and
estimate which level of accuracy is achievable, in particular for designing reduction strategies
to improve operational models (Vervecken et al. 2015b; Grylls et al. 2019; Dauxois et al.
2021).

The outline of this paper is as follows. The MUST trial is first presented in Sect. 2. The
main features of the LES model are described in Sect. 3. The bootstrap procedure used to
estimate internal variability is explained in Sect. 4. Results are finally presented and discussed
in Sect. 5.

2 TheMock Urban Setting Test Experiment (MUST)

2.1 Experimental Site Description

MUST is a field-scale experiment performed in September 2001 at the US Army Dugway
Proving Ground test site in the Utah desert (USA). Its objective was to provide extensive
measurements in the short-to-medium range of a plume within an urban-like canopy in
support of the development and validation of urban dispersion models (Biltoft 2001; Yee and
Biltoft 2004).
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Fig. 1 Schematic view of the MUST array configuration adapted from Kumar et al. (2015), the coordinate
system used is the same as in Yee and Biltoft (2004) such that north corresponds to the angle of − 30◦ in the
x–y coordinate system. Black rectangles represent the shipping containers used to mimic the urban canopy.
Triangles correspond to the anemometers mounted on towers S, T, and N. Yellow plus symbols correspond
to the masts V equipped with WDTC anemometers, and the purple plus symbol to the ASU anemometer.
Coloured circles correspond to the DPID concentration samplers (one colour for each line of sensors), and
coloured squares correspond to the UVIC concentration samplers mounted on towers A, B, C, and D (note that
there is a DPID sampler at the same location as tower D). The upstream mean wind direction (red arrow) and
the propylene-source location (red star) of the trial 2681829 retained for the present study are also indicated

The idealized urban canopy is mimicked by an array of 10×12 regularly-spaced shipping
containers covering an area of about 200× 200m2 (Fig. 1). The array (in its x–y coordinate
system) makes an angle of 30◦ to the north. The containers are 12.2-m long, 2.42-mwide and
2.54-m high. The average distance between two containers is 12.9m along the x-axis and
7.9m along the y-axis. The terrain is flat and homogeneous with a mix of sparse greasewood
and sagebrush ranging from 0.4 to 0.75m high. It is worth mentioning that the geometry of
the idealized canopy was slightly irregular, as the containers were not all perfectly aligned,
and one container was replaced by a van (Biltoft 2001). Their impact on the flow field was
studied in Santiago et al. (2010), but we consider in this study a regular case as in Milliez
and Carissimo (2007) and Nagel et al. (2022).

During the experiments of the MUST field campaign, a non-reactive gas (propylene) was
released, passively, at different horizontal and vertical locations, and for different atmospheric
conditions (in terms of wind direction, wind speed, and atmospheric stability condition). This
gas can be considered a passive tracer.

2.2 Available Experimental Data

The MUST experimental dataset includes wind velocity and tracer concentration measure-
ments within and outside the container array. This section summarizes the data of primary
importance for the design and evaluation of our LES modelling approach. The reader should
refer toBiltoft (2001) for full details of the instruments used during theMUSTfield campaign.

123



Internal Variability of LES for Urban Pollutant Dispersion Page 5 of 36 9

For wind velocity measurements, two-dimensional and three-dimensional sonic anemome-
ters were provided by the Dugway Proving Ground’s West Desert Test Center (WDTC) and
deployed vertically on different masts (triangles in Fig. 1): four anemometers were mounted
on the central tower T at z = 4, 8, 16 and 32m; and three anemometers were mounted at
z = 4, 8 and 16m on each of the towers S and N (located 30m upstream and downstream
from the canopy, respectively).WDTC three-dimensional sonic anemometers were also posi-
tioned within the canopy at z = 1.15m on four tripods V (yellow plus-symbols in Fig. 1).
An additional three-dimensional sonic anemometer, provided by the Arizona State Univer-
sity (ASU), measured wind velocity upstream of the containers, near tower S, at z = 1.6m
(purple plus-symbol in Fig. 1).

For tracer concentration measurements, 48 digi-photoionization detectors (DPIDs,
coloured circles in Fig. 1) were used as well as 24 ultraviolet ion collectors (UVICs, coloured
squares in Fig. 1). The DPIDs have a detection threshold of 0.04ppm against 0.01ppm for
the UVICs. 40 DPIDs were placed within the canopy at z = 1.6m, forming four sensor lines
aligned with the y-axis (referred to as the DPIDs lines in Fig. 1); eight were placed on the
central tower T at z = 1, 2, 4, 6, 8, 10, 12 and 16m. Also, six UVICs were mounted within
the canopy on each of the four 6-m towers A, B, C, and D at z = 1, 2, 3, 4, 5, 5.9m to obtain
vertical concentration profiles.

2.3 Selected Case

From all the available observations, 21 trials were chosen by Yee and Biltoft (2004) for their
high quality (i.e. tracer detection on the tower T and for three of the four DPID lines). In
addition, Yee and Biltoft (2004) extracted a 200-s quasi-stationary (in the statistical sense)
period in each 15-min experiment that minimizes the effect of mesoscale meteorological
fluctuations on the tracer concentration time series. This time window (referred to as the
analysis period in the following) was chosen as the sequence with the smallest variation in
mean wind speed and direction at the upstream tower S for each trial.

In this work, we simulate one of the 21 trials referred to as 2681829, which has been
studied in the literature with LES (König 2014; Nagel et al. 2022) and in RANS mode as
part of a set of MUST trials (Milliez and Carissimo 2007; Donnelly et al. 2009; Kumar et al.
2015). The trial main characteristics extracted from the data of Yee and Biltoft (2004) are
summarized in Table 1. This case is a configuration with neutral atmospheric conditions
(i.e. afternoon transition from unstable to stable conditions), characterized by a high value
of the surface Obukhov length Lo (Lo � 2500m) estimated by Yee and Biltoft (2004), no
latent and sensible heat fluxes, and a weak influence of buoyancy. The time-averaged wind
speed u4 and direction α4 at z = 4m at the upstream tower S are respectively 7.93m s−1 and
− 41◦ (this angle is definedwith respect to the x-axis of the container array indicated in Fig. 1,
the north direction corresponding to an angle of − 30◦). The gas was released, passively, at
zs = 1.8m near the inlet of the canopy (red star symbol in Fig. 1) with a constant flow rate
Q = 225Lmin−1.

For this selected trial, the analysis period is between 300 and 500s after the start of
the acquisition. The objective of this study is to estimate the internal variability associated
with this limited acquisition time, and then to take it into account for the validation of the
meteorological and tracer concentration statistics forecasts provided by our LES modelling
approach.
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Table 1 Main characteristics of theMUST trial 2681829 (Yee and Biltoft 2004): α4 and u4 are respectively the
time-averaged wind direction and wind speed at z = 4 m of the upstream tower S, Lo is the surface Obukhov
length estimated by Yee and Biltoft (2004) using the vertical fluxes of temperature and velocity measured at
z = 4 m of the central tower T, Q is the constant tracer release rate at the source, and zs is the source height.
The flow statistics are computed on the [300; 500s] analysis period

Trial Local start time (UTC - 6h) α4 (◦) u4 (m s−1) Lo (m) Q (L min−1) zs (m)

2681829 2001/09/25 1830 −41 7.93 28,000 225 1.8

3 Large-Eddy Simulation (LES) Model of theMUST Trial 2681829

In this section, the LES solver and numerical setup to model the microscale flow and plume
dispersion within the canopy during the MUST trial 2681829 are described. The validation
metrics in terms of flow and tracer concentrations for comparison with the experiments are
also presented.

3.1 Numerical Large-Eddy Simulation (LES) Solver

The massively parallel LES code AVBP (Schönfeld and Rudgyard 1999; Gicquel et al.
2011)1 developed by CERFACS is used to perform LES of the microscale flow and plume
dispersion within the canopy during the MUST trial 2681829. It solves the LES-filtered
compressible Navier–Stokes equations for flow dynamics and tracer advection–diffusion
equation on unstructured grids. AVBP is widely used to resolve non-reactive or reactive
unsteady flows in simple or complex geometry (Gicquel et al. 2011). It is also relevant to
predict pollutant formation and atmospheric dispersion (Poubeau et al. 2016; Paoli et al.
2020).

In terms of numerical discretization, the second-order Lax-Wendroff (LW) finite-volume
centered scheme (Schönfeld and Rudgyard 1999) is used in this study. Because of explicit
time advancement and a fully compressible formulation, the LES timestep is subject to an
acoustic CFL condition. In the context of very low Mach ABL flow, to increase the timestep
and thereby save computational time, an artificial compressibility approach (pressure gradient
scaling, Ramshaw et al. (1986)) is adopted.

