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Abstract
The flow over arbitrary roughness changes is investigated, revisiting the analysis of Belcher et
al. (Q J RMeteorol Soc 116:611–635, 1990) regarding surface-roughness heterogeneity. The
proposed theory is restricted to steady neutral boundary layers over flat regions with changes
of roughness sufficiently slow andmild to inhibit the growth of nonlinear terms. The approach
is based on a triple-deck decomposition of the flow above the roughness, although only the
first two layers are interactive at leading order. Two experimental datasets (onewith a smooth-
to-rough and the other with a rough-to-smooth transition) are used to validate the theory. The
latter is further compared against two large-eddy simulations featuring chessboard patterns
of alternating surface roughness with relatively short and long length scales, respectively. All
the comparisons show that the proposed theory is able to reasonably assess the wind-field
perturbation due to the roughness heterogeneity, supporting the use of the model to quickly
assess the effect of roughness changes in the flow field.

Keywords Roughness change · Heterogeneous terrain · Asymptotic theory

1 Introduction

Land cover in nature often contains heterogeneous variations in surface properties; this is
including (but not limited to) albedo, roughness, and soil moisture. The aggregated effects
of these properties interact with the atmosphere above and influence the structure of local
and areal mean vertical temperature, wind, and scalar profiles. This interaction has wide-
ranging implications for such applications as wind energy, air quality, structural engineering,
and many others. As such, the accurate numerical modelling of these interactions is crucial
for predicting atmospheric impacts on these applications. Of further complication is the
distribution and length scale of the surface variations, which is often of finer scales than the
resolution of operational numerical weather prediction models (Bou-Zeid et al. 2020). As
such, it is not surprising that efforts to parameterize the aggregated effects of regional surface
heterogeneity have been ongoing for several decades.
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In the case of changes in surface roughness, flow encountering a rough (smooth) surface
from a smooth (rough) one slows down (speeds up) at and just upstream of the roughness
change. The turbulent response from the resulting convergence (divergence) is distributed in
the vertical direction and downstream of the roughness change. The aforementioned turbulent
response is confined within an internal boundary layer (IBL) (Garratt 1990; Kaimal and
Finnigan 1994). The IBL response to roughness changes has been investigated for several
decades. Elliott (1958) developed an early theory for determining the height of the IBL
downstream of a single roughness change. Since Elliott (1958), numerous similar analytical
models have been developed for IBL development following a step change in roughness (for
example, Panofsky and Townsend 1964; Chamorro and Porté-Agel 2009; Ghaisas 2020).
Bradley (1968) documented the atmospheric response to spikes placed on an airport tarmac.
Claussen (1987) used a streamfunction-vorticity model to study the upstream effects of the
IBL and modelled the stress response to the roughness change. In an extension of the work
by Jackson and Hunt (1975), Belcher et al. (1990) introduced a triple-layer analytical model
to describe the atmospheric response to arbitrary changes in surface roughness. Differently
from the hill case described in Jackson and Hunt (1975), the roughness did not generate a
sufficiently strong pressure gradient to make the three levels interactive, so that two layers
were already sufficient to describe the flow perturbation at leading order. Using wind tunnel
experiments, Segalini and Chericoni (2021) investigated the growth of the internal boundary
layer over long wind farms, with budget analyses showing the importance of the advection
of kinetic energy transported by vertical velocity.

Many recent studies have examined the development of internal boundary layers using
large eddy simulation (LES). Bou-Zeid et al. (2004) used LES to examine flows over strips
of roughness changes in neutral conditions and extended this work to arbitrary roughness
changes in Bou-Zeid et al. (2007). Bergot et al. (2015) performed LES experiments to study
the impact of airport buildings on fog development at Charles de Gaulle airport. Tomas
et al. (2016) studied the effect of stable stratification on rural to urban roughness transitions
to investigate pollutant dispersion. Allaerts and Meyers (2018) used LES to examine IBL
development over wind farms. Segalini (2017) developed a model based upon the linearized
Navier–Stokes equations that simulates flows interacting with wind farms in complex ter-
rain, which was validated against LES data. Momen et al. (2021) found distinctive mean and
turbulence structures within the IBL formed at the coastal roughness transition in LES of a
hurricane making landfall. In another LES study, Janzon (2022) developed a model aggre-
gating the IBL effects over a wide range of heterogeneity length scales given a diurnal cycle
and including rotational effects due to the Coriolis force.

Despite of the plethora of data available, several open questions remain (see Janzon 2022,
for a review) especially concerning the impact of land-cover heterogeneity on the boundary
layer. The estimate of the effect of a surface roughness texture in the boundary layer above
is an open issue: even by knowing the surface roughness statistically, the IBL development
depends on the actual roughness geometry and surface wind conditions in terms of mean
flow and turbulent momentum transfer. These are in turn affected by the model resolution
at the lower layers (both horizontal and vertical resolutions are important) and might affect
the simulation results. When a finite-volume code is used, the surface stress imposed at the
bottom of the cell closest to the ground replaces the effect of the boundary condition, but this
requires a reliable model to connect the shear stress with the roughness (Stoll and Porté-Agel
2006).

