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Abstract

Numerical weather prediction models and high-performance computing have significantly
improved our ability to model near-surface variables, but their uncertainty quantification still
remains a challenging task. Ensembles are usually produced to depict a series of possible
future states of the atmosphere, as a means to quantify the prediction uncertainty, but this
requires multiple instantiation of the model, leading to an increased computational cost.
Weather analogs, alternatively, can be used to generate ensembles without repeated model
runs. The analog ensemble (AnEn) is a technique to identify similar weather patterns for near-
surface variables and quantify forecast uncertainty. Analogs are chosen based on a similarity
metric that calculates the weighted multivariate Euclidean distance. However, identifying
optimal weights for similarity metric becomes a bottleneck because it involves performing a
constrained exhaustive search. As a result, only a few predictors were selected and optimized
in previous AnEn studies. A new machine learning similarity metric is proposed to improve
the theoretical framework on how weather analogs are identified. First, a deep learning net-
work is trained to generate latent features using all the temporal multivariate input predictors.
Analogs are then selected in this latent space, rather than the original predictor space. The
proposed method does not require prior predictor selection and an exhaustive search, thus
presenting a significant computational benefit and scalability. It is tested for surface wind
speed and solar irradiance forecasts in Pennsylvania from 2017 to 2019. Results show that the
proposed method is capable of handling a large number of predictors, and it outperforms the
original similarity metric in RMSE, bias, and CRPS. Since the data-driven transformation
network is trained using the historical record, the proposed method has been found to be
more flexible for searching through a longer record.
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1 Introduction

Recent advancement in numerical weather prediction (NWP) systems and high-performance
computing (HPC) technologies have greatly improved our ability to model near-surface vari-
ables. For example, High-Resolution Rapid Refresh (HRRR) and North American Mesoscale
Model (NAM) can provide mesoscale weather forecasts at very high resolution, 3 km and 12
km, respectively. Theoretically, if boundary and initial conditions can be completely speci-
fied, all details of a turbulent flow can be exactly predicted based on the equations of motion
(Venkatram 1983). However, due to observational biases and limitations in data assimilation,
forecast accuracy can still be impacted by uncertainties in model initialization (Price et al.
2015). This uncertainty eventually propagates to the final forecasts and cause forecasts to be
inaccurate. Therefore, forecast uncertainty quantification is critical to better understand and
evaluate the quality of NWP predictions.

Ensemble models are typically produced to assess the forecast uncertainty associated with
NWP systems. There are a wide range of methods for generating forecast ensembles, includ-
ing varying the initial perturbations applied to state variables (i.e., wind speed, temperature,
etc.), the dynamics schemes, or parameterizations of an NWP model, or using stochastic
means of perturbing physical parameterizations (Clemente-Harding 2019). However, one
important limitation of these method lies in their computational costs. NWP models are run
multiple times, which linearly increases the computational cost.

Many statistical and machine learning (ML) methods can also be used to generate uncer-
tainty information, i.e., probabilistic forecasts, in a postprocessing style, without running the
model multiple times. There are, in general, two types of postprocessing methods. Parametric
methods usually assume a prior distribution of the predictand and estimate the associ-
ated distributional parameters, for examples, ensemble model output statistics (Wilks 2009;
Scheuerer and Hamill 2015), mixed-type meta-Gaussian regression (Herr and Krzysztofow-
icz 2005; Wu et al. 2011), and Bayesian-based methods (Raftery et al. 2005; Wang et al.
2009). The other type is the nonparametric method which does not assume a prior distri-
bution of the predictand, but instead it empirically models the distribution using quantiles
(Massidda and Marrocu 2018).

Specifically, analog ensemble (AnEn) (Delle Monache et al. 2013; Hamill and Whitaker
2006) is a nonparametric technique to generate ensemble predictions from a deterministic
NWP model and the corresponding observations. It works by searching for historical forecasts
that are most similar to the target forecast, and then, the past observations associated with the
most similar past forecasts make up the ensemble members. Different from its predecessors
(van den Dool 1989; Toth 1989) where large scale weather analogs are sought, AnEn identifies
weather analogs independently at each grid point (Sperati et al. 2017) over a short time
window, e.g., 3 h. The highly constrained way of analog identification drastically reduces
the degree of freedom and increases the chance of finding good weather analogs, making
it a fit solution for predicting near-surface variables, compared to other statistical ensemble
methods, including quantile regression (Delle Monache et al. 2018) and linear regression
(Delle Monache et al. 2013), and dynamic ensemble systems (Junk et al. 2015b, a).

AnEn also presents several computational benefits, among all to be computationally effi-
cient using supercomputers because it is embarrassingly parallelizable (Cervone et al. 2017,
Hu et al. 2020). AnEn generates forecast ensembles from existing deterministic predictions
without running the numerical weather model multiple times. This characteristic can be
valuable when limited computational resources are present but a large ensemble is needed
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for uncertainty quantification. AnEn is thus particularly suitable for high-resolution NWP
models analog ensembles, where computational efficiency is an imperative.

The core of AnEn is a similarity metric that quantifies the distance (a.k.a. dissimilarity,
error or skill) between any two given temporal, spatial, and multivariate forecasts. A set of
predictor weights is used to determine the influence of the individual predictors. The optimal
set of weights varies depending on the type of forecast (e.g., output variable), its location,
time of day, or period of the year. Currently, the predictor weight combination is usually
determined by a constrained exhaustive grid search process that tests a limited set of weight
combinations, which remain fixed. This is an expedient, but it also introduces error. The
current similarity metric is impeded by:

1. Weight optimization is computationally expensive. Selecting a proper subset of the hun-
dreds output by NWP models is a challenging task. Especially, the combination of multiple
predictors and their relative weights are difficult to inform (Junk et al. 2015b).

2. AnEn assumes a static model. However, NWP models are constantly subject to changes
in their physical parameterization schemes (Bosveld et al. 2020; Fischereit et al. 2022).
As aresult, AnEn might not yield the expected improvement when a longer search period
is used due to model updates and upgrades.

Due to the computational burden for optimizing predictor weights, previous work was
limited to using only a few predictors. Alessandrini et al. (2015a) applied AnEn to short-term
photovoltaic (PV) power forecasts at three power plants in Italy with a 1-year search period
and five predictors. Cervone et al. (2017) investigated the performance of AnEn plus a feed-
forward neural network to further account for the physical and the engineering bias, but it
is also confined within 1 year of training and five predictors. Other applications of AnEn
include wind speed forecasts (Eckel and Delle Monache 2016; Alessandrini et al. 2015b;
Vanvyve et al. 2015; Shahriari et al. 2020) and air quality predictions (Monache et al. 2020),
and they all suggest to use a few selected predictors and the need to have a static model.