In terms of subgrid-scale modelling, the Wall-Adaptative Local Eddy-Viscosity (WALE)
model (Nicoud andDucros 1999) accounts for the subgrid momentum transport. It represents
the effect of unresolved small scales on the flow with a subgrid eddy-viscosity hypothesis,
with a model form that is well adapted for shear-driven flows (Nicoud and Ducros 1999).
The constant involved in the subgrid-scale turbulent viscosity estimation is set to Cw = 0.5
as recommended by Nicoud and Ducros (1999).

3.2 Computational Domain andMesh

The computational domain in which the Navier–Stokes and the tracer transport equations
are solved is a rectangular cuboid oriented so that the inlet boundary is normal to the mean
upstreamwind direction. In the x–y plane, the domain is a 420×420m2 square centred on the
container array. Along the z-axis, the height of the domain is 50m. To avoid lateral or vertical
confinement effects, the distance between the lateral boundaries and the container array is at

1 AVBP documentation, see https://www.cerfacs.fr/avbp7x/.
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least 80m (corresponding to 30 H , with H = 2.54m the container height), and the distance
between the top boundary and the top of the containers is 18H . This geometry ensures
compliance with the guidelines for CFD simulation of urban atmospheric flows (Tominaga
et al. 2008; Franke et al. 2011). Consistently, Nagel et al. (2022) found that there was no
significant influence of domain height on themicroscale flow dynamics and plume dispersion
predictions obtained using LES in a CFD-like configuration.

At the domain inlet, a turbulent inflow boundary condition is imposed to represent the
upstream unsteady wind conditions that have an impact on the microscale flow dynamics
and tracer dispersion (more details are given in Sect. 3.3). At the outlet and top boundaries,
the static pressure is softly imposed to evacuate acoustic waves (Poinsot and Lele 1992).
Symmetry boundary conditions are used for the lateral boundaries. The ground boundary
is modelled as a rough surface with imposed shear stress evaluated using a law-of-the-wall
based on the roughness length z0. Similarly, for the container surfaces, the shear stress is
imposed from the law-of-the-wall for a smooth surface based on a viscous length (Larsson
et al. 2016).

An unstructured and boundary-fittedmesh of 91million tetrahedra is used to discretize the
computational domain. In the regionof interest (in a boxof 246×266×3.6m3 that contains the
full container array), the mesh is uniformwith a resolution equal to�x = �y = �z = 0.3m
(this resolution corresponds to at least 8 cells over the height of the obstacle). In the rest of
the domain, the mesh has a resolution of 0.3m at the ground level except near the outlet and
the lateral boundaries, where the resolution was coarsened to 2m to reduce the number of
cells. On the vertical, the mesh is gradually stretched to reach a 5-m resolution at the top
boundary.

The mesh resolution used in this study is in line with the resolutions used in the literature,
which typically range from 50cm in König (2014) to 30cm in Nagel et al. (2022). Such
high-resolution LES is useful for examining the turbulent structures near the surface induced
by the containers in the MUST experiments.

3.3 Inflow Boundary ConditionModelling

One challenge in LES of near-field pollutant dispersion relates to the modelling of inflow
boundary conditions (Muñoz-Esparza et al. 2014; Dauxois et al. 2021). In field-scale applica-
tions, there is usually a limited amount of information available to represent the complexity
of actual microscale inflow conditions that are influenced by the ABL variability. One way to
represent themesoscale/microscale interactions is to perform a dynamical downscaling of the
atmospheric flow using a multi-scale meteorological model based on grid nesting (Wiersema
et al. 2020; Nagel et al. 2022). This multi-scale approach resulted in significant improvement
of the microscale flow velocity and tracer concentration predictions for the Oklahoma City
Joint Urban 2003 experiment (Wiersema et al. 2020). However, this finding did not hold
for the MUST idealized urban environment, where a standalone microscale LES configu-
ration based on idealized inflow boundary conditions achieved the same level of accuracy
as a multi-scale approach (Nagel et al. 2022). We therefore represent the turbulent inflow
boundary condition using an idealized approach in this work.

3.3.1 Inlet MeanWind Profile

The logarithmicwind profile fromRichards andHoxey (1993), representing a fully developed
neutral atmospheric surface layer, is imposed at the inlet. This description is sufficient as (i) the
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Fig. 2 Vertical profiles (solid lines) of the a inlet mean wind speed uinlet (z), and the b inlet wind speed
fluctuations u′

i u
′
j (z) predicted by a precursor simulation and used to define the LES inflow boundary condition.

Symbols correspond to experimental data

selected trial corresponds to a neutral stratification condition; and (ii) we focus on the near-
surface flow inside and just above the canopy. The mean horizontal wind velocity uinlet at
height z reads:

uinlet (z) = u∗
κ

ln

(
z + z0
z0

)
, (1)

where z0 (m) is the aerodynamic roughness length equal to 0.045 ± 0.005m according to
observations (Yee andBiltoft 2004), κ is the vonKármán constant equal to 0.4, and u∗ (ms−1)
is the friction velocity. The parameter u∗ is calibrated here by fitting the profile (Eq. 1)
through a least-square regression on wind speed measurements available at the upstream
tower S and for the ASU anemometer (these data are described in Sect. 2.2). This leads
to u∗ = 0.73 ms−1, with an associated uncertainty of 0.12ms−1 estimated by uncertainty
propagation. The corresponding vertical profile for the inlet mean wind is shown in Fig. 2a
along with the measurements used for regression.

A constant wind direction αinlet is imposed on the vertical at the inlet so that the inlet wind
vector reads u = (uinlet cos(αinlet ), uinlet sin(αinlet ), 0)T in the MUST frame of reference
(see Fig. 1). The constant wind direction is obtained by spatially averaging the four wind
direction measurements available at tower S and for the ASU anemometer. This leads to
αinlet = −40.95◦, a value that remains very close to the observation at z = 4m (see Table 1,
page 7).
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3.3.2 Inlet Wind Fluctuations

To provide an inflow boundary condition that is representative of boundary-layer turbulence,
temporal wind fluctuations u′ are added to the mean inlet wind profile (Eq. 1) according
to Reynolds’ decomposition. The fluctuations are obtained from Fourier pseudo-random
modes using theKraichnan-Smirnov synthetic turbulence injectionmethod (Kraichnan 1970;
Smirnov et al. 2001) constructed so that they follow the Passot–Pouquet turbulence spec-
trum (Passot and Pouquet 1987). The fluctuations are defined based on the full turbulent
Reynolds stress tensor since the Kraichnan method allows prescribing anisotropic and het-
erogeneous turbulence. It was verified that the distance between the inlet and the first obstacle,
dinlet = 80m, is large enough to ensure the transition from the synthetic spectrum to a fully
developed turbulence energy cascade. One drawback of the method is that the eddy length
scale is limited by the inlet surface size (in this work, the maximum size of the eddies is equal
to half the domain height, i.e. 25m).

The components of theReynolds stress tensor are estimated using a preliminary simulation
with the same surface roughness butwithout obstacles, andwith periodic boundary conditions
at the inlet and outlet (Keating et al. 2004; Munters et al. 2016; Vasaturo et al. 2018). This
periodic simulation is run at a 6.25-m resolution over a 400 × 400 × 250m3 computational
domain and a 2-hour period to obtain converged velocity fluctuation statistics. The resulting
mean velocity fluctuations are shown in Fig. 2b alongside fluctuation measurements. Even
though experimental measurements of fluctuations were not used to calibrate the precursor
simulation, it reproduces overall well the level of fluctuations measured at tower S upstream
of the containers. The u′2

x fluctuation profile is accurately predicted, however, the precursor

tends to underestimate u′2
y and overestimate

∣∣∣u′
xu

′
y

∣∣∣, especially below 5m. These fluctuations

statistics form the Reynolds stress tensor, which is imposed at the inlet of the microscale
domain.

3.4 Initial Condition and Simulation Spin-up

The LES simulation is initialized using a homogeneous flow field in the horizontal directions
equal to the inlet mean field (Sect. 3.3.1). A spin-up time of 60s, which corresponds to 1.5
times the convective time scale, is used so that first- and second-order statistics of the flow
and the tracer reach a stationary state. A 200-s time window corresponding to the [300;
500s] analysis period (Sect. 2.3) is then simulated, from which statistics of the flow and
tracer concentration variables can be collected. At probe location, outputs are saved with a
resolution of 0.05 s.

3.5 Tracer Modelling

Tracer dispersion is modelled by the LES-filtered advection–diffusion equation using an
Eulerian approach. The effect of the subgrid scales on the tracer transport is modelled using a
gradient-diffusion hypothesis with a turbulent Schmidt number Stc set equal to 0.6. Sensitivity
tests demonstrate that the choice of Stc has a very limited impact on the model predictions
(not shown here).