Given the computational expense of running full-physics numerical simulations (together
with their modeling assumptions), analytical models remain an attractive option for studying
these effects. A reliable analytical model can be used with relative ease to examine the
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continuous effects of a large sweep of background atmospheric conditions and land-cover
distributions.

In this study, a new analytical theory is presented that examines the atmospheric response
to arbitrary changes in surface roughness, revisiting the theory proposed by Belcher et al.
(1990): the latter theorywas developed for two-dimensional roughness distributions. The new
theory is here validated against experimental data and LES results. Surface stress and velocity
distribution in the boundary layer are estimated for several roughness patches providing
physical insight into the IBL development and how that is affected by the roughness. The
paper is structured as follows. Section 1 describes the theory in terms of the equations, base
flow and perturbation in response to the roughness heterogeneity. The model is first validated
in Sect. 3 against two experimental datasets (Bradley 1968; Li et al. 2021). An additional
validation is provided by the numerical simulations described in Sect. 4 while the comparison
between theory and numerical results is reported in Sect. 5. Concluding remarks are reported
in Sect. 6.

2 Theory

The equations for the flow above heterogeneous roughness are written by means of the
incompressible approximation in Cartesian coordinates. The x direction is considered ori-
ented along the surface wind direction, z orthogonal to the surface and y orthogonal to the
xz plane.

The steady-state Boussinesq equations used to investigate the roughness problem are:

∂U

∂x
+ ∂V

∂ y
+ ∂W

∂z
= ∇h · U + ∂W

∂z
= 0 , (1)

(U · ∇h)U + W
∂U
∂z

+ f ez × U = −∇hΠ − ∂u′w′
∂z

, (2)

(U · ∇h)W + W
∂W

∂z
= −∂Π

∂z
. (3)

The horizontal velocity vectorU = (U , V ) is separated from the vertical velocity component
W . The horizontal gradient operator is here indicated as ∇h . The Coriolis parameter is
indicated as f . The term Π includes the normal Reynolds stresses (assumed to be isotropic)
and the pressure normalised by the background density, ρ0. The use of Boussinesq equations
assumes a constant background density value that appears suitable for the analysis close
to the surface. The neglect of buoyancy effects in the vertical momentum equation implies
weak stratification effects on the flow dynamics, although the stratification might change the
turbulence properties by affecting the eddy viscosity or the mixing length.

Similarly to Belcher et al. (1990), the horizontal Reynolds stresses u′w′ are modeled by
means of the mixing-length approximation:

− u′w′ = l2m

∣
∣
∣
∣

∂U
∂z

∣
∣
∣
∣

∂U
∂z

with lm = κz

φm (z/Lo)
, (4)

where κ ≈ 0.4 indicates the von Kármán constant, Lo the Obukhov length scale and φm

the flux function for the momentum transfer (Högström 1990). The mixing length, lm , is
used here as an empirical parameter that grows linearly in the logarithmic region, namely
the region most affected by the roughness perturbation. No displacement height (Jackson
1981) is considered in the present analysis. Above of the logarithmic region, it is expected
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that the mixing length should saturate following a Escudier (1966) model, although this is
not implemented in the present work. In the present formulation, density stratification is
introduced only by means of the mixing length via the flux function, φm .

By considering a slight velocity deviation, u, from a base state, U0 (with known shear

stress,
∣
∣
∣u′w′

0

∣
∣
∣ = u2∗) in the constant stress layer above the roughness, the total shear stress

can be written as:

− u′w′ ≈ u2∗ex + u∗lm
(

∂u
∂z

+ ∂ex · u
∂z

ex

)

= u2∗ex + u∗lm
(

2
∂u

∂z
,

∂v

∂z

)

︸ ︷︷ ︸

−u′w′pert

, (5)

where ex = (1, 0, 0) indicates the surface velocity direction vector, while it is assumed
that the velocity deviation does not affect the mixing length, lm . Equation (5) is obtained
by considering a Maclaurin expansion of the square root operator considering only terms
proportional to the velocity perturbation. The last term of (5) is the perturbation shear stress
and it is denoted as−u′w′

pert in the following to highlight its correctivemeaning. Equation (5)
is approximated to the first-order term,while the inclusion of higher order termswill introduce
nonlinear corrections: this is acceptable away from the region most affected by the roughness
where the full nonlinear expression (4) must be used instead.