This paper seeks to improve AnEn by proposing a neural network (NN)-based similarity
metric to overcome the above limits. The NN is trained to learn a similarity metric, rather
than the direct modeled output (Khodayar and Teshnehlab 2015; Xiaoyun et al. 2016; Gensler
et al. 2016; Qing and Niu 2018). It associates patterns considering historical forecasts and
observations, while the original metric only compares forecasts. Because the weights of
an NN can be effectively trained, the proposed approach allows to seamlessly use more
predictors to characterize the weather patterns, which was previously an intractable problem
with the constraint grid search approach.

The paper is organized as follows: Section 2 introduces AnEn, the NN-based model
architecture, and reverse analog (RA); Sect. 3 describes the observations and NWP forecasts
used in the study; Sect. 4 shows verification results with deterministic and probabilistic
metrics; and Sect. 5 provides the summary and conclusions.

2 Methodology

2.1 Analog Ensemble

AnEn generates forecast ensembles from an archive of deterministic model predictions and
the corresponding observations of interest. AnEn first identifies the M most similar historical

forecasts to the current target forecast, and then, the observations corresponding to the selected
historical forecasts consist of the ensemble members. The number of analog members depends
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on the length of the search history: a very small number of analog ensemble members could
lead to sampling errors and a very large number of members could generate extremely
unrepresentative ensembles (Delle Monache et al. 2013; Hu et al. 2021; Bodini et al. 2021).
This process is repeated for each forecast cycle time (e.g., when the forecast was initiated),
each forecast lead time, and at each grid point independently.

The key component of AnEn is the weather similarity metric. Delle Monache et al. (2013)
proposed the following equation as a measure for dissimilarity:

Ny

f
w:
IF. Apll = —Uf’ > (Fiivj — Aivs ) (1
j=—i

i=1 Ji

where F; is the multivariate target forecast at the time 7; A, is a historical multivariate analog
forecast at a historical time point #’; N,, is the number of variables from forecasts; w; is the
weight parameter for the forecast variable i as its importance; o, is the standard deviation
of the respective variable during the historical time period; 7 indicates a short time window
over which the metric is computed and it equals half the number of the additional time points
to consider; finally, F; ;1 ; and A; ;7 ; are the values of the respective target forecast and the
past analog forecast in the time window for the variable i.

This metric has been broadly used in the literature (Junk et al. 2015b; Frediani et al.
2017; Delle Monache et al. 2013, 2018; Alessandrini et al. 2018; Hu and Cervone 2019).
Its implementation (Hu et al. 2020) and application to large-scale simulation (Cervone et al.
2017) have also been studied. AnEn, being a highly parallelizable algorithm, thrives in cases
where historical archives of observations and forecasts are abundant and the uncertainty
information associated with a deterministic prediction is desired.

The current weather similarity metric, however, poses a dilemma in its optimization pro-
cess. For example, most literature has only used a handful of predictors to calculate the
similarity metric while, in reality, NWP models can simulate hundreds. A potential problem
is that weather analogs identified with only a few predictors might not actually be “good
analogs” (van den Dool 1989; Toth 1989). These weather analogs might not be representa-
tive of the underlying weather patterns and thus could introduce errors. Additionally, weight
optimization can also lead to a computational burden. Generally, an extensive grid search
algorithm is used to identify the best set of predictor weights. The computational cost scales
exponentially with the number of variables. Reducing the number of trials for each predictor
can reduce the computation, but it poses the risk of not finding the optimal weight combina-
tion. Neither of these approaches is suitable for investigating a large number of predictors.

The similarity metric is defined based on forecasts. Since weather forecasts are prone to
errors due to imperfect model physics and data assimilation, the weather analogs might not be
representative of the true weather regime. When forecasts are associated with a large error,
e.g., if the NWP model misses the formation of convective clouds and issues a clear-day
forecast, all weather analogs will be generated for the wrong type. A potential solution is to
include more predictor variables, which can constrain the degree of freedom when calculating
the similarity metric. Such false-positive weather analogs will then be associated with lower
similarity measures.
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2.2 Deep Analog
2.2.1 Machine Learning Model Architecture

NN can extract high-level features and patterns by applying nonlinear transformation on
multivariate input predictors time-series. A deep analog (DA) based on a NN learns an
empirical transformation so that similar forecasts are closer together in this transformed
space. A successful transformation implies that the nearest distance between two points in
the transformed space actually represents two model runs that are most similar. This work
is different from the original AnEn that weather similarity is not calculated directly with
weather variables, which can be highly correlated, but on the transformed features. This task
is also different from canonical classification and regression problems: there are no predefined
categories and the optimal similarity measure of weather forecasts is unknown due to errors
in the forecasts. NN, instead, are designed to learn a set of functions that carries out effective
transformation for finding weather analogs.

Training a NNs requires giving a set of examples and counter-examples, so that over time
the network can learn patterns of similarity and encode them internally using a set of latent
features. There are multiple types of networks designed for learning this similarity, and in
this work we used a triplet network, which is a special case of a Siamese network.

Siamese and triplet NNs are specifically designed for identifying similar images. Baldi
and Chauvin (1993) and Bromley et al. (1994) provide a generalized framework to train NNs
for similarity-oriented tasks, without limiting the type of NN to use. The learned compressed
representation is also referred to as embeddings or latent features that abstracts low-level
features like rotation and scaling. For example, an RGB image with 128 x 128 x 3 pixels
can be compressed to an embedding vector containing only 16 values. When applying a
trained network, the embeddings of input images are first calculated. If two embeddings are
similar, e.g., measured by their L2 norm, then the original images should also be similar.
Past literature has explored their applications to feature extraction of fingerprints (Baldi and
Chauvin 1993), signatures (Bromley et al. 1994), and faces (Chopra et al. 2005; Wu et al.
2017; Hsu et al. 2019).

The difference between Siamese and triplet networks consists of the way they select the
output based on the input. Siamese networks require two images as input, and they choose
if they belong to the same category or not. Triplet networks require three images as input,
composed of a target image and two candidate images, and they choose which candidate is
more similar to the target. In our case, rather than images, a target forecast and two candidate
forecasts are used, and the network selects one of the two candidate forecasts. Working with
forecasts is more challenging than images because of an additional data dimension, and
increased search space. While images consist of three dimensions, horizontal and vertical
axes, color layers (e.g., usually three or four variables like red, green, blue and alpha channel),
forecasts have horizontal and vertical axes, a temporal forecast lead time (generally 24-72 h),
and predictors (hundreds of variables like temperature, wind, fluxes, at different pressure
levels).