As in other simulations of the MUST experiment (Milliez and Carissimo 2007; Dejoan
et al. 2010), the pollutant source is simulated by a local source term in the transport equation
so the volumetric flow rate matches the experimental value Q defined in Table 1. AGaussian-
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Fig. 3 Horizontal cuts at z = 1.6m of instantaneous a horizontal wind speed magnitude uh (ms-1) and
b propylene concentration c (ppm) at t = 60 s. c Horizontal cut of the time-averaged concentration over the
200-s analysis period. White rectangles represent containers. The red star represents the tracer source, and
the green line represents the mean wind direction imposed at the inlet. The plume centerline, identified by the
positions of the mean concentration maximum on lines orthogonal to the incident wind angle, is represented
as a red line (c)

shaped volumetric source term is imposed with a half-width set to cover approximately 6
cells in each direction in order to avoid concentration discontinuities.

Illustrative examples of instantaneous flow and tracer concentration fields obtained by the
LES model after the spin-up period are given in Fig. 3a, b. The transition from large-scale
turbulence provided by the turbulent inlet forcing to small-scale turbulent structures induced
by the containers is visible in Fig. 3a. The resulting instantaneous tracer concentration field
is shown in Fig. 3b, highlighting the scale disparity of local tracer concentration values that
can reach 10 ppm near the emission source. Figure3c shows the time-averaged propylene
concentration over the 200-s analysis period within the canopy. It highlights the deviation
of the mean plume centerline from the incident mean wind direction because of the wind
channeling effect induced by the obstacles.

In terms of computational cost, simulating a 260-s physical period (including the spin-up
and the 200-s analysis period) for this MUST configuration costs 20,000 core hours, using
1344CPUcores on theTGCCIreneSKLsupercomputing facility (Intel Skylake architecture).
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3.6 Model ValidationMetrics

3.6.1 Wind Speed and Direction Metrics

To assess themodel’s ability to quantitatively predict the flowfieldwithin and over the canopy,
three metrics based on time-averaged quantities are used to quantify the difference between
model predictions and flow measurements. The hit rate (q) and the mean absolute error
(MAE) evaluate discrepancies for the horizontal flow velocity uh while the scaled averaged
angle (SAA) quantifies the deviations for the horizontal direction of the flow α:

q = 1

Nobs

Nobs∑
k=1

ξk with ξk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if
∣∣∣ uh (k)

p − uh
(k)
o

∣∣∣ ≤ AD

1 if

∣∣∣ uh (k)
p −uh

(k)
o

∣∣∣∣∣∣ uh (k)
o

∣∣∣ ≤ RD

0 else,

, (2)

MAE = 〈 ∣∣uh p − uho
∣∣ 〉, (3)

SAA = 〈 uh p
∣∣α p − αo

∣∣ 〉
〈 uh p 〉 , (4)

where uho and αo are the observed time-averaged horizontal wind speed and direction, and
uh p and α p are the model colocated predictions. Each element of the Nobs dataset is indexed
by the superscript (k) in Eq. 2, while the angle brackets 〈·〉 indicate the average over the Nobs

elements in Eqs. 3–4. To compute the hit rate (Eq. 2), we use the same values of absolute
deviation (AD) and relative deviation (RD) as Nagel et al. (2022), i.e. AD = 1ms−1 and
RD = 0.

The hit rate and SAA metrics have been used in other MUST modelling validation stud-
ies (Santiago et al. 2010; Nagel et al. 2022) and we use in addition the MAE following
recommendations by Santiago et al. (2010). The perfect scores associated with these metrics
are reported in Table 3. The metrics in Eqs. 2–4 are evaluated on the full set of WDTC sonic
anemometer measurements, which are located on the towers S, T and N as well as on the four
masts V (Sect. 2.2). Note that the first anemometer of the tower N downstream of the contain-
ers (located at z = 4m) was excluded because of its failure during the trial. The total number
of measurements for LES model validation for flow prediction is, therefore, Nobs = 13. The
accuracy of the wind flow estimates is only assessed for the horizontal velocity because most
of the experimental measurements were provided by 2-D anemometers.

3.6.2 Tracer Concentration Metrics

LES model performance for tracer concentration prediction (in ppm) is evaluated using
the standard statistical metrics for air quality model evaluation (Chang and Hanna 2004),
which were also used in previous MUST studies with CFD modelling approaches (Milliez
and Carissimo 2007; Antonioni et al. 2012; Nagel et al. 2022). These metrics compare the
simulated and observed tracer concentrations in terms of fractional bias (FB), normalized
mean square error (NMSE), fraction of predictions within a factor of two of observations
(FAC2), geometric mean bias (MG), and geometric variance (VG):

FB = 〈co〉 − 〈cp〉
1
2

( 〈co〉 + 〈cp〉
) , (5)
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NMSE = 〈 (
co − cp

)2 〉
〈co〉 〈cp〉 , (6)

FAC2 = 1

Nobs

Nobs∑
k=1

ξk with ξk =
{
1 if 0.5 ≤ c(k)

p / c(k)
o ≤ 2.0,

0 else,
(7)

MG = exp
( 〈ln c̃o〉 − 〈ln c̃p〉

)
, (8)

VG = exp
(
〈 (
ln c̃o − ln c̃p

)2 〉
)

, (9)

where co is the observed time-averaged concentration and cp is the simulated counterpart.
The tilde indicates that a threshold is applied to the concentration, i.e. c̃ = max(c, ct ), where
ct is the concentration threshold, following recommendations from Chang and Hanna (2004)
and Schatzmann et al. (2010).

For this analysis, the observation data are made of the tracer concentration measurements
at the 40 DPID sensors located at z = 1.6m throughout the array of containers, at the 8 DPID
sensors mounted on the tower T as well as at the 24 UVIC sensors mounted on the towers A,
B, C, and D (Fig. 1). The threshold ct used to estimate the MG and VG metrics is taken as
the instrument detection threshold (0.04 ppm for DPIDs and 0.01 ppm for UVICs as detailed
in Sect. 2.2). The sensors that measure a time-averaged concentration below this threshold
(over the [300; 500s] analysis period) are excluded from themetrics estimations. This implies
that only Nobs = 47 out of 72 concentration sensor measurements are used in the validation
process in this study.

4 Internal Variability Estimation

4.1 Motivation

The internal variability associated with the atmospheric surface-layer processes induces an
aleatory uncertainty in the observations and in the LES model predictions. As an illustration,
Fig. 4a shows that the time-averaged concentration at a height of z = 2m on tower B
significantly changes between five LES estimates obtained over five consecutive 200-s time
periods after the spin-up. This variability also extends to the whole vertical range of the
plume, as illustrated by the vertical profile changes in Fig. 4b (see Sect. 5.2 for a more
detailed analysis). Note that the five LES estimates are obtained for the exact same model
configuration. This suggests that the aleatory uncertainty induced by the internal variability
of the ABL is significant and should be accounted for, especially for model validation.

In this section, we first formalize the effect of the ABL microscale internal variability on
the quantities of interest (Sect. 4.2) and review existing methods to quantify it (Sect. 4.3).
The method best suited to our context is then described in Sect. 4.4, with detailed information
on how to choose its parameters and how to apply it to LES model predictions, experimental
measurements and validation metrics.

4.2 Definition

Let Y be the 200-s time-averaged estimation of a given field Y , for example, the mean
concentration field. It can be written as the mean of sub-samples averaged over shorter time
windows

(

Yk :
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Fig. 4 Tracer concentration simulated using LES at tower B. a Time series at z = 2m. b Time-averaged
vertical profiles. Coloured lines correspond to three different realizations of the time-averaged concentration
obtained with different 200-s averaging windows ([60; 260s] in orange, [260; 460s] in green, [460; 660s] in
red, [660; 860s] in cyan and [260; 460s] in magenta)

Y = 1

Tavg

∫ Tavg

0
Y (t)dt ,

Y = 1

Nt

Nt∑
k=1

(

Yk = 1

Nt

Nt−1∑
k=0

(
1

δt

∫ (k+1)δt

kδt
Y (τ )dτ

)
, (10)

where δt is a fraction of the total time-averaging window Tavg = 200 s such that Nt =
	Tavg/δt
 is the corresponding number of sub-samples. It is worth noting that extracting sub-
samples over small averaging periods is feasible with an LES simulation, which provides
instantaneous realizations of the turbulent phenomena, contrary to other dispersionmodelling
techniques such as RANS.

Written this way, the time-average Y can be seen as the sample estimator of the mean:

μ(Y ) = 1

Nt

Nt∑
k=1

(

Yk, (11)

and internal variability corresponds to the variability of μ(Y ) when the sample of sub-

averages
{ (

Yk
}Nt

k=1
changes. In this sense, internal variability describes sampling noise error

due to limited sample size Nt , i.e. limited acquisition time. The objective of this section is
to estimate the variance of the sample mean estimator V(μ).

4.3 Methods to Quantify Internal Variability

To quantify model internal variability, the most straightforward approach is to run several
independent simulations and characterize the variance of the predictions (Costes et al. 2021).
However, this is very computationally intensive (eachLESestimation costs about 20,000CPU
hours), and unfeasible for observations because one cannot reproduce 200-s acquisitions with
the same atmospheric conditions.