At the bottom surface the roughness boundary condition is imposed as:

U (z → 0) = ũ∗
κ

ln

(
z

z1

)

ex , (6)

where ũ∗ is the local friction velocity associated to the flow development over the roughness
z1. ũ∗ is expected to bemodified with respect to the undisturbed one, u∗. The friction velocity
is computed as:

ũ∗ =
(

u′w′2 + v′w′2
)1/4 = lm

∣
∣
∣
∣

∂U
∂z

∣
∣
∣
∣

as z → 0 . (7)

2.1 Base Flow Determination

When the roughness is homogeneous at the surface, the nonlinear column model:

W0 = 0 , (8)

f ez × U0 = −∇hΠ0 + ∂

∂z

[

l2m

∣
∣
∣
∣

∂U0

∂z

∣
∣
∣
∣

∂U0

∂z

]

, (9)

∂Π0

∂z
= 0 , (10)

is obtained. Capital quantities with a 0 subscript are used here to indicate basic unperturbed
quantities associated to the homogeneous roughness, z0. By coupling Eqs. (8–10) with the
surface and free-stream boundary conditions they can be integrated to obtain the undisturbed
velocity profile over a homogeneous roughness. If a constant eddy-viscosity model was
instead adopted, the Ekman spiral would have been obtained (Vallis 2017).

The assessment of the base flow is done by integrating (8–9) from the ground to the top
of the boundary layer. As no thermal wind is considered here (the present analysis considers
a barotropic atmosphere only), the velocity distribution approaches a constant geostrophic
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Fig. 1 Zonal (solid line) and meridional (dashed line) velocity profiles for f = 10−4 1/s and velocity at
zref = 100 m equal to (Uref , Vref ) = (10 m/s, 0). a z0 = 0.001 m (green line), z0 = 0.01 m (red line) and
z0 = 0.1 m (blue line) with Lo → ∞. b Lo → ∞ (green line), Lo = −100 m (red line) and Lo = 100 m
(blue line) with z0 = 0.1 m. The dotted line indicates the logarithmic law. The reference height can be quickly
identified as the zero crossing of the V profile

wind given by the geopotential gradient, i.e.:

U0(z → ∞) = f ez × ∇hΠ0 = (UG , VG) . (11)

Near the ground (at z = z0) the no-slip condition is imposed as U0 (z0) = 0. The inclusion
of baroclinic effects will change the RANS balance, affecting the turbulence properties as
discussed by Momen et al. (2018).

From a practical point of view, the velocity at a given reference height is usually known
as a two-dimensional vector while the friction velocity is not known and it is a result of the
integration of a nonlinear problem (or of directmeasurements of the shear stress). The integra-
tion of the velocity equations is here done by means of a tentative friction velocity value; the
obtained velocity field is then normalized at the reference height obtaining a new value for the
friction velocity from the surface stress and the estimation is started again until convergence.
Figure 1 shows an example of the U and V velocity profiles for different roughness heights
in neutral conditions and for different stability classes. Since the steady-state mixing-length
model is numerically stiff, a spectral approach with Chebyshev polynomials (Peyret 2002)
was used to solve the nonlinear flow equations with a Newton–Raphson method.

When looking at Fig. 1, it is clear that very close to the roughness (say for z < 100z0)
the velocity profile is independent of stratification, while in the neutral case it follows the
logarithmic lawuntil the edge of the boundary layer.According toMonin–Obukhov similarity
theory (Högström 1990; Kaimal and Finnigan 1994), the windwise mean flow profile in the
constant stress layer is given by:

U0 = u∗
κ

[

ln

(
δ

z0

)

+ ln η − Ψ

(
δ

Lo
η

)

+ Ψ

(
z0
Lo

)]

, V0 = 0 , (12)

where η = z/δ is a dimensionless coordinate where z is scaled by the length scale δ � z0.
Away from the surface, the first term is dominating: the stratification terms (expressed by the
Ψ function, Kaimal and Finnigan 1994) play a role only for extremely high stratification (or
when z/Lo = O(1)). They are very important to establish the base flow profile but their role
is marginal for the perturbative terms at leading order.

The V component is smaller than U and does not show a logarithmic law. The growth of
the V component takes place apparently when U deviates from the logarithmic behaviour:
close to the surface this is not surprising since the shear stress is constant while the integrated
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ageostrophic wind grows linearly with the distance from the ground. This implies that in
the constant-stress layer, the V component remains small and therefore negligible compared
to the U component. This does not imply that Coriolis effects are negligible everywhere:
the base velocity profile is in fact determined by solving (9) as a boundary value problem.
However, near the surface the base flow is oriented as the surface wind, although the reader
is reminded that Fig. 1 is in logarithmic scaling.

Finally, from now on all the velocity components, shear stress and scaled pressure are
normalized with the unperturbed u∗ or u2∗, in order to ease the notation: this is motivated by
the connection between friction velocity and wall shear stress (τw = ρ0u2∗ by definition), a
quantity of paramount importance in the surface layer.