While it is theoretically possible using any type of NN to create latent features, in this
work we used a long short-term memory (LSTM) to encode forecast time series. Hochreiter
and Schmidhuber (1997a) originally proposed LSTM to encode time sequence information
of arbitrary lengths (Chung et al. 2014; Xiaoyun et al. 2016; Gensler et al. 2016; Qing and
Niu 2018; Gao et al. 2019). LSTMs use memory cells and gate units to allow information
from previous time lags to flow easily into later predictions (Hochreiter and Schmidhuber
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F,—> —> E;

R — 5 Dy

Fy > —> E, Dy —| Analog
' Member
7 Selection

F, > Transformation } —> F,, D,

Fig.1 Schematic of the proposed deep analog network process. F denotes the multivariate forecast time series,
t for target, E for embedding, and D for distance

1997b; Gers et al. 2000). Recall the term 7 from Eq. (1) indicating a time window. This
parameter is usually set to one, but it can vary based on the application. When generating
AnEn, the length of time series varies depending on the time window size. Therefore, the
ability to encode an arbitrarily long time sequence is desired when generating embeddings
for similarity calculation.

Figure 1 shows the schematic of DA. F stands for multivariate forecasts from an NWP
model; F; denotes the target forecast and F;(i € 1,2, ..., n) denotes the n historical fore-
casts; E; represents the transformed target forecast and E; denotes the transformed historical
forecast; D stands for distance. Transformation is first carried out for both the target forecast
and historical forecasts. The generated embeddings (E; and E;) are then used to calculate
distances. Analog members are finally determined based the distance in the transformed
parameter space, rather than on the original input variables.

2.3 Model Training

The training process of DA is done by minimizing the triplet loss function (Hoffer and Ailon
2015; Schroff et al. 2015; Dong and Shen 2018). It is a discriminative loss function that
encourages the output to be small for similar pairs and large for dissimilar pairs. It works by
taking a triplet as input, composed of a target (), a positive (Fp), and an negative forecast
(Fyp). Then, the triplet loss function is given by:

N
L= (IEs(F) = En(F)Il = | En(F]) = Eo(FI + ), (@)

where N is the number of triplet samples and E,, denotes the embeddings generated from
the LSTM network with learnable weights w; ||Ew(Fti) — Ew(Fpi)|| denotes the L-2 norm
between the target and the positive forecasts for the i-th triplet sample. « is a margin that
keeps negative pairs away from positive pairs.

We propose the RA for constructing triplet samples for training, inspired by the negative
sampling technique (Dyer 2014; Goldberg and Levy 2014; Xu et al. 2015; Wang et al. 2018).
As shown in Fig. 2, the process of sampling triplet forecasts is given below:
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Fig.2 Schematic of the reverse analog for constructing triplet samples

1. An observation and forecast target pair is selected (orange and blue rectangles linked with
the dashed double arrow).

2. Most similar historical observations to the target observation are identified (green rectan-
gles), based on the smallest absolute value difference.

3. The historical forecasts corresponding to the most similar observations are selected (red
rectangles).

4. Atripletis created by sampling one positive example from the selected historical forecasts
and a negative counter example from the remaining historical forecasts (black rectangle).

The key idea of RA is that the forecast similarity is determined by whether their associated
observations are similar. When observations are the most similar, their associated forecasts are
the ideal analogs given the current data. However, similar observations can have very different
forecasts, which would normally not be selected as analogs by the traditional AnEn. On the
other hand, the NN learns a nonlinear transformation that converts the original weather
predictors into a new representation space defined in terms of similarity of the observed
fields. Therefore, in this transformed search space, the metric favors analogs with similar
observations, which might have different weather predictors.

With Eq. (1) in AnEn, the only way to include both the forecast-observation relationship
during the analog search is to use the current observation at time-zero as additional predictors
in Eq. (1). This is because in real time, future observations (beyond time-zero) are unavailable.
It is theoretically possible to test whether observations would lead to better analogs using
historical data, but this cannot be transitioned to an operation method.

The selection of the positive and negative cases for the triplet training can be performed
in a number of ways. For example, the triplet could always be composed of the most similar
and most dissimilar forecasts, but this would lead to training the model with the easiest
cases. In turn, this will lead to poor performance because the network is only presented
with extreme cases (e.g., a sunny day vs a hurricane) and is not able to distinguish smaller
differences. A fitness proportionate selection (Whitley 1994; Hancock 1994) was used to
introduce randomness and to prevent a greedy search (Vafaie and Imam 1994; Wilt et al.
2010; Hu and Cervone 2019). The goal is to learn a generalizable embedding function relating
forecasts and observations.

In this work, we trained two separate transformation networks for wind speed and solar
irradiance. Both networks use the entire set of 227 available variables from the NWP model
with a sequential architecture of an LSTM followed by a linear output layer. The LSTM con-
sists of 20 hidden units and 3 stacked layers. The 20 hidden units are then input to the linear
layer to generate the final 20 embeddings. To prevent overfitting during training, a dropout
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rate of 0.01 is used for LSTM. The early stopping mechanism is engaged when no improve-
ment on the validation set is observed for 15 consecutive epochs. The optimizer is adaptive
moment estimation (ADAM) with a learning rate of 0.005. PyTorch v 1.8.1 was used for the
implementation. The code is available at https://weiming-hu.github.io/ AnalogsEnsemble for
AnEn and https://github.com/Weiming-Hu/DeepAnalogs for DA. Hyperparameter tuning is
done using data from 2011 to 2018, excluding the test year 2019 to prevent data leakage. NN
was trained using on a Dell Precision 7920 workstation with 64 GB of RAM, 16 GB of GPU
memory, and 16 physical cores.

3 Research Data

Experiments are done on two geographic scales: a local study located at the Pennsylvania
State University, and a regional study covering the entire state of Pennsylvania. For the
local study, data used originate from a ground observation station actively maintained by
the Surface Radiation Budget (SURFRAD) project.! Observations of solar irradiance and
surface wind speed are available between 2011 and 2019. SURFRAD (Augustine et al. 2000,
2005) project was established in 1993 to provide high-quality, continuous, and long-term
measurements of the surface radiation budget. Observations from SURFRAD have been used
in various validation procedures for satellite-derived estimates and NWP models. In our case,
the verified NWP model is the NAM forecast system (For Environmental Prediction/National
Weather Service/NOAA/US Department of Commerce 2015). NAM is a major operational
model run by National Centers for Environmental Prediction (NCEP) for weather predictions.
It uses boundary conditions from the global forecast system (GFS) model and is initialized
four times per day at 00, 06, 12, and 18 UTC, each producing forecasts for the next 84 h.
The first 37 forecast lead times are provided hourly and after that every 3 h for the following
57 h. In this study, NAM data with a 12-km spatial resolution were used. NAM provides
simulations for over three hundred weather variables that cover a wide range of vertical
profile of the atmosphere. It simulates in total 60 vertical layers on a hybrid sigma-pressure
coordinate system. It also simulates a single compound atmospheric layer for variables like
downwelling shortwave solar radiation and total precipitation.