Another method is to apply the central limit theorem that provides a confidence interval
for the sample mean estimatorμ(Y ) (Eq. 11). However, this interval is asymptotic and a large
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number of realizations of μ(Y ) is needed for the sample mean to converge in law to a normal
distribution, which is not feasible in our case because of the model computational cost.

Alternatively, one could model the statistical distribution of the sub-average samples

(

Yk to
deduce, either analytically or through Monte Carlo estimation, the distribution of the sample
mean μ(Y ) and hence its variance. For example, the Gamma distribution is well suited
for tracer concentration modelling (Cassiani et al. 2020; Orsi et al. 2021). However, this
distribution assumption is not always appropriate. For example in our case, the Kolmogorov–
Smirnov test (Massey 1951) shows that it is rejected for 4 probes out of 47.More importantly,
when Y is a vector, it is difficult to find a statistical distribution that properly accounts for the
correlation between its components. Yet, this is essential to propagate internal variability to
validation metrics without error compensation (see Sect. 4.4.5).

To circumvent these issues, it is possible to rely on the empirical distribution of the
available sub-average samples instead of assuming a priori their distribution. This is the
fundamental principle of Jackknife resampling and bootstrap methods (Efron 1979), which
are used in statistics for variance estimation andwhich are also widely used in climate science
for model internal variability estimation (Huybers et al. 2014; Diffenbaugh et al. 2017; Risser
et al. 2019; Chan et al. 2020). In our field of interest, Hanna (1989) used bootstrap to quantify
confidence intervals for air quality model validation metrics; this is for instance implemented
in the BOOT statistical model evaluation tool (Chang and Hanna 2005). More recently, Sood
et al. (2022) used bootstrap to assess confidence intervals of ABL time-averaged estimates
obtained with LES.

4.4 Application of a BootstrapMethod

4.4.1 On the Independance of the Samples

The standard bootstrap method relies on the assumption that the sub-average samples are
independent and identically distributed (Efron 1979).

In the current study, the latter assumption is ensured for the LES model because it is
stationary by construction: first, we use a spin-up period to remove the transient state; then,
the inflow boundary conditions are stationary at the scale of the total averaging period of
200s. However, observations from field campaigns are not necessarily stationary because of
mesoscale fluctuations and daily variability in weather conditions. In this regard, the 200-s
analysis period for the present case was chosen to minimize the large-scale variability (Yee
and Biltoft 2004), and can thus be considered quasi-stationary.

To quantify the dependency between the sub-average samples
{ (

Yk
}Nt

k=1
, we use the corre-

lation length λ, defined as the maximum inter-sample distance such that the auto-correlation
function ρ (

Y
is larger than 20%. Figure5a shows the auto-correlation of the sub-averages and

the corresponding correlation length λ for the concentration at 2-m high at tower D for both
LES predictions and observations, using a sub-averaging period of δt = 10 s (Nt = 20).
It shows that observed concentration sub-averages are not independent, with a correlation
length of λobs = 2. Moreover, it appears to be the case for the majority of the probes over
the detection threshold (Fig. 5b). Note that LES tends to underestimate the correlation of
the concentration sub-averages compared to the measurements. This is because the size of
the largest eddies in the LES setup is limited by the size of the computational domain, as
explained in Sect. 3.3.2, thus limiting long-term correlations related to large-scale fluctua-
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Fig. 5 aExample of auto-correlation function versus discrete time-lag k of the concentration sub-averages over
10 s, for both measured and simulated concentration at tower D at z = 2m. Vertical dashed lines correspond
to the correlation length (in red for measurements and in blue for simulations). b, c Correlation lengths
computed at every probe location for measurements (in red) and simulation sub-averages (in blue). Horizontal
black dashed lines correspond to the averaged correlation length over all the probes

tions. The fact that sample independence is not verified should not be overlooked, as it yields
internal variability underestimation when using the standard bootstrap, as shown in Fig. 7.

Todealwith sample dependency, severalmethods for stationaryweakly dependent samples
are reported in the literature such as block bootstrap (Carlstein 1986), moving block bootstrap
(Kunsch 1989) and stationary bootstrap (Politis and Romano 1994). In this study, we adopt
the latter as (i) it allows for compromise in the choice of the block length as explained in
Sect. 4.4.3, (ii) it does not undersample the first and last sub-samples, and (iii) it ensures that
the bootstrap replicates remain stationary, unlike the other methods mentioned (Politis and
Romano 1994). Note that the assumption of weak dependency is verified in the current study
as the correlation between sub-average samples rapidly tends to zero for both simulation and
observations (Fig. 5a). This is the case at every probe location since the estimated correlation
lengths are always small compared to the number of sub-average samples Nt (Fig. 5b, c).

4.4.2 Stationary Bootstrap Principle

The fundamental principle of bootstrap techniques is to resample with replacement the ele-

ments
{ (

Yk
}Nt

k=1
of the original sample (Fig. 6a) to generate B new samples called bootstrap

replicates (Fig. 6b). In the stationary bootstrap method from Politis and Romano (1994),
this is done by resampling blocks of consecutive elements instead of individual elements to
account for the dependency between samples. The number of sub-averages in each block is
randomly selected according to a geometrical law, implying that not all blocks are the same
size, as illustrated in Fig. 6b.

Because of the occurrence of repetitions in the resampling, the sample means of the

bootstrap replicates
{
μ(i)(Y )

}B
i=1 always slightly differ, as shown by the horizontal dashed

lines in Fig. 6b. This describes the variability of μ(Y ) due to sampling error, which is
precisely the internal variability of the 200-s average with the decomposition in sub-averages
we propose in Eq. 10. Internal variability can thus be quantified in terms of variance as
follows:
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Fig. 6 Stationary bootstrap algorithm applied to LES average concentration estimation at tower B (z = 2m).
a Sub-averages c̆k over 10 s (coloured bars) are computed over the 200-s simulated time series (grey solid line).
b Three examples of bootstrap replicates generated by resampling with repetition of blocks of the original
10-s sub-averages, their sample means {μ(1), μ(2), μ(B)} (Eq. 11) are shown as horizontal lines and illustrate
the variability induced by the resampling. c The statistical distribution of the sample mean estimator μ is
inferred from the B bootstrap replicates. The three examples of bootstrap realizations of time-averages of
concentration over 200s {μ(1), μ(2), μ(B)} are also represented as vertical dashed lines (c). In this example,
the mean block length is 
 = 2.5

s2
(
μ(Y )

) = 1

B − 1

B∑
i=1

(
μ(i)(Y ) − ̂μ(Y )

)2

, (12)

with ̂μ(Y ) = 1
B

∑B
i=1 μ(i)(Y ). Bootstrap methods also estimate the complete distribution of

the sample mean (shaded histogram in Fig. 6c). This allows providing confidence intervals
for the original estimateμ(Y ) based on the percentiles of the empirical bootstrap distribution.

4.4.3 Stationary Bootstrap Parameters

The stationary bootstrap strongly depends on three parameters: the number of bootstrap
replicates B, the original sample size Nt , and the mean block length 
.

It is important to use a large enough number of bootstrap replicates B to avoid sampling
noise in the bootstrap estimates (Eq. 12).Note that theminimumnumber of required replicates
depends on the target statistical moment from the estimator μ. Here we are mainly interested
in 95% confidence intervals, which require larger B than first-order moments (Davison and
Hinkley (1997) suggested B ≥ 1000). Results of the convergence tests performed for the
current study case are presented in Appendix I.

On the other hand, the sample size Nt depends on the physical context and also on
the statistical moment of interest. In this study, our objective is to characterize the mean
estimator (Eq. 11), which does not need as large Nt as the variance estimator or the median
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Fig. 7 Relative standard deviations of the concentration mean over 200s estimated with stationary bootstrap
and averaged over every probe, for different mean block length 
. Results for observations and simulations
are indicated in cyan and magenta, respectively. The dashed line corresponds to the relative standard deviation
estimated by the stationary bootstrap

estimator (Davison and Hinkley 1997). Still, a too small value for Nt would result in too short
confidence intervals (Davison and Hinkley 1997; Scheiner and Gurevitch 2001) and hence
internal variability underestimation. Since the original samples are sub-averages (Eq. 10),
one could simply reduce the averaging window δt to increase the number of sub-average
samples Nt . However, it increases the dependency between sampleswhich thusmay not bring
additional information on the underlying distribution. In this study, based on this compromise,
we retain sub-averages computed over δt = 10 s, which yields Nt = 20 (see Appendix I for
further details). Alternatively, it is possible to increase the number of sub-average samples by
increasing the duration of the simulations. Comparison between bootstrap estimates over 200-
s, 400-s and 600-s simulations is described in Appendix I. Results show that the acquisition
of 200s is enough to assess the variability of the time-averaged quantities over 200s. It is
therefore not necessary to run extended LES simulations to properly estimate microscale
internal variability for the considered MUST trial.