2.2 The Roughness Layer

Very close to the roughness, Eq. (2) is dominated by the turbulent stress term as the advective
term has magnitude 1/L (with L indicating a characteristic horizontal length scale for the
moment left undefined but assumed to be sufficiently large when compared to z0) while
the turbulent term has magnitude 1/z0. As long as the horizontal variations have a scale
L � z0, the turbulent term dominates. The mixing length (4) is approximated by lm = κz as
the stratification correction is negligible very close to the surface (in stable stratification the
momentum flux function is proportional to the height normalised by the Monin–Obukhov
length scale Lo, here assumed to be very large). The velocity field remains aligned with the
x direction since the rotation effect is negligible at such small scales. Consequently, the total
shear stress is given by −u′w′ = (1 + τ)2 ex with (1 + τ)2 indicating the corrective shear
stress factor due to the roughness. By using the closure model (4), the total velocity derivative
is found as:

∂U
∂z

= 1 + τ

κz
ex , (13)

that can be integrated in the windwise direction to:

U (x, y, z) = 1 + τ

κ
ln

(
z

z1

)

= 1

κ
ln

(
z

z0

)

︸ ︷︷ ︸

U0

+u(x, y, z) , (14)

with the velocity perturbation:

u(x, y, z) = − 1

κ
ln

(
z1
z0

)

+ τ

κ

[

ln

(
z

z0

)

− ln

(
z1
z0

)]

, (15)

that satisfies already the no-slip boundary condition at z = z1. The friction velocity associated
to this layer is not anymore u∗ but rather ũ∗ = u∗(1 + τ) pointing out to a direct effect of
the roughness to the turbulent activity. The term κ−1 ln (z1/z0) indicates the magnitude of
the velocity perturbation in the roughness layer: this does not have to be very small since the
roughness-layer analysis is not linearised and remains valid as long as the turbulent stress
dominates and remains constant in the vertical direction.

By introducing the two-dimensional Fourier transform and its inverse:

û = F(u) =
∫ ∞

−∞

∫ ∞

−∞
u(x, y)e−i(kx x+ky y)dxdy , u = F−1(̂u) , (16)
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the horizontal Fourier transform of (15) is:

û(kx , ky, z) = − 1

κ
F

[

(1 + τ) ln

(
z1
z0

)]

+ τ̂

κ
ln

(
z

z0

)

. (17)

At this point the roughness analysis has revealed that the velocity change goes logarithmi-
cally with the height, similarly to several of the simplified models proposed in the literature
(Elliott 1958; Panofsky and Townsend 1964; Chamorro and Porté-Agel 2009). However, the
function τ is still undefined and must be determined by considering the balances above the
roughness layerwheremeanflowadvection enters the analysis, as discussed in the followings.

2.3 Perturbation Structure Far from the Roughness

As clear from the analysis of the previous section, very close to the roughness a nonlinear
analysis provided the velocity perturbation due to the roughness expressed by (15) in physical
coordinates, or by (17) after the Fourier transform.Away from the roughness, one expects that
the velocity perturbation should be smaller than the base flow: in light of this, the following
decompositions are introduced:

V = (U, W ) = (U0, 0) + ωu (u, w) , (18)

Π = Π0 (x, y, η) + ωp p , (19)

where ωu , ωp 	 1 indicate the dimensionless weights of the perturbation with respect to
the base state. These are dependent on the distance from the roughness and are obtained as a
result of the analysis. The steady perturbation equations are obtained from (1–3) subtracted
by the parallel-state equations and linearised leading to:

∇h · u + ∂w

∂z
= 0 , (20)

(U0 · ∇h)u + w
∂U0

∂z
+ f

u∗
ez × u = −ωp

ωu
∇h p − ∂

∂z

(

u′w′
pert

)

, (21)

(U0 · ∇h) w = −ωp

ωu

∂ p

∂z
. (22)

In order to perform a scale analysis, the linearised Eqs. (20–22) are first Fourier trans-
formed. The vertical coordinate is scaled as η = z/δ where δ is an arbitrary length scale.
A characteristic horizontal length scale should be now introduced to do a scale analysis:
this however appears quite arbitrary for a generic roughness distribution. Similarly to the
two-dimensional formulation of Belcher et al. (1990), the equations are normalised by the
wave-vector norm |k| = (k2x +k2y)

1/2 as the inverse of a characteristic length scale (so that the
characteristic horizontal length scale is L = 1/ |k| and proportional to the wavelength of the
considered Fourier wave). The wavenumbers normalised by |k| are denoted as kx = kx/ |k|
and ky = ky/ |k| and are expected to be O(1). In order to balance the continuity equation at
all layers, the vertical velocity is scaled by δ |k| so that ŵ = δ |k| w̃.