For the regional study, forecasts are still collected from NAM but verified against the
model analysis, instead of SURFRAD due to its lack of spatial coverage and resolution. The
model analysis is used as ground truth when measurements are not available. NAM analysis
is provided four times a day, at 00, 06, 12, and 18 UTC. The output variables for the regional
study are solar irradiance at the surface, and wind speed at the surface and 80 m above
ground. The 80-m wind speed was included into the experiment because it is the benchmark
for regional wind power assessment. In total, 1225 grid cells are used to simulate the entire
state of Pennsylvania.

4 Results

Results for wind speed and solar irradiance predictions are shown in the following sections,
divided into local and regional studies. Training and testing are performed using data from
2011 to 2018, and for 2019, respectively. Analogs are generated with an ensemble of 11
members.

I Station coordinates can be accessed from https://www.esrl.noaa.gov/gmd/grad/surfrad/sitepage.html.
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Two different AnEn benchmarks are performed. In the first, predictors for AnEn are
selected based on the literature (Cervone et al. 2017; Delle Monache et al. 2013; Alessandrini
et al. 2019; Shahriari et al. 2020; Sperati et al. 2017), and predictor weights are optimized
via a constrained extensive grid search, testing all possible combinations of discrete weights
ranging from O to 1 with an increment of 0.1. The predictors manually selected include
downwelling shortwave radiation, surface wind speed and wind direction, relative humidity
and temperature at 2 m above ground. In the second benchmark, all 227 NAM predictors are
used with equal weights, since a constrained extensive grid search for all 227 predictors is
computationally prohibitive.

Following, AnEn is used to refer to results relative to the five weight optimized predictors,
M-AnEn for results relative to all 227 predictors, equally weighted, and DA for results relative
to the analogs computed using the NN metric.

4.1 Local Study

The local study is performed using data from the SURFRAD station located at 40.72° N,
77.93° W, 10 km southwest from the main campus, and NAM data for the cell which includes
this location. This particular SURFRAD station is the only one available for the state of
Pennsylvania. Additionally, the authors’ familiarity with local conditions can assist with the
interpretations of the results.

4.1.1 Deterministic and Probabilistic Verification

A set of deterministic and probabilistic statistical tests are used to evaluate the analogs gener-
ated. For the deterministic tests, the ensemble mean is computed, while for the probabilistic
metrics, all members of the ensemble are used.

Figure 3a—c shows the bias, root-mean-square error (RMSE), and continuous rank proba-
bility score (CRPS) for solar irradiance forecasts. For all figures, the horizontal axis represents
the lead times for the 84 h of the NAM forecasts, and the vertical axis for solar irradiance in
W/m?2. Each figure shows four lines, for NAM, AnEn, M-AnEn and DA.

In terms of bias (Fig. 3a), NAM has on average the largest bias, followed by AnEn,
DA, and M-AnEn. No method tested can totally eliminate the bias; however, the bias must be
evaluated in combination with other metrics, as it is relatively easy to generate analogs, which
have zero bias, but perform badly according to other predictive measures of accuracy. NAM
shows a large negative value during mornings and a large positive value during afternoons,
suggesting that the model does not perfectly capture the diurnal trend. AnEn has the second
largest bias, which is negative for all lead times, suggesting a tendency to under-predict the
observed value. DA has a smaller negative bias than AnEn for most lead times, suggesting
that the combination of more predictors and the NN-based similarity metric can correct both
the tendency to over- and under-predict. M-AnEn achieves the smallest bias among the AnEn
methods, but it shows the reverse trend of a positive bias for most lead times.

In terms of RMSE and CRPS, DA outperforms all other methods. In terms of CRPS, DA
outperforms the M-AnEn for most lead times in the first 24 h, and the results are statistically
significant as shown by the 90% confidence shown with a shaded area in Fig. 3c. This resultis
extremely important because the first 24-h forecasts are paramount, due to the energy market
operating on a day-ahead schedule. The forecasts can thus provide actionable information
for energy system planning and scheduling trying to match power demand and supply.
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Fig. 3 Verification comparisons for a—c solar irradiance and d—f wind speed forecasts. Black crosses on
the bottom of ¢, f indicate the lead time hours that DA is significantly better than the M-AnEn with a 90%
confidence. Vertical dashed lines indicate individual forecast days in local time

Similarly, Fig. 3d, e, f shows the bias, RMSE and CRPS for surface wind speed forecasts.
Lead times are shown on the horizontal axes, and wind speed is shown on the vertical axes in
m/s. In terms of bias (Fig. 3d), NAM again shows the largest bias, also with a large variation.
The AnEn and M-AnEn both showed a comparable negative bias, followed by the DA with
the smallest positive bias for most lead times. Results suggest that DA forecasts have the
least systematic bias compared to other methods.

Results of RMSE and CRPS (Fig. 3e, f) for wind speed are consistent with those for solar
irradiance. The DA outperforms AnEn on almost all lead times. The improvement of DA
over the M-AnEn is statistically significant for most lead times in the first 24 h, as shown
by the 90% confidence interval. The close resemblance in RMSE between M-AnEn and
NAM starting from the second day suggests (Fig. 3e) that increasing the number of predictor
variables, without properly optimizing the predictor weights, does not improve prediction
accuracy. Instead, DA uses the same number of predictors as M-AnEn, but predictors are first
transformed into a set of latent features before weather analogs are sought. This nonlinear
transformation is carried out by the trained NN that has learned the relative importance of
the input predictors and optimized it for the best predictive skill.

The following metrics are used to test all members of the ensemble, and not just their
means. Figure 4 shows the rank histograms Hamill (2001) for solar (a—c) and wind (d—
f), where the horizontal axis shows the binned intervals determined by the sorted ensemble
members, and the vertical axis the frequency with which an observation falls in each bin. A flat
histogram indicates that over the entire test set, there is no over- or under-estimation because
the observation is equally likely to be closest to any ensemble. A convex histogram (U-shaped)
shows too many observations are outside of the ensemble, and therefore, ensembles are too
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Fig.4 Rank histograms for solar irradiance (a—c) and wind speed forecasts (d—f) with 11 ensemble members

small (under-dispersive); a concave histogram (N-shaped) shows that too many observations
are within the ensemble, and therefore, ensembles are too large (over-dispersive).