Finally, the choice of themean block length 
 used in the stationary bootstrap is crucial as it
has a strong influence on the final internal variability estimation as shown in Fig. 7. In practice,
the choice of 
 results from a careful trade-off as using larger blocks reduces the number of
samples within each bootstrap replicate: too few samples often result in internal variability
underestimation (Davison and Hinkley 1997; Scheiner and Gurevitch 2001), however, using
shorter blocks may also lead to internal variability underestimation as it implies neglecting
sample dependency (Fig. 7). In the limit case 
 = 1, stationary bootstrap is equivalent to the
standard bootstrap. In this study, we define the mean block length as the averaged value of
the correlation length over all probe locations, i.e. 
 = 〈λ〉+1, as done by Diffenbaugh et al.
(2017). This approach leads to 
sim = 1.17 and 
obs = 1.85 for the mean concentration c
(Table 2).

Note that a compromise is made since a single value of 
 is used for the whole vector
of concentration measurements (and its model counterpart), while the probes have different
correlation lengths (Fig. 5b, c). Indeed, to propagate the internal variability to the validation
scores (see Sect. 4.4.5), the same stationary bootstrap resampling must be used for every
probe at once in order to preserve the spatial correlations between them. Otherwise, the
variability of the validation metrics would be underestimated because of error compensation.
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Table 2 Mean block lengths 
 used for stationary bootstrap applied to the average concentration c, mean

squared concentration fluctuation c′2, amplitude uh and direction α of the mean horizontal wind vector and
turbulent kinetic energy k. Values are determined for both simulated and observed data


(c) 
(c′2) 
(uh) 
(α) 
(k)

Simulation 1.17 1.17 1.15 1.15 1.15

Observation 1.85 1.85 3.38 3.38 3.38

4.4.4 Application to Statistics of Interest

In this study, the stationary bootstrap method is used to assess the variability of the average
concentration c but also of the average wind horizontal velocity (in terms of amplitude uh and
directionα).As the richer description ofLESprovides access to higher-order statistics beyond
mean predictions, the stationary bootstrap method is also applied to assess the variability of
concentration fluctuation c′2 = (c − c)2 and flow turbulent kinetic energy k = 1

2 (u
′2
x +u′2

y +
u′2
z ). However, the fluctuations of a quantity over a given averaging period are not equal to the

average of its fluctuations over shorter periods. This implies that the decomposition in Eq. 10
does not hold for second-order statistics. To overcome this issue, one can use a bootstrap
sample of both the quantity of interest and its squared value to draw the fluctuation bootstrap
distribution:

μ( c′2 )(i) = μ( c2 )(i) −
[
μ( c )(i)

]2
, 1 ≤ i ≤ B, (13)

whereμ(Y )(i) is the ith bootstrap sample mean estimator of the quantity Y . Note that the sub-
averages used to computeμ(c)(i) andμ(c2)(i) must come from the same bootstrap resampling
of the original sample. The bootstrap samples of the turbulent kinetic energy estimator are
computed similarly. With these samples, the variability can be described by sample variance
(Eq. 12) or percentile confidence intervals.

Table 2 summarizes the mean block length 
 used in this work for all these quantities.
Block lengths for observations are larger than for simulations because LES quantities are
less temporally correlated (as shown in Fig. 5b, c). In addition, larger block lengths are
obtained for flow-related variables than for concentration, because the wind measurement
samples have relatively more data acquired at high altitudes, where temporal correlations are
expected to be larger.

4.4.5 Internal Variability Propagation to Validation Metrics

To take into account internal variability in the LES model validation, bootstrap distribution
of the validation metrics (Sect. 3.6) can be obtained by propagating the internal variability
of both LES and observations.

Let f be a metric quantifying how close two vectors are:

f : R
N × R

N → R

(Y sim, Yobs) 
→ f (Y sim, Yobs),

123



Internal Variability of LES for Urban Pollutant Dispersion Page 19 of 36 9

with Y sim, Yobs typically the vectors of observations and model predictions at N different
probe locations. The distribution of f is directly constructed by evaluating f for each pair
of bootstrap replicates of the mean estimators of Y sim and Yobs :

μ( f )(i) = f
(

μ(Y sim)(i), μ(Y obs)
(i)

)
, 1 ≤ i ≤ B. (14)

Note that the bootstrap replicates
{
μ(Y sim)(i)

}B
i=1 and

{
μ(Y obs)

(i)
}B
i=1 are obtained inde-

pendently using stationary bootstrap with different block lengths (see Table 2). The metrics
bootstrap replicates obtained from Eq. 14 can then be used to estimate the variance and
confidence intervals of the validation scores, in the same way as in Sect. 4.4.2.

5 Results

In this section, the LES model presented in Sect. 3 is validated against MUST field trial
2681829 measurements for both microscale wind flow statistics (Sect. 5.1) and tracer plume-
related quantities (Sect. 5.2). The impact of the internal variability of the ABL on these
quantities is quantified using the bootstrap approach presented in Sect. 4. The same procedure
is applied to both the experimental measurements and the LES field estimates, only the mean
block length used in the stationary bootstrap differs (see Table 2). Then we demonstrate the
impact of the estimated internal variability on the model validation.

The number of bootstrap replicates used is B = 5000; the samples are composed of
Nt = 20 sub-averages over 10s. Convergence tests and validation of the bootstrap procedure
are given in Appendix I. The stationary bootstrap algorithm used is from the Python module
Recombinator.2

5.1 Validation of Microscale Meteorology Statistics

The accuracy of the LES model is assessed in terms of prediction of mean horizontal wind
velocity uh , directionα, andwind turbulent kinetic energy k. These quantities are key features
for the prediction of the plume dispersion within and above the container canopy, as they
control the tracer advection by the mean flow and the turbulent dispersion process.

5.1.1 Wind Flow Vertical Profiles

Figure 8 shows the vertical profiles of uh , α and k obtained with LES at tower T (this
tower location is indicated in Fig. 1). On the one hand, results show very good agreement
with the sonic anemometer measurements for the mean horizontal velocity and direction.
The flow deceleration induced by the urban canopy compared to the inlet profile (Fig. 2)
is well reproduced. However, the model slightly overestimates the channeling effect caused
by the container array, as the flow deviation towards the negative angles is larger than the
measured one, especially at z = 4m and 8m. On the other hand, the turbulent kinetic energy
profile shows that the peak of fluctuations just above the containers is well estimated, whereas
the model underestimates the turbulent kinetic energy as altitude increases. The reason for
this discrepancy is twofold: (i) the synthetic turbulence injection cuts off turbulence length
scales larger than the domain scale and (ii) the internal region of the boundary-layer flow is

2 See: https://pypi.org/project/recombinator/.
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Fig. 8 Vertical profiles of amean horizontal wind velocity (ms−1), bmean wind direction (◦), and c turbulent
kinetic energy k (m2 s−2) at the central tower T (Fig. 1). Available experimental data are represented by
circles, black solid lines correspond to the LES time-averaged profiles (two additional realizations of LES
estimations over 200s are also represented as coloured dotted lines). Shaded grey areas correspond to the
uncertainty induced by LES internal variability and are estimated by stationary bootstrap (the counterpart for
the experimental data is indicated as error bars). The part of the domain affected by the top boundary condition
according to Calaf et al. (2011) is indicated as a pink shaded area

known to be unaffected by the finite vertical extent of the domain up to 0.2 time the height
of the computational domain (Calaf et al. 2011). In this case, it corresponds to a height of
10m; above this level, the vertical turbulent transport and other turbulent statistics start to be
affected by the top boundary layer which imposes zero vertical turbulent transport.

Figure 8 also shows the 95% confidence intervals corresponding to the bootstrap esti-
mations of the microscale internal variability as profile envelopes for the LES and as error
bars for the observations. It is found that the variability is overall quite low for the mean
horizontal wind velocity and direction. It is more important for the turbulent kinetic energy
but not sufficient to explain the model bias at altitude. Moreover, the LES model tends to
significantly underestimate the internal variability of uh and k compared to that observed.
This is attributed to the larger turbulent and mesoscale fluctuations which are not taken into
account in the representation of the ABL by the LES model. This is consistent with the
results from Nagel et al. (2022) showing that including the mesoscale processes improves
the prediction of k at these locations.
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Table 3 Mean horizontal wind velocity and direction: comparison between the LES model and the experi-
mental measurements at tower S, T and N, and the sensors at the container levels on the masts V (Fig. 1).
The differences are assessed in terms of hit rate q, mean absolue error MAE, and scaled averaged angle SAA
defined in Sect. 3.6.1. The stationary bootstrap method presented in Sect. 4.4 is used to estimate standard
deviations of the scores

q(uh) MAE(uh) (ms−1) SAA (◦)

Perfect scores 100% 0 0

Scores—above canopy 9/9 = 100% 0.42 2.02

Standard deviation 0% 0.13 0.48

Scores—inside the canopy 4/4 = 100% 0.65 37.60

Standard deviation 0% 0.15 1.39

Global scores 13/13 = 100% 0.49 8.25

Standard deviation 0% 0.11 0.48

Two additional LES estimations of time-averaged quantities over 200s were obtained
by extending the original simulation. The resulting vertical profiles are shown as coloured
dotted lines in Fig. 8. The deviations from the baseline estimate (black solid line) illustrate
the effect of internal variability on the time averages. Overall, the estimated envelopes cover
well these independent realizations,which supports the plausibility of the stationary bootstrap
estimates.