The dimensionless perturbation equations become:

ikx û + ik y v̂ + ∂w̃

∂η
= 0 , (23)

(

ikxU0 + ik yV0
)

û + w̃
∂U0

∂η
− f

u∗ |k| v̂ = −ikx
ωp

ωu
p̂ + 1

δ |k|
∂

∂η

(

2
lm
δ

∂ û

∂η

)

, (24)
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Fig. 2 Schematic representation of the triple-deck decomposition used in this work. The thickness of the
roughness layer and main layer is exaggerated for the sake of clarity

(

ikxU0 + ik yV0
)

v̂ + w̃
∂V0
∂η

+ f

u∗ |k| û = −ik y
ωp

ωu
p̂ + 1

δ |k|
∂

∂η

(
lm
δ

∂v̂

∂η

)

, (25)

(

ikxU0 + ik yV0
)

w̃ = −ωp

ωu

1

(δ |k|)2
∂ p̂

∂η
, (26)

where the shear-stress perturbations have been replaced by the forms assumed in the constant
stress layer, by assuming that these are significant in the logarithmic region of the base velocity
profile.

Similarly to Jackson and Hunt (1975) and Segalini et al. (2015), three layers are used in
the present theory, each characterised by different vertical length scales, δ1 = z0, δ2 and
δ3 for the roughness, main and outer layer, respectively. The outer layer thickness verifies
δ3 |k| = 1 to match the horizontal and vertical scales in the outermost layer. A schematic
representation of the layers structure is shown in Fig. 2.

As a consequence of (12), the velocity field in both the main and outer layer is dominated
by U0 ≈ κ−1 ln (δ/z0). When considering the main layer, z0 	 δ2 suggesting to introduce
ε = z0/δ2 	 1 as the small parameter of the problem describing the main-layer thickness
compared to the inner layer. In the main layer the turbulent transport and advection terms
dominate the horizontal momentum balance leading to:

1

κ
ln

(
δ2

z0

)

= 1

δ2 |k| −→ ln

(
1

ε

)

= ε κ

z0 |k| . (27)

The distinguished limit (27) provides a quantification of the ε parameter in relation to another
small parameter of the problem, namely z0 |k|, the latter representing the scale ratio between
the roughness and outer layer size. Figure 3 shows the behaviour of the ε parameter for
several values of z0 |k| (interpreted as the ratio between the roughness height and the char-
acteristic horizontal length scale): for z0 |k| < 0.01, ε is quite small and provides one order
of magnitude of scale separation between the main and outer layer. For larger z0 |k| (i.e. for
short wavelengths comparable with z0), the scale separation is not sufficient to establish a
good asymptotic matching and the theory is expected to have increasing discrepancies.
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Fig. 3 (a)Value of the small parameter ε and (b) ratio betweenmain and outer layer thickness δ2/δ3 = z0 |k| /ε
as function of z0 |k|

As a consequence of (12) and of the relationship (27), the velocity field can be rewritten
in the main layer as:

U0 = 1

κ
ln

(
1

ε

)

ex + U1 with U1 = U0 − 1

κ
ln

(
1

ε

)

, (28)

where:

U1 → 1

κ
ln η2 ex as η2 = z

δ2
→ 0 . (29)

The outer layer is more subtle since the main wind magnitude is given by:

U0 = 1

κ
ln

(
δ3

z0

)

ex + U1 = 1

κ
ln

(
1

ε

)

ex + 1

κ
ln

[

ln

(
1

ε

)]

ex + O(1) . (30)

Now the first term is 2 up to 5 times bigger than the second, implying that the two share the
same order of magnitude for realistic values of z0 |k|. Therefore, while a mismatch exists
between the two dominant mean-flow velocities in themain and outer layer, their discrepancy
is not sufficiently scale separated. This aspect will become of importance when assessing the
pressure correction order of magnitude.

Finally, by considering aCoriolis parameter f = 10−4 s−1, a roughness height z0 = 0.1m,
a typical horizontal length of 1/ |k| = 1000 m and a friction velocity value of u∗ = 0.2 m/s,
one obtains that the small parameter≈ 2·10−4 while the Rossby number is u∗ |k| / f ≈ 2 and
therefore quite large. This suggests that, as long as the inhomogeneity scale is within 0-10 km,
Coriolis effects can be excluded from the leading perturbation analysis (they will appear at
higher-order analyses though). It is important to underline that the base velocity profile is
anyhow determined from Eq. (11) that accounts for the Coriolis force: that means that at
leading order the Coriolis force enters the analysis only by means of the advection operated
by the mean velocity profile, and only at higher order it will influence the perturbation field
as a force.