Another metric to quantify the quality of ensemble dispersion is the missing rate error
(MRE) Chu and Coimbra (2017), which represents the fraction of observations that are
higher/lower than the highest/lowest ranked ensemble member. MRE is calculated as MRE =
fi+ fu —2/(M + 1), where f1 and fy are the relative frequencies of the first and the last
bins in the histogram, and M is the number of ensemble members. A positive/negative MRE
indicates under-/over- dispersion.

A ranked histogram with an increasing or decreasing trend shows a negative and positive
bias, respectively. We refer to Hamill (2001); Delle Monache et al. (2013); Junk et al. (2015b)
for a more in-depth discussion of the rank histogram and its interpretation. A set of ensemble
forecasts are necessary to compute a ranked histogram, and therefore, it is not computed for
NAM where only a deterministic forecast is available.

In terms of solar irradiance, the M-AnEn is shown to be over-dispersive (Fig. 4a), and this
suggests that ensemble members have too much disagreement and this large internal variation
within the ensemble indicates poor analogs. Both AnEn and DA are slightly under-dispersive
(Fig. 4b, c) as shown by the positive MRE. However, the more prominent problem is a
systematic negative bias indicated by the increasing heights of bars. This result is consistent
with the negative bias shown in Fig. 3a.

Similarly, in terms of wind speed, both M-AnEn and AnEn are shown to be slightly over-
dispersive with a negative bias (Fig. 4d, e). On the other hand, DA (Fig. 4f) shows an almost flat
histogram, which indicates good calibration between ensemble forecasts and observations. A
slightly decreasing trend of the bar heights shows the predictions are over-predicting, which
is consistent with the small positive bias shown in Fig. 3d.
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Fig.5 Binned spread-skill correlation diagrams for solar irradiance (a) and wind speed forecasts (b). Vertical
lines indicate the 90% confidence interval

The spread-skill correlation is another metric to test the quality of the ensembles by
measuring whether the ensemble spread is proportionate to the expected error. A set of
ensemble forecasts are first split into a number of bins, and then, the correlation between the
ensemble spread and the expected error is calculated within each bin. The expected error is
calculated as the RMSE of the ensemble mean and plotted against spread. A well-calibrated
ensemble has a close-to-one correlation between the ensemble spread and its expected error.
Lines above/below the diagonal line indicate under-/over- dispersion.

Figure 5a, b shows the binned spread-skill correlation diagrams for solar irradiance and
wind speed, respectively. DA and AnEn performed similarly for forecasts with small ensemble
spread, showing under-dispersion. Both methods are over-dispersive for forecasts with large
spread (solar irradiance over 180 W/m? and wind speed over 1.8 m/s), but they are different
that DA has a reduced RMSE compared to AnEn, while their ensemble spread is comparable.
This reduction in RMSE, but not in ensemble spread, indicates that DA mostly improves
the predictive skill of the hard-to-predict cases, but does not affect dispersion as much for
these cases. Some examples of such hard-to-predict cases include: (1) abrupt weather regime
changes and (2) constantly moving partial clouds. Since these cases typically have fewer
natural analogs for which DA and AnEn try to find, both of them have limited skills in
predicting these cases. However, they can choose different sets of historical forecasts as
analogs that might yield different results. This difference will be further discussed in the
following section.

4.1.2 Nonlinear Transformation and Latent Features

DA learns a nonlinear transformation on the predictor variables that can better characterize
the relationship between forecasts and observations. There are 20 latent features generated
by DA, optimized using the triplet training. To visualize all embeddings is ineffective, but it is
possible to show slices of this latent space. A good transformation would show that forecasts
clustered together in this new latent space correspond to the ideal ensemble members.

The forecasts and the associated latent features are visualized for September 17, 2019, in
Fig. 6. This day was chosen because of the relative high irradiation values, and the ineffective
correction carried out by AnEn. It is also important to remember that glsNAM forecasts have
a spatial resolution of 12 km, and thus, comparison with a single point is not an indication
of overall model performance. We use this day to visualize how the generated latent futures
help DA to generate a better prediction.
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Fig.6 A case study of solar irradiance prediction on September 17, 2019, showing the predicted time series
from various methods (a). The average of ensemble members are calculated to show a single predicted time
series. The shaded area is 11 AM local time. A subset of the original forecast variables and the latent features
at this particular time point are shown in (b) and (c). The irradiance ensemble from AnEn and DA are shown
in (d), together with SURFRAD and NAM as points

Figure 6a shows the observed SURFRAD measurements, the NAM forecast, and the
ensemble mean for DA and AnEn. The M-AnEn is not shown because of its poor accuracy.
SURFRAD time series shows a typical peak at around early afternoon when the sun reaches
the solar noon. NAM slightly under-predicts solar irradiance in the morning but over-predicts
in the afternoon. AnEn is shown to have a noticeable under-prediction through the day with
a negative bias of about 180 W/m? during solar noon. On the other hand, DA closely follows
SURFRAD, having the highest prediction accuracy compared with NAM and AnEn.

The AnEn looks for analogs with the original forecast variables but DA works by gener-
ating a different set of latent features at each hour before analogs are sought. Figure 6b, c
visualizes the relationship between two variables or features used by AnEn or DA, at 11:00
AM (shaded region in Fig. 6a). The grey dots indicate all the historical forecasts in the search
repository from 2011 to 2018, and they collectively show the entire search space for this ana-
log selection. The figure also shows the target forecast as a red circle; the historical forecasts
selected by AnEn as orange crosses; the historical forecasts selected by DA as blue pluses;
the ideal historical forecasts selected by RA process as green circles. These members are
ideal because the corresponding observations to these forecasts produce the perfect ensem-
ble (accurate and sharp). In other words, these forecasts are associated with the observations
that are closest to the true solar irradiance value (at around 460 W/m?).

While in the original forecast representation space (Fig. 6b), the ideal forecasts (green
circles) are scattered and they are far from the target (red circle) and the AnEn members.
In the transformed space (Fig. 6¢), however, ideal forecasts are closer to the target forecast
and the DA members. Since a Euclidean distance metric is used to define similarity in both
spaces, a clustered pattern is helpful for DA to select the ideal forecasts as analogs. Although
only two latent features are shown, choosing different latent features would change the shape
of the 2D distribution, but they would not change the conclusions.

@ Springer



724 W.Huetal.

5
&
s
©

I

- NAM

Binned RMSE (W/m?)
Binned RMSE (m/s)

T T T T T T T 1 T T T T T T T 1
S S S .S S S S D D A D S S PN
B S S oS NSRS @'.\\Q?’ @

SV S ST 9
TP EEEE
NAM Error Interval (W/m?) NAM Error Interval (m/s)
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Since the transformation is learned on the basis of observation values, the analogs selected
by DA outperforms the analogs selected by AnEn. The basis of this conclusion is that the
transformation performed by NN learns the relationship between the forecasts and their
associated observations, and this relationship defines a better Cartesian representation space
to select analogs using an Euclidean metric, as shown in Fig. 6c.