5.1.2 Quantification of Wind Flow Predictions Accuracy

In addition to the profiles at tower T (Fig. 8), we also compare LES predictions and obser-
vations using the wind flow metrics (Sect. 3.6.1). Table 3 presents the scores obtained over
the obstacles (towers S, T and N), within the obstacles (masts V) and for all sensors at once.
For every set, the hit rate is 100%, which means that the departure between LES estimates
and measurements for the wind horizontal velocity is always less than the absolute deviation
AD = 1ms−1 used in Eq. 2 by Nagel et al. (2022). Indeed, the MAE metric shows the
limited level of error for the wind velocity. However, the error is larger for sensors located
within the container array, as shown by the higherMAE in this region, and this is even more
pronounced for the SAAmetric. This is due to the proximity of the masts V to the containers
(Fig. 1), where there are strong wind direction gradients as explained by Nagel et al. (2022).
Still, the overall accuracy of the LES flow estimations is satisfactory.

By computing two bootstrap samples of eachmeasurement and colocated LES estimation,
we canobtain an ensemble ofmetrics realizations as explained inSect. 4.4.5, and thenquantify
how uncertain the model validation scores are, given the internal variability of the system.
The resulting standard deviations of the flow validation metrics are given in Table 3. Results
show that the internal variability has a limited effect on velocities, with a standard deviation
of MAE of approximately 0.1ms−1. Note that this variability is however larger than the
sonic anemometer accuracy (between 0.01 and 0.05ms−1). In contrast, the variability is less
important for the wind direction. Moreover, the effect of variability is rather homogeneous
over the different datasets, which is coherent with the vertical distribution of the internal
variability envelopes at tower T (Fig. 8).
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5.2 Validation of Tracer Dispersion Statistics

5.2.1 Mean Concentration Horizontal and Vertical Profiles

Model performance is first analyzed in terms ofmean concentration horizontal profiles within
the container array in Fig. 9a–d. At z = 1.6m, the model underestimates tracer concentra-
tion along the four DPID sensor sampling lines, which could be due to a plume elevation
overestimation, as discussed later. Still, the shape of the profiles is rather well reproduced by
the model. The decrease in concentration is consistent with the observations, both in the flow
direction (between each line) and in the transverse direction (on a given line). The plume
deviation is also well predicted by the model as illustrated by the concentration maximum
position.

Model performance is then analyzed along the vertical (above the container array) by
comparing the estimatedmean concentration vertical profileswithmeasurements from towers
B, T, C, and D (Fig. 10a–d). Overall, the LES predictions are in acceptable agreement with
the observations. The model tends to overestimate the mean concentration at towers B and C.
The same tendency was observed with other LES models by Camelli et al. (2005) and Nagel
et al. (2022) for tower B. The model also underestimates the mean concentration at tower
D due to a lack of lateral spread of the simulated plume (Fig. 9a), tower D being far from
the plume centerline (Fig. 1). In addition, the predicted maximum concentration is located
too high above the canopy, especially at tower B (if we disregard the highest sensor that is
inconsistent with the others). For tower C, there are not enough sensors at high heights to
conclude. This could mean that the predicted plume rises too much, which would explain the
near-ground concentration underestimation (Fig. 9a–d).

Note that there seems to be an inconsistency between the UVICmeasurements from tower
C (Fig. 10c) and those from the fourth line of DPIDs (Fig. 9d), although they are arranged on
the same transverse line. Indeed, the UVIC sensor at tower C at z = 2m measures 0.21ppm,
while the two closest DPID sensors (10m away) measure 0.54ppm and 1.10ppm. This may
also concern other UVIC measurements, explaining why LES overestimates concentration
at towers B and C.

5.2.2 Mean Concentration Internal Variability

The internal variability of the mean concentration is shown in Figs. 9 and 10 with the 95%
confidence intervals estimated by stationary bootstrap. This internal variability increaseswith
altitude (Fig. 10a–d), because, outside the canopy, the flow statistics are more sensitive to
incoming fluctuations from the ABL. LES profile envelopes are generally consistent with the
observed variability (Figs. 9, 10). Analysis of the relative internal variability aggregated over
all sensors (Fig. 7, p. 20) confirms that the LES model can reproduce the observed internal
variability overall, with a slight tendency to underestimate it as for instance at tower D (even
if the relative variability s(c)/c is similar to that of the measurements).

Note that the stationary bootstrap estimations of the internal variability look plausible
regarding the two independent LES realizations of 200-s averaged concentration. The boot-
strap profile envelopes globally cover these realizations both inside and above the canopy
(Figs. 9, 10). However, one or both realizations can be locally slightly outside the 95% confi-
dence interval, for example at the concentration peak location (Fig. 9a) or at high altitude at
tower T (Fig. 10b). This indicates that the internal variability is underestimated there, which
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Fig. 9 Horizontal profiles of average concentration c (ppm) (a–d) and concentration fluctuation intensity i
(e–h) between the containers at z = 1.6 m. The profiles are given for each line of DPID sensors represented
with a distinct colour in Fig. 1. Circles correspond to measurements, black solid lines correspond to simulated
time-averaged profiles (two additional realizations of LES estimations over 200s are also represented as
coloured dotted lines). Shaded grey areas correspond to the uncertainty induced by LES internal variability
and are estimated by stationary bootstrap (the counterpart for the experimental data is indicated as error bars)

is likely caused by an insufficient number of independent sub-average samples Nt , as stated
by Davison and Hinkley (1997) and Scheiner and Gurevitch (2001).

Finally, although significant, the internal variability alone does not explain the mismatch
between LES estimates and vertical tower measurements (Fig. 10a–d). The lack of accuracy
comes rather from another source of uncertainty. For instance, Milliez and Carissimo (2007)
explain that the vertical profiles are difficult to estimate accurately because of their important
sensitivity to the wind direction. This sensitivity is exacerbated in our case at tower B and to
a lesser extent at tower T, because both towers are located near the steepest edge of the plume
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where concentration gradients are very large (Fig. 9a–d). In these areas, plume position errors
have a larger impact on model accuracy than microscale internal variability.

5.2.3 Concentration Fluctuation Intensity

In addition to time-averaged values, LES models provide an explicit temporal resolution of
the flow. In this section, we propose to further validate the model by examining its ability to
predict resolved concentration fluctuations, which are directly accessible from LES data. To
characterize concentration fluctuations, we use the fluctuation intensity i as Yee and Biltoft

(2004). It reads i =
√
c′2/(c + ct ), where c′2 = (c − c)2 is the squared resolved fluctuation

of the concentration. The concentration threshold ct , equal to the detection threshold of the
sensors, i.e. 0.01ppm for UVICs or 0.04ppm for DPIDs, is added to the normalization term
to avoid ill-posed values for very small concentrations.

There is a very good agreement between LES estimations and observations of fluctuation
intensity. Among the containers, the LES model finely reproduces the observed horizontal
distributions (Fig. 9e–h), including their asymmetry. However, the fluctuation peak is slightly
overestimated for the first line of sensors and lacks horizontal extent for lines #3 and #4.
Moreover, the LES model also appears to be very accurate for the estimation of vertical
fluctuation profiles (Fig. 10e–h), except for the T tower where the model overestimates them
but still predicts a consistent profile. By normalizing the fluctuations, we show that, despite
being biased for themean concentration vertical profiles at towers B, C, andD, the LESmodel
is still able to reproduce a physically-consistent estimation of the concentration second-order
statistics.

The internal variability is also estimated for the concentration fluctuation intensity with
the bootstrap samples from Eq. 13. Figures9e–h show that internal variability is very large at
the location of the peak fluctuation. Overall, the LES-predicted fluctuation envelopes are in
good agreement with the observed variability and the two independent LES runs. Contrary
to the average concentrations, and except for tower T, the differences between the model and
the observations can be attributed to the internal variability, which is particularly visible for
the tower D where the fluctuations are very important.

5.2.4 Quantification of Dispersion Predictions Accuracy

In the following, the accuracy of the LES model tracer transport is assessed from a more
synthetic viewpoint. We also illustrate how the internal variability of the tracer concentration
field should be taken into account in this model validation exercise.

Figure 11 shows the scatter plots of the simulated versus measured concentration main
statistics. First, for the averaged concentration, the model estimates are overall consistent
with the observations (Fig. 11a) with a correlation coefficient R = 0.78. Higher tracer
concentration values (above 0.5–1ppm) are well represented, but the LES model notably
underestimates the lower concentration values. The same trend is found for the concentration
fluctuations (not shown). The current model would therefore underestimate pollution expo-
sure and dosage in this situation. However, if we remove the bias on the averages, the LES is
able to accurately reproduce the fluctuations with a correlation coefficient R = 0.91 for the
concentration fluctuation intensity (Fig. 11b), but with a tendency to overestimate.