2.4 Outer Layer

The outer layer is characterized by a stretching factor δ3 |k| = 1 and a large value of the
undisturbed characteristic normalised velocity κ−1 ln (δ3/z0). The stretched variable will be
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646 A. Segalini, E. Janzon

indicated as η3 = z/δ3 in the outer layer. Since the stretching factor is unitary, ŵ = w̃ in the
outer layer only.

As a result of matching the pressure order of magnitude with the advective terms, ωp =
ωu,3 ln (δ3/z0) ≈ O

(

ωu,3 ln (1/ε)
)

. The order of magnitude of the velocity perturbation,
ωu,3, depends on the roughness perturbation and how that influences the outer layer and
remains for now unknown.

The matching at the vertical velocity at the interface between the outer (where δ3 |k| = 1)
and main layer (where δ2 |k| = κ/ ln(1/ε)) implies that:

δ2 |k| ωu,2ŵ2(η2 → ∞) = ωu,3ŵ3(η3 → 0) . (31)

The above condition implies that the order of magnitude of the velocity perturbation in the
main layer ωu,2 = ωu,3/(δ2 |k|) � ωu,3. Due to this difference, the main flow horizontal
velocity must vanish as η2 → ∞. The pressure perturbation is found to be:

ωp = ωu,2
ln (δ3/z0)

ln (δ2/z0)
≈ ωu,2 , (32)

and will not change in the main and roughness layers. The pressure perturbation is therefore
comparable to the velocity perturbation in the main layer. However, as the advective term is
multiplied by the base velocity, the pressure contribution will be present at the second-order
approximation, which is beyond the analysis performed here. Therefore, the analysis of the
outer layer is not continued here. The interested reader can find further details in Segalini
et al. (2015).

2.5 Main Layer

From the order of magnitude analysis of the previous section, the perturbation equations for
the main layer can be written at leading order as:

ikx û0 + ik y v̂0 + ∂w̃0

∂η2
= 0 , (33)

ikx û0 = ∂

∂η2

(

2κη2
∂ û0
∂η2

)

, (34)

ikx v̂0 = ∂

∂η2

(

κη2
∂v̂0

∂η2

)

, (35)

∂ p̂0
∂η2

= 0 . (36)

Equations (34–35) approximate still the mixing length to its neutral value lm ≈ κz,
implying no stratification effects in the main layer. This is not true even at leading order but,
since Lo � z0, it is expected that the effect of stratification on the mixing length is weak
and relevant only at higher orders.

By introducing the coordinate transformation ζ = (

2ikxη2/κ
)1/2

, the momentum equa-
tion (34) reduces to a modified Bessel equation (Abramowitz and Stegun 1984) with solution
û0 = ĉ K0 (ζ ) (where K0(ζ ) indicates a modified Bessel function of the second kind). Since
u0 → 0 as η2 → ∞, the approach is consistent with the absence of a high-order velocity
perturbation in the outer layer (that is of higher order). On the other hand, as η2 → 0, the
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perturbation approaches:

û0 → −ĉ

[

γ + ln

(
ζ

2

)]

= − ĉ

2

[

2γ + iπ

2
sgn(kx ) + ln

(∣
∣kx

∣
∣

2κ

)

+ ln η2

]

, (37)

where γ = 0.57721... is the Euler-Mascheroni constant (Abramowitz and Stegun 1984).
The last expression is logarithmically singular as η2 → 0, preventing to impose the no-slip
boundary condition at the surface and requiring an additional layer below the main one (i.e.
the roughness layer).

The case with kx = 0 is singular and requires the direct solution of (34) as û =
−ĉ ln η2/2 + Â. However, since û → 0 as η2 → ∞, the only possible solution is to have
û = 0 for kx = 0.

The vertical velocity distribution at leading order can be obtained from the continuity
equation as:

w̃0 = −ĉ
∫ ζ

0
ξK0 (ξ) dξ = ĉ [ζK1 (ζ ) − 1] . (38)

The function ĉ and the order of magnitude ωu,2 are still unknown and can be determined
from the matching of the roughness layer that exists to remove the logarithmic singularity of
(37) as η2 → 0.

At this point it is time to match (37) with (17). The matching of the logarithmic term ln η2
provides the relationship:

τ̂

κ
= − ĉ

2
, (39)

corresponding to the matching of the perturbation shear stress between the two layers. The
matching of the constant term is however complicated by the presence of logarithm terms
since:

τ̂

[

ln

(
1

ε

)

− 2γ − iπ

2
sgn(kx ) − ln

(∣
∣kx

∣
∣

2κ

)]

= F
[

ln

(
z1
z0

)]

+ F
[

τ ln

(
z1
z0

)]

. (40)

An asymptotic sequence for τ̂ could be proposed where the leading term would be:

τ̂ = 1

ln(1/ε)
F

[

ln

(
z1
z0

)]

+ O

[
1

ln2(1/ε)

]