The AnEn and DA ensembles are visualized using box plots in Fig. 6d. The box plots show
a summary for the distribution of the analogs, where the horizontal line represents the median
of the distribution, the box contains 50% of the data, and the whiskers extend to 1.5 times
the interquartile range. NAM and SURFRAD are plotted as circles. The AnEn ensemble is
shown to have a skewed distribution to do the negative bias of several analog members. DA
generates a symmetric distribution, with the median matching the SURFRAD observation.
This shows a more accurate and better calibrated ensemble.

DA and AnEn use different representation spaces to characterize forecast similarity. This
leads to different selection of historical forecasts as analogs. Another outcome of applying
such a transformation before analog selection is the improved skill on hard-to-predict cases.

Figure 7 shows the binned RMSE as a function of the absolute error of NAM , for solar (a)
and wind speed (b), respectively. As postprocessing methods, the goals of DA and AnEn are
to remove errors from NAM and improve predictive skills. Figure 7 shows how much error
is removed from NAM in each bin by applying the postprocessing methods. As a reference,
NAM lies roughly on a one-to-one diagonal line and the area below indicates improvement
by the particular postprocessing method. Points on the right side of the figures represent
forecasts with larger error.

In terms of solar irradiance (Fig. 7a), DA outperforms (with a lower RMSE) AnEn and
NAM for almost all bins except for the first bin where NAM is already accurate. This is
expected because both AnEn and DA generate ensemble forecasts and need to account for
the forecast uncertainty by having a group of similar forecasts. On the other hand, the bins
to the right of the horizontal axis show that DA consistently removes more error from NAM
compared to AnEn, especially for the hard-to-predict cases where large error from NAM is
to be expected.

Similarly, Fig. 7b shows the same problem for wind speed. DA and AnEn are able to
remove errors from NAM for almost all bins, but DA is more effective than AnEn at correcting
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NAM predictions for hard-to-predict cases (last three bins on the right). When NAM has a
larger error, AnEn becomes less robust because it relies on these forecasts as predictors.
The transformation carried out by a trained network in DA helps to better cope with these
hard-to-predict cases.

In summary, both Figs. 6 and 7 show that, by applying a nonlinear transformation before
analog selection; DA chooses a different set of analog forecasts from AnEn. Because the
transformation is learned on the basis of observation values, the analogs selected by DA
construct a more accurate ensemble, especially for predicting hard-to-predict cases.

4.1.3 Impact of Model Updates

Both AnEn and DA rely on historical forecasts and observations to generate forecast ensem-
bles. One important assumption of AnEn is that similar forecasts have similar error patterns
and thus the forecast error can be corrected by using the observations associated with the
most similar historical forecasts. This assumption, however, can be violated if NWP models
are updated during the historical period, which is common in model operation. Operational
models are constantly being updated to improve their skills but, as a result, more recent
forecasts no long possess the same error patterns with their historical analogs.

As an example, NAM has gone through a series of updates. The most notable change was
a core update from the Eta model to the weather research and forecasting (WRF) model in
2006. Subsequently, NAM had minor updates once every several months.>

The transformation of forecasts into a latent space, carried out by DA, can help analog
identification to overcome the limit posed by model updates. Because two forecasts are
deemed analogs as long as their observations are similar, they can have different predictors
but still be put close to each other in the latent space. In other words, DA can be more tolerant
of model updates, thanks to the transformation. In contrast, AnEn relies on model forecasts
to calculate the similarity which can be more sensitive to model updates.

Two metrics are used to test the tolerance of model updates. RMSE is calculated using
ensemble mean against SURFRAD observations. Brier score is another error metric that
measures the accuracy of probabilistic forecasts. To calculate Brier score for continuous
variables (like solar irradiance and wind speed), a threshold is first chosen. Observation (o;)
values are replaced with ones if they are over or equal the threshold, otherwise zero. Then,
probabilistic forecasts (f;) of whether the threshold will be exceeded is calculated. Brier
score is calculated as BS = % ZlN:l (fi — 0i)?, where N is the number of samples.

Figure 8a, b shows the RMSE as a function of the number of search years. The M- AnEn has
a high RMSE for both solar irradiance and wind speed because its weights are not optimized,
but as more years are included in the search repository, RMSE drops and its performance
increases. The AnEn and DA have similar RMSE up until 4 years in the repository. When
more data are included (e.g., 8 years), AnEn no longer yields the expected improvement in
performance, but DA continues to gain improvement from having a larger search repository.

In terms of Brier scores (Fig. 8c, d), the 75-percentile value is selected as the threshold,
corresponding to 730 W/m? in irradiance and 4.2 m/s in wind speed. This percentile is
chosen because the corresponding solar irradiance and wind speed are usually preferred
(or minimum) conditions for power generation. Again, M- AnEn is shown on the top with
the highest error, but its performance increases as more data are available in the search
repository. The performance of AnEn peaks when having 4 years in search and decreases

2 The update frequency is estimated from the changelogs from the official code base on GitHub at https://
github.com/wrf-model/WRF.
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Fig. 8 Sensitivity studies of the length of the search history for predicting solar irradiance and wind speed.
Historical forecasts from 2018 are used for the single-year case; forecasts from 2017 to 2018 are used for the
2-year case; forecasts from 2015 to 2018 are used for the 4-year case; and forecasts from 2011 to 2018 are
used for the 8-year case. The thresholds for Brier are the 75-th percentile of the distribution of solar irradiance
and wind speed. a, b Show the RMSE and ¢, d show the Brier scores. The performance metrics are generated
from a subset of lead times (11 AM to 12 PM) to prevent skewed verification due to night times and to ensure
variability. Weights used by AnEn are optimized using the 8-year case; the embedding network used by DA
is trained with the 8-year case

when more years are added, but DA does not suffer from the same issue and continues to
gain improvements.