In addition, themicroscale internal variability is depicted in the scatter plots of the averaged
concentration (Fig. 11a) and fluctuation intensity (Fig. 11b)with the 95%confidence intervals
obtained with bootstrap and depicted as two error bars for each tracer concentration sensor
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Fig. 10 Vertical profiles of average concentration c (ppm) (a–d) and concentration fluctuation intensity i
(e–h) at towers B, T, C, and D, respectively (Fig. 1). Circles correspond to measurements, black solid lines
correspond to simulated time-averaged profiles (two additional realizations of LES estimations over 200s
are also represented as coloured dotted lines). Shaded grey areas correspond to the uncertainty induced by
LES internal variability and are estimated by stationary bootstrap (the counterpart for the experimental data
is indicated as error bars)

measurement and colocated LES estimation. The internal variability is heterogeneous, with
locations for which it is negligible and others for which it is very important. Note that, for
most of the points the x-error and y-error bars have similar lengths, which shows that LES
estimates well the variability of predicted quantities.

As suggested by Chang and Hanna (2005), we assess if the difference between simulated
and observed values is significantly different from zero at the 95% confidence interval.
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Fig. 11 Scatter plots of simulated versus measured concentration statistics: a temporal mean, b fluctuation
intensity, c normalized 95th percentile at each sensor over the detection threshold. Each type of sensor is
represented with the same colour as in Fig. 1. The correlation coefficient R is indicated for each statistic.
The error bars represent the 95% confidence intervals estimated through stationary bootstrap and account for
the sampling error of both simulated and measured statistics (error bars are not given for the concentration
maximum as the bootstrap procedure is not suitable for this statistic)

This test is performed for each sensor, and we find that, given the internal variability, the
LES model fits only 13% and 45% of the measurements, for the mean concentration and
fluctuation intensity, respectively. Although internal variability is high in areas where the
model lacks precision (i.e. for the low mean concentrations and high fluctuation intensities),
it only explains a limited part of the misfit between simulation estimates and measurements.
Therefore most of the model errors, especially for the mean concentration, must come from
other sources.

Besides, Fig. 11c also shows a fine agreement for the 95th percentile of concentration time
series over the 200-s analysis period. The LES model appears to well predict the peak con-
centrations with a correlation coefficient R = 0.86. This demonstrates that the LES model
can represent all the complexity of the dispersion phenomenon and not only mean concen-
tration levels. The effect of internal variability on the peak concentrations is not assessed,
since it is not accessible with the bootstrap procedure described in Sect. 4.4. Nevertheless,
the peak concentrations are expected to be subject to a strong variability, as they correspond
to extreme events in the LES realizations of the tracer plume. Quantifying it would therefore
be an interesting prospect.

The accuracy of the LES mean concentration estimations is finally evaluated using the
standard air quality metrics from Chang and Hanna (2004), following the methodology
presented in Sect. 3.6. As in previous works (Milliez and Carissimo 2007; Kumar et al. 2015;
Nagel et al. 2022), metrics are computed separately for the DPIDs sensors on the horizontal
z = 1.6m plane on the one hand, and for the vertical sensors on towers A, B, C, D and T on
the other hand. Metrics are then evaluated for all sensors. Results gathered in Table 4 show
an overall good agreement with observations, with only the geometric mean bias (MG) and
variance (VG) out of the range of acceptable scores. This seems to indicate that LES models
have some difficulty in capturing low tracer concentration values. Except for the MG, the
scores obtained are in line with those obtained by Nagel et al. (2022) with another LESmodel
and for the same trial. They are also comparable to the scores obtained with RANS models
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Table 4 Comparison between the LES model mean concentration prediction and experimental measurements
assessed in terms of fractional bias (FB), normalized mean square error (NMSE), fraction of predictions within
a factor of two of observations (FAC2), geometric mean bias (MG), and geometric variance (VG). Definition
of these metrics are given in Sect. 3.6.2. They are computed for the horizontal sensors (i.e. the DPID sensors
located at z = 1.6m), the vertical sensors (i.e. towers A, B, C, D and T), and all sensors. Sensors for which
the experimental mean concentration is under the detection threshold are excluded. LES results for the same
trial reported in the literature are given as an indicative basis

FB NMSE FAC2 MG VG

Perfect scores 0 0 100% 1 1

“Acceptable” (Chang and Hanna 2004) [−0.3, 0.3] <4 >0.5 [0.7 1.3] <1.6

Horizontal 0.51 0.37 13/25 = 52% 2.22 2.62

Vertical −0.15 0.48 14/22 ≈ 64% 1.13 1.68

Global 0.20 0.41 27/47 ≈ 57% 1.62 2.13

Literature (LES)

Nagel et al. (2022) (3 model configurations) [0.38, 0.40] – [60%, 65%] [0.86, 1.05] [1.90, 2.33]

on a larger number of trials including the present trial 2681829 (Milliez and Carissimo 2007;
Donnelly et al. 2009; Kumar et al. 2015).

The LES model appears to be less accurate on the horizontal plane within the canopy than
above. In this region, the concentration is overall underestimated by the model (FB > 0 and
MG > 1), which is seen in the horizontal profiles (Fig. 9a–d). Interestingly, the opposite
behaviour, i.e. better performances on the horizontal than on the vertical, was observed by
Nagel et al. (2022).

As explained in Sect. 4.4.5, the internal variability of the time-averaged concentrations
is propagated to the air quality metrics to quantify their uncertainty. The resulting distribu-
tions for each metric are summarized with box-and-whisker plots of the bootstrap samples
(Fig. 12). It demonstrates that the scores obtained in this model validation exercise are signif-
icantly uncertain. Moreover, it shows that the internal variability of the concentration affects
each metric differently. Fractional and geometric mean biases (FB, MG) are less sensitive
to internal variability because of error compensation, while wider spreads are found for the
normalized mean square error (NMSE), and geometric variance (VG). This is because NMSE
and VG are quadratic metrics and thus measure the dataset dispersion. The fraction of predic-
tions within a factor of two of observations (FAC2) also shows an important variability as
it is a discrete and non-linear metric computed over a small number of sensors. The effect of
the internal variability is also higher on the vertical than on the horizontal, which is consistent
with the observed envelopes in Figs. 9 and 10.

Figure 12 also shows the validation scores obtained for three independent LES predictions
of time-averaged concentration over 200s. Despite having identicalmodel configurations, the
discrepancies between each score are not negligible. The bootstrap estimation of the variabil-
ity of the metrics, obtained using only the sub-averages of the first simulation ([60, 260] s),
explains quite well this variability as only three outliers are found: one for the horizontal FB,
one for the horizontal NMSE and one for the horizontal MG.

In summary, we show that, for microscale dispersion experiments with small acquisition
times and/or limited analysis periods, validation scores feature a high range of variability. It
is thus vital to take this variability into account in a model validation exercise, but also for
sensitivity analysis or multi-model comparison, to avoid drawing insignificant conclusions
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Fig. 12 Box plots of the air quality metrics distributions obtained by taking into account the internal variability
of both simulated andobserveddata using stationary bootstrap. Point estimations corresponding to the reference
and two independent realizations of 200s simulation are shown as red squares, blue circles and green triangles.
Results are given for a FB,bNMSE, c FAC2,dMG, and e VGmetrics (Sect. 3.6). Thesemetrics are computed
for all tracer concentration sensors over the detection thresholds (blue box), but also for the subsets of the
horizontal probes (i.e. the DPID sensors at z = 1.6m) and vertical probes (i.e. towers A, B, C, D and T),
respectively represented as green and pink boxes

about the trends in the metrics. The bootstrap procedure based on sub-average samples
presented in this work appears to be well-suited to answer this need.

6 Conclusions

This study aims at assessing the confidence one can have in the LES estimates of microscale
meteorology and air pollutant dispersion, given the internal variability of microscale pro-
cesses for a field-scale case. For this purpose, an LES model of the neutral MUST trial
2681829 was designed with significant grid resolution (at least 8 cells over the height of the
obstacle) and with a synthetic turbulence injection approach to represent the ABL fluctua-
tions smaller than the domain scale. A stationary bootstrap algorithm was implemented and
applied to both experimental measurements and LES estimates, in order to estimate the inter-
nal variability of time-averaged quantities by resampling sub-averages over smaller periods.
It is worth mentioning that this approach requires temporal realizations of the fields, and
could not be applied with other dispersion models such as a RANS model, which predicts
only ensemble-averaged quantities.