, (41)

still creating a mismatch between the sides of Eq. (41). The analysis of the next order will
not help since the singularity will be still given by û1 = d̂1K0(ζ ) + d̂0 so that a mismatch
will always be present. The block matching principle of Crighton and Leppington (1973) is
thereby introduced so that all terms involving the same power of ε are treated as of same
order. This implies that:

τ̂ = F [ln (z1/z0)] + F [τ ln (z1/z0)]

ln (1/ε) − 2γ − iπ sgn(kx )/2 − ln
(∣
∣kx

∣
∣/2κ

) . (42)

Expression (42) guarantees that both the logarithmic slope and the intercept are consistent
between the main and roughness layer, so that the latter can be seen as a continuation of the
former. The velocity correction in the main layer is only the first correction and subsequent
corrections should be estimated as Eq. (42) is only an approximated expression the matches
the shear stress and the velocity between the two layers. Equation (41) is a consistent leading-
order approximation of the surface shear stress that, however, does not verify the continuity
of the velocity between the two layers. However, it is a simple expression of the stress that
can be rapidly computed and it is exploited in the present work as a simplified approximation.
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2.6 Practical Implementation

The proposed theory has been developed in Python using standard NumPy routines. Since
the solution is analytical, the computational cost is extremely low and even simulations with
horizontal grid of 512× 512 points took less than 2 seconds to complete. Given a roughness
distribution, this is first Fourier transformed. The code calculates then the ε values according
to (27) and then the shear-stress corrections according to (42) or (41) for its simplified form.
The constant ĉ is afterward computed from (39) and (42) enabling the assessment of the
main-layer velocity field by means of the modified Bessel function.

The zerowavenumber is singular in themain layer as that cannot bematchedwith the upper
layer. Therefore, this issue has been circumvented by considering that the spatial average of
ln (z1/z0) was equal to 0, therefore providing the definition of z0. This implies that the
perturbation field generated at the wavenumber zero is zero and that the spatial average of
the perturbation velocity field is zero as well.

The only parameters needed in the model are in principle the roughness distribution and
the shear stress assuming that the mixing length is known. Alternatively, since the mixing
length is important only up to the main layer, where a linear mixing length behaviour is still
expected, the undisturbed base velocity profile over constant roughness (or the averaged one)
could be provided, bypassing the need of an accurate mixing length knowledge.

3 Model Validation

Two cases have been used to validate the model, both coming from experimental setups
with sharp roughness transitions. The first validation case is the smooth-to-rough transition
from Bradley (1968). The initial roughness height z0 = z1(x < 0) = 0.02 mm is followed
by a roughness increase with z1(x > 0) = 2.5 mm, i.e. a change in roughness height of
two orders of magnitude, or M = ln [z1(x > 0)/z0] = 4.83. Model calculations have been
performed with a two dimensional simulation with Nx = 4096 points and a domain of 420 m
(so that the grid spacing was Δx ≈ 0.1 m). The smooth-to-rough transition was located at
x = 0 while the artificial rough-to-smooth transition was located at x =210 m. The first
transition was smoothed with a cosine blending function with length scale Δx , while the
second transition was smoothed with length scale 10Δx . The reason for this second artificial
transitionwas to remove the shear stress perturbation created by the sudden roughness jump at
the end/beginning of the numerical domain, where the Fourier transform imposes a periodic
boundary condition. Nevertheless, the domain was sufficiently long to limit the influence
of this second artificial transition on the region near the smooth-to-rough transition where
experimental data is available.

Figure 4 shows a contour plot of the wind velocity field calculated in the main layer only.
The emergence of an IBL after the smooth-to-rough transition is quite evident as the flow
velocity decreases at constant height. Interestingly, a weak upwind effect is also noticeable
before the transition associated to a velocity increase instead.

The first quantitative test comes from the surface stress. Here both (42) and (41) are
used to assess the surface stress since the former is more complete while the latter is more
straightforward. The data points have been taken from the figures reported in the publication
of Belcher et al. (1990). The agreement between the theory and the experimental values is
reasonably good, providing a fast assessment of the shear stress with the simplest correction.
The full correction provides a sharper transition upwind of the step and a decay of the shear
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Fig. 4 Wind velocity contours in a smooth-to-rough transition. Only the main layer is here shown. The vertical
red lines indicate the stations x = 2.32 m and x = 6.42 m where the velocity profiles reported in Fig. 6 are
collected

Fig. 5 Surface shear stress distribution after a smooth-to-rough transition. The model refers to Eq. (42) while
the simple model is Eq. (41)

stress downwind of that although a bit biased towards higher shear stress. The model is able
to predict also the sharp shear stress variation near the roughness transition.