In summary, AnEn relies on the NAM variables as predictors when searching for analogs.
This approach provides an exact mapping between the target and historical forecasts. It
assumes that similar forecasts are associated with similar errors, and therefore, forecast
errors can be corrected by looking for similar historical forecasts. However, any updates
to the model (changes to the data assimilation process or physic schemes) would break
this mapping, whereas the nonlinear relationship from the DA would be more robust and it
does not assume the model is static throughout the historical record. Figure 8 shows that,
consistently, DA has a better tolerance of model updates and benefits from having a large
search repository. DA learns the forecast—observation relationship from historical data and
tries to use this relationship when generating new forecasts.
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Table 1 A summary of experiments for training ML models for spatial predictions of DA

Experiment Predictand Vertical level Trained ML models Training data sites
1 Solar irradiance Surface 1 1
2 Solar irradiance Surface 1 100
3 Wind speed Surface 1 1
4 Wind speed Surface 1 100
5 Wind speed Surface 8 408
6 Wind speed 80 m above ground 1 1
7 Wind speed 80 m above ground 1 100
8 Wind speed 80 m above ground 9 408

4.2 Regional Study

A regional study is carried out to test the performance of DA on a spatial domain. It uses data
from the NAM forecasts and the analysis field over the state of Pennsylvania. With a spatial
resolution of 12 km, 1225 grid cells make up this study region.

4.2.1 Impact of Different Types of Model Training

When generating forecasts for a single location, model training is straightforward because
one NN is trained using data for that location. However, when generating forecasts for a
spatial domain, there are different options on how to include the spatial information into the
training.

Table 1 summarizes the series of NNs trained by using different sets of training data. For
solar irradiance, one NN model is trained (Exp. 1 and 2) for predicting the entire region, but
the training data can come from either a single grid cell (Exp. 1) or a subset of all grid cells
(Exp. 2). The single grid cell used encompasses the SURFRAD station, and the sampled 100
grid cells are selected with a equal spacing across Pennsylvania.

For wind speed at surface and 80 m above ground (Exp. 3-8), the same configuration is
used where one NN model is trained with the training data from either a single grid cell (Exp.
3 and 6) or a subset of all grid cells (Exp. 4 and 7). The third set of experiments (Exp. 5 and
8) train multiple NN models that predict for different parts of the study domain. First, the
annual average wind speed at each grid cell is calculated. All grid cells are then binned with
0.5 m/s intervals. For each interval, a NN is trained using data from the grid cells belonging
to the interval. Typically, 100 grid cells are randomly sampled within the same interval, but
if fewer than 100 grid cells are available in an interval, all grid cells are used.

The spatial forecasts from the experiments listed in Table 1 are verified with RMSE, shown
in Table 2. The test period is the year 2019, all days from 14:00 to 17:00 when model analysis
is available. Verification of wind speed at 80 m above ground is carried out for strong wind
cases (> 4 m/s), which is the typical cut-off speed for wind turbines. To explain the notation,
DA 1 @ 100 stands for DA that has 1 NN trained with data from 100 grid cells.

For solar irradiance, M- AnEn does not outperform NAM on a spatial domain, although
the reversed has previously been shown in the local study (Fig. 3). Both AnEn and DA
outperform NAM, but the best performance is given by DA I @ [00. This indicates that,
for spatial forecast problems, the NN trained at one grid cell can still be limited ( DA 1 @ 1)
compared to AnEn, but the problem can be solved by including data from other grid cells in
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Table2 A summary of results from various methods. DA I @ I represents DA predictions with 1 ML model
trained with data from 1 site

Variable Methods Average RMSE (Min/Max) Improvement (%)
Solar irradiance (W/m?2) NAM 158.02 (136.59/182.06) *
M-AnEn 162.43 (145.33/182.16) —-2.79
AnEn 133.66 (119.47/151.88) 15.42
DAl @1 136.63 (120.87/161.42) 13.54
DA 1 @ 100 130.31 (111.24/148.01) 17.54
Surface wind speed (m/s) NAM 0.81 (0.61/1.12) *
M-AnEn 1.06 (0.78/1.68) —30.76
AnEn 0.75 (0.54/1.07) 7.56
DAl @1 0.83 (0.64/1.62) —2.62
DA 1 @ 100 0.68 (0.51/1.07) 15.74
DA 8 @ 408 0.7 (0.52/1.09) 13.27
80-m wind speed (m/s) NAM 1.09 (0.91/1.46) *
M-AnEn 1.46 (1.16/2) —34.08
AnEn 1.01 (0.81/1.32) 7.47
DAl @1 1.09 (0.87/1.8) 0.00
DA 1 @ 100 0.94 (0.77/1.33) 13.21
DA 9 @ 408 0.95 (0.75/1.33) 13.07

The best method is indicated in bold

the study domain so that the trained NN is exposed to different forecast-observation pairs in
general, not only limited to a constrained location.

For wind speed at surface and 80 m above ground, M- AnEn again does not outperform
NAM but AnEn shows consistent results on the two vertical levels by improving NAM by
about 7.5%. However, if only trained at one location ( DA I @ [), DA does not improve
NAM predictions. Once the training data consist of a subset of all the grid cells (DA 1 @
100), DA becomes the most preferable options for predicting wind speed. This confirms the
importance of having training data from across the study domain when generating spatial
forecasts.

Finally, for surface wind speed, DA with multiple NNs ( DA 8§ @ 408) slightly decreases
the performance compared to DA with a single NN ( DA I @ 100). For 80-m wind speed,
DA with multiple NNs ( DA 9 @ 408) has similar performance to DA with a single NN ( DA
1 @ 100). These results suggest that using more NNs might not be the most effective way
to further squeeze out any performance of this type of network. This could be limited to the
complex topography or the capability of an analog-based approach. A better way to encode
spatial information into the similarity metric might be using more suited architecture like the
convolutional neural network.

4.2.2 Spatial Error Patterns
The DA shows outperformance compared to AnEn on average. However, there could be a spa-

tial variation in its performance across the study domain. Figure 9 visualizes the performance
variation with the error distribution and geographic maps.
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Figure 9a shows the error distributions of solar irradiance forecasts, as measured by RMSE,
in a violin plot from NAM, M- AnEn, AnEn, and two versions of DA (DA I @ [ and DA
1 @ 100). AnEn and DA typically have a better performance than NAM and M- AnEn with
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Fig. 9 Distributions of prediction errors (a, ¢, e) and geographic maps comparing DA and AnEn (b, d, f).
The verification period is 2019 daily from 2 to 5 PM to favor the daytime period and only large wind (> 4
m/s) cases are verified. Predictions over water (upper-left in b, d, f) have been removed. In (a, c, e), the three
hinges are, in turn, the first, second, and third quartiles; the whiskers extend from the hinge to the value at
1.5 * interquantile range of the hinge. Locations with an annual wind speed over 4 m/s are shown in (f) to
highlight strong wind region. Training data sites are circled in black
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DA 1 @ 100 being the most accurate method, thanks to the increased training data from
sampled grid cells. Figure 9b compares the RMSE of AnEn and DA on a geographic map,
where green circles indicate DA outperforms AnEn. The most improvement of DA takes
place at southeastern and central Pennsylvania, and some improvement is also observed at
northwestern Pennsylvania close to Lake Erie. For the rest of the domain with smaller red
circles, it indicates AnEn outperforms DA, but the difference is small (lower than 5% of the
error of AnEn).