This study shows that the LES model is overall in acceptable agreement with the obser-
vations. The numerical prediction of the wind flow is very accurate, with a departure of
turbulent kinetic energy above the canopy and a larger error in the wind direction for the sen-
sors located very close to the obstacles. For the tracer mean concentration, the model is more
accurate above the obstacles than between them. The LES underestimates the concentrations
compared to the measurements of the DPID sensors (at z = 1.6m and at tower T) and tends
to overestimate them compared to the UVIC sensors (at towers B and C). Standard air qual-
ity metric scores are in line with previous RANS and LES studies reported in the literature.
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Finally, the LES model is very accurate at predicting relative fluctuations and concentration
peaks.

This study also demonstrates that, in the context of the MUST field campaign, the time-
averaged quantities characterizing wind flow and tracer dispersion for both LES estimates
and experimental observations are subject to significant aleatory uncertainty due to the short
analysis period typically used in the literature (200s). This internal variability induces sub-
stantial uncertainty in the model evaluation scores. To avoid misleading results, we thus
advise switching from point-wise validation to probabilistic validation to account for this
internal variability. In our case, the LES model reproduces very well the observed variability,
despite the simplistic representation of the ABL inflow (stationary flow with synthetic tur-
bulence). Nevertheless, some of the discrepancies between observations and LES estimates
cannot be explained by internal variability alone. This leads to the conclusion that there are
either structural model errors and/or errors in the representation of the boundary conditions.
In particular, CFD model predictions are known to be strongly affected by inflow uncertain-
ties (García-Sánchez et al. 2014) and by the level of detail in the urban canopy geometry
(Santiago et al. 2010).

This work was limited to the quantification of internal variability due to microscale pro-
cesses and under quasi-stationary meteorological conditions. Indeed, the present LES model
has stationary boundary conditions and limits the size for the largest eddies, it mainly repro-
duces the variability induced by the turbulence at the obstacle scale. Therefore, a rather
direct and promising perspective would be to quantify the mesoscale variability, especially
for longer analysis periods. For this purpose, a solution would be to use an LES model with
inflow boundary conditions that are dynamically changing through a multi-scale meteoro-
logical model based on grid nesting (Wiersema et al. 2020; Nagel et al. 2022).

More generally, by addressing the aleatory uncertainties of the physical system, this
work constitutes a first step towards a complete understanding of the total uncertainties in
microscale LES. An exciting prospect would be to quantify other sources of uncertainties, i.e.
uncertainties in the representation of the boundary conditions (Santiago et al. 2010; García-
Sánchez et al. 2014) and structural model uncertainties. The latter could be estimated through
sensitivity analysis and multi-model comparison. The methodology presented in this work
would then allow assessingwhich of these uncertainties have ameaningful impact on the LES
model predictions compared to internal variability. These diagnostics could support the con-
struction and validation of operational dispersion models, including machine-learning-based
reduced-order models (Nony et al. 2023). They are also very interesting for the construction
of a data assimilation approach that is effective at correcting the largest sources of uncertain-
ties in CFD predictions using in-situ measurements (Sousa and Gorlé 2019; Defforge et al.
2021).
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Appendix I: Validation of the Stationary Bootstrap Approach

In this appendix, several convergence tests of the stationary bootstrap approach applied to
the MUST trial are shown to verify the robustness and plausibility of the confidence intervals
predicted by bootstrap as a complement to Sect. 4.

Convergence with the Number of Bootstrap Replicates

With bootstrap methods, such as the stationary bootstrap, bootstrap replicates of one original
sample are used to compute Monte Carlo estimates of several statistics of the physical quan-
tities of interest (time-averages or fluctuations), such as their variance (Eq. 12) or confidence
intervals. The convergence of the estimator error is therefore inO(1/

√
B)with B the number

of bootstrap replicates.
We assess the convergence for the 2.5th and 97.5th percentiles as it requiresmore bootstrap

replicates than for bias or variance estimation (Davison and Hinkley 1997). Table 5 shows the
evolution of the 2.5th percentile of the mean concentration at tower B at z = 2m and of the
model validationmetrics evaluated according to the bootstrap procedure (Eq. 14) for different
values of B. The bootstrap estimations of the 2.5th percentiles show some variability for very

Table 5 Values of 2.5th
percentiles evaluated with
stationary bootstrap for different
numbers of replicates B.
Estimations are given for one
example of simulated and
observed mean concentration (at
tower B at z = 2m), as well as
for the air quality metrics
(Sect. 3.6.2) and flow validation
metrics (Sect. 3.6.1)

B 100 500 1000 5000 10,000

cobs (ppm) 1.70 1.70 1.72 1.71 1.70

csim (ppm) 1.07 1.05 1.02 1.04 1.04

FB 0.13 0.14 0.14 0.14 0.13

NMSE 0.33 0.32 0.33 0.32 0.32

FAC2 0.49 0.49 0.49 0.49 0.49

MG 1.48 1.48 1.47 1.47 1.47

VG 1.73 1.76 1.77 1.77 1.77

MAE (ms−1) 0.37 0.35 0.35 0.34 0.35

SAA (◦) 7.78 7.59 7.69 7.65 7.63
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Table 6 Values of 2.5th percentiles evaluated with stationary bootstrap for different sub-averaging period δt .
Estimations are given for one example of simulated and observed mean concentration (at tower B at z = 2m),
as well as for the air quality metrics (Sect. 3.6.2)

2.5th percentile cobs (ppm) csim (ppm) FB NMSE FAC2 MG VG

δt = 10 s 1.71 1.04 0.14 0.32 0.49 1.47 1.77

δt = 5 s 1.63 1.04 0.13 0.32 0.49 1.48 1.80

low numbers of bootstrap replicates (between 100 and 500), but then quickly converge for
all the considered quantities. The same analysis was carried out for the 97.5th percentile and
gave similar results. We conclude that B = 5000 bootstrap samples are more than sufficient
to achieve convergence. This result is in line with the literature, which recommends between
1000 and 10,000 replicates (Davison and Hinkley 1997; Chang and Hanna 2005).

Effect of the Sub-Averaging Period

Since both simulated and measured time series are well sampled in time, it is possible to
change the sub-averaging period δt to adjust the number of sub-average samples Nt (Eq. 10).
To assess the effect of the sub-averaging period on the internal variability estimation, the
estimated percentiles obtained with a stationary bootstrap of sub-averages over δt = 10 s
and δt = 5 s are compared. By reducing the sub-averaging period, the samples are getting
more dependent. It is therefore mandatory to adapt the mean block length parameter 
 of
the stationary bootstrap method. For δt = 5 s, it results to new values of 
sim = 1.38 and

obs = 2.62 for the time-averaged concentrations. This is consistent since it means that, for
more dependent data, the blocks should be larger than the ones used for δt = 10 s (Table 2,
page 21). Table 6 shows the 2.5th percentile estimates for the main quantities of interest for
the two different values of δt . Results indicate that changing the sub-averaging period has
a very limited impact on the stationary bootstrap estimations. This is because changing the
sub-averaging period only changes the division of the original sample (Eq. 10) and so does
not provide any additional information on the underlying distribution of the time-averaged
quantities.

Convergence with the Number of Sub-average Samples

Asmentioned in Sect. 4.4.3, it is essential to have a sufficient number of sub-average samples
Nt in the original sample. In particular, too few samples may result in internal variability
underestimation. To increase Nt , the LES simulation acquisition time is increased from 200s
to 400s, and then 600s (Fig. 4). With δt = 10 s the resulting number of sub-averages is 40,
and 60 respectively, against 20 for the reference sample. In any case, the bootstrap replicates
are obtained by resampling only 20 sub-averages over the Nt available, even if Nt = 60.
Indeed, the objective is still to quantify the variability over the 200-s analysis period and not
over 600s. Two additional realizations of 200-s averages (in cyan and magenta in Fig. 4) are
used for validation purposes.
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Fig. 13 Box plots of the air quality metrics distributions obtained with stationary bootstrap with resampling of
20 sub-averages among 20, 40 and 60, in orange, green and red, respectively. Point estimations corresponding
to the reference and two independent realizations of 200-s simulation are represented as orange squares, cyan
circles and magenta triangles. Results are given for a FB, b NMSE , c FAC2, d MG, and e VG metrics
(Sect. 3.6)

The distributions of the air quality metrics estimated by stationary bootstrap with resam-
pling of 20 sub-averages among Nt = 20, 40 and 60 are shown in Fig. 13. The bootstrap
ensemble averages slightly change because the time-averaged quantities over 200, 400 and
600s are different. Nevertheless, increasing the number of samples for stationary bootstrap
gives similar estimations of the metrics dispersion. For FAC2, MG and VG metrics, which
are nonlinear, the tails of the distributions seem more dependent on the number of samples.
In all cases, the three bootstrap estimates cover the two independent realizations, once again
supporting the validity of the stationary bootstrap.

As the orders of magnitude of the three estimates are overall consistent with each other,
we conclude that Nt = 20 samples of sub-averages are sufficient for the stationary bootstrap
method to converge. This implies that it is not required to run longer simulations to capture
internal variability. The convergence with the number of samples is similarly verified for the
envelopes of tracer concentration and wind velocity statistics presented in Sect. 4.
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