In terms of surface wind speed (Fig. 9c), the improvements from AnEn and DA are less
prominent than those of solar irradiance, likely due to wind speed being a more dynamic
variable. DA 1 @ ] outperforms M- AnEn which indicates that NN has learned the relation-
ship between forecasts and observations that is helpful for spatial forecasts. However, more
training data can be used ( DA I @ 100) to further improve the efficacy of the trained NN.
Figure 9d compares DA I @ 100 to AnEn in a geographic map, and the result shows a large
part of the domain favoring DA over AnEn.

Similarly, Fig. 9e shows the error distributions of wind speed at 80 m above ground.
It confirms that the same technique, adding training data from a number of grid cells, is
effective for predicting mid-air level wind speed. Figure 9f compares DA to AnEn where the
average wind speed at 80 m above ground is over 4 m/s. This region is suitable for wind power
generation, and it includes mostly northern and southeastern Pennsylvania and a narrow band
following the southwestern Allegheny Mountains. The comparison shows a large area with
preference of DA over AnEn.

In summary, DA can be trained with data from multiple grid cells so that the NN learns
the forecast—observation relationship helpful for spatial forecasts. This training technique
has been found to be more effective than having multiple trained NNs, considering not only
the higher prediction accuracy, but also the saved computation for training multiple NNs.

4.3 Comparison of Computation Scaling

Both AnEn and DA require an optimization process prior to the generation of forecasts, but in
vastly different forms. AnEn adopts a constrained exhaustive search that goes through with
all possible weight combinations. A critical drawback of this approach is its poor scaling
performance when more predictors are used. On the other hand, DA relies on a trained NN
that transforms input predictors into latent features. These features can then be used with equal
weight, when calculating distances in the latent space, because the relative importance of the
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input predictors have already been taken into consideration by the nonlinear transformation.
This difference in the optimization process presents a huge computational benefit of DA.

Figure 10 compares the runtime needed by the two approaches for weight optimization as
a function of the number of variables (predictors). Experiments are run on a compute node
with an Intel Haswell Xeon CPUs (12 cores) for AnEn or on a GPU node for DA with an
NVIDIA P100 GPU. The reason for using different architectures is that the DA and AnEn
algorithms have different requirements. The implementation of the DA takes full advantage
of the parallel GPU architecture, while AnEn requires traditional CPUs. Furthermore, while
it is not possible to run AnEn on a GPU architecture, it is theoretically possible to run DA
on a CPU architecture, but it would be tremendously slow. To optimize predictor weights for
AnEn, weights are searched from zero to one with an increment of 0.1. Results shows a near-
exponential, rather than exponential, growth as the number of predictors increases, because
only the weight combination with a sum of one is put to trial. This sum-of-one restriction is
commonly used to reduce the total number of weight combinations.

The DA, however, relies on backpropagation algorithms, like ADAM, to train the NN.
Training time is less sensitive to the number of input predictors, but more sensitive to the
size of the NN and the number of training samples, which remain constant throughout the
analysis. This demonstrates a significant computational benefit because using more input
predictors only marginal increases the training time. This key difference gives DA the ability
to cope with big data with a large number of predictors.

The profiling experiments are limited to a maximum of seven predictors because the
optimization time of AnEn scales poorly and it takes an astronomical amount of computation
time to optimize weights for the 227 predictors (about 10'% years). However, using the
NN-based similarity metric, DA only needs few than 2 h for training the network. These
estimations are made by extrapolating profiling results shown in Fig. 10.

5 Discussion and Conclusions

This work improves AnEn forecasts by introducing an NN-based similarity metric and RA
for triplet forecast sampling. Specifically, weather analogs are no longer identified in the
original forecast variable space, but in a transformed latent space generated by a trained NN.
The main findings and contribution of this work are highlighted below:

1. DA overcomes the computational limit posed by optimizing predictor weights for the
conventional similarity metric (Delle Monache et al. 2013). More predictors can be used
as input to DA to generate predictions with a higher accuracy.

2. DA has been found to be more accurate in predicting hard-to-forecast cases compared to
AnEn where only a few predictor variables can be used.

3. DA has a higher level of tolerance to model updates when multiple years of data are
included in the search repository, because NN learns the relationship on the basis of
observations and forecasts variables are transformed to reflect the similarity in observa-
tions.

4. Although AnEn works independently on each grid cell, DA can generate accurate forecasts
for a spatial domain if trained with data from a subset of all grid cells.

Fanfarillo et al. (2021) previously proposed to use an encoder—decoder architecture for
analog generation that saves computation and memory. They achieved a constant scaling in
computation and memory when the size of the search repository increases. But yet the ML
model was not able to outperform AnEn on average. This work, however, is able to show that
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DA outperforms AnEn. It suggests that the latent features generated by the trained NN help
to identify better analogs than AnEn.

The key difference between this and the previous work is that auto-encoder, acting like a
data compressor, seeks to represent the complex NWP model forecasts with fewer features.
The goal is to reduce the number of variables and generate compact representation of weather
forecasts. However, DA is different that it learns the similarity based on observation and tries
to construct a transformation so that this similarity can be better reflected with forecasts. The
goal is to find better analogs and produce more accurate forecast ensembles. The number of
latent features that NN generates is less relevant. The proposed sampling and data-labeling
technique, RA, ensure that NN learns the correct similarity based on observations so that
better forecast analogs can be identified.

During model training, separate NNs are trained for solar irradiance and wind speed
forecasts. It is possible to train only one NN that identifies analogs for both variables at
the same time (e.g., identifying days with the most solar irradiance and wind speed at the
same time). This would require creating a composite variable combining the normalized
solar irradiance and wind speed to account for both. This approach has potential application
to hybrid power plants where both solar and wind energy are harvested. Currently, this
works focuses on predicting solar irradiance and wind speed as two independent predictands.
Therefore, this composite approach will be beyond the scope of this work.

The benefit of DA will be increasingly prominent as the available computation, and data
in Earth observations and atmospheric modeling are growing exponentially. The inclusion
of a NN and the triplet network training contributes to a higher tolerance of model updates
as the search repository grows. It ensures that DA can keep improving its prediction accu-
racy by relying on the recent advancement in modelling and high-performance computing
communities.

Future research should be directed to the application of such a framework in extreme
weather forecasting and forecasts over a large spatial domain. In this work, LSTM is used
as the transformation network, but studies are highly encouraged to systematically evaluate
the performance of different NN, like the recurrent neural network and the gated recurrent
unit, as the embedding network.
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