Additional insight comes from the analysis of the velocity profiles shown in Fig. 6. Two
distances from the roughness step are used (and indicated in Fig. 4) assessing the effect of
the IBL growth on the measured velocity profile. The velocity profiles from the main-layer
analysis are shown for comparison. It is evident that the main-layer velocity profile agrees
well with the measurement data both near and away from the wall, as it was intended with
Eq. (42).

The second test case is provided by the rough-to-smooth transition experimental data from
Li et al. (2021). The analysis has here focused on their case Re07ks160 characterised by
the longest wall stress measurement (in terms of boundary-layer thickness). The numerical
domain was 150 m long with 32768 points. The rough-to-smooth transition was located
at x = 0 and a smooth-to-rough step at x = 100 m. According to Li et al. (2021), the von
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Fig. 6 Velocity profiles after the smooth-to-rough transition of Bradley (1968). a x = 2.32m and b x = 6.42m

Fig. 7 Surface shear stress distribution after a rough-to-smooth transition

Kármán constant used in the experiment was κ = 0.384 and themodel was therefore run with
the same value. Similarly to the data presented by Li et al. (2021), the spatial coordinates
are normalised by the boundary-layer thickness δ0 = 0.11 m. The shear stress estimated
from the present theory and from oil-film interferometry (in the smooth part only) are shown
in Fig. 7: a reasonably good agreement is visible although the full theory shows a higher
discrepancy compared to the simplified theory. This discrepancy might be also influenced by
the uncertainty in the assessment of the shear stress over the rough surface, obtained in the
experimental dataset by fitting the outer part of the velocity profile according to Townsend
hypothesis (Li et al. 2021).

The horizontal velocity component is shown in Fig. 8. The qualitative response of the
boundary layer is quite similar between the experiment and the theory, although it appears a
bit more sudden in the experimental results. The boundary-layer growth after x/δ0 ≈ 50 is
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Fig. 8 U velocity field (normalized by the velocity at x = −0.1 m and z/δ0 = 0.091) for the experimental
dataset (a) and as estimated from the present theory by using the main layer only (b)

clearly visible in the experimental results but absent in the theory: this is not surprising since
the theory assumes a parallel undisturbed boundary layer and it focuses just on the response
of the flow to the roughness change.

4 Numerical Details

The large eddy simulation (LES) code used for the verification dataset in this study is ver-
sion 5.4.3 of theMesoscale-Nonhydrostatic (Meso-NH) model developed by the Laboratoire
d’Aerologie and the Centre National de Recherches Meteorologiques (CNRM) (Lac et al.
2018). Meso-NH is a nonhydrostatic anelastic numerical modelling package with filtered
prognostic equations for heat, humidity, and momentum. Contained within the Meso-NH
package are a number of subgrid schemes that allow for the parameterization of turbulence,
radiative transfer, surface processes, cloudmicrophysics, condensation, andmoist convection.
The turbulence parameterization scheme (Cuxart et al. 2000) is a scale-dependent isotropic
scheme that contains a subgrid three-dimensional turbulence model; as such, Meso-NH is
capable of simulating processes at the large eddy scales. The surface parameterization used
in the verification set is the ISBA land surface scheme within version 8.1 of the Surface
Externalisee (SURFEX), which is an externalized package that contains physical parameter-
izations for calculating the energy exchange between the surface and atmosphere (LeMoigne
et al. 2009). Using Meso-NH coupled with SURFEX allows users to run simulations with
real or idealized physiographic maps of surface cover.

The LES simulations used in this study (which is similar to a setup described in Janzon
2022) contained a 300x300x125 grid point domain with Δx = Δy = 20 m grid spacing in
the horizontal and vertical levels starting at 0.5 m above the surface and stretching 6.5% until
reaching 20 m at the model top. Momentum is advected using the centered 4th-order scheme
(CEN4TH) (Lunet et al. 2017), while scalar variables–including temperature, moisture, and
turbulent kinetic energy–are advected using the piecewise parabolic method (PPM) (Lin and
Rood 1996). Time-splitting is handled using the Runge-Kutta centered 4th-order temporal
scheme (RKC4) (Lunet et al. 2017) and the model is discretized on a staggered Arakawa
C-grid. Microphysics is not activated and the atmosphere is dry.
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The surface cover is defined as a chessboard pattern of alternating homogeneous patches
with constant land cover type. The surface roughness patches were defined within the surface
model using the ECOCLIMAP II cover types 11 (Boreal Evergreen Needleleaf Forest) for
a relatively rough surface and 123 (Bare soil with sparse polar vegetation) for a relatively
smooth one (Faroux et al. 2013). Two different heterogeneity length scales are considered:
onewhere each roughness patch in the chessboard had size 300m and another onewhere each
patchhad a length of 3000m, to better analyse the equilibriumboundary layer established after
the roughness transition (Garratt 1990). The initial condition contains a neutral temperature
profile with 10 by 10 grid point ±0.5 K perturbations up to an elevation of 398 meters for
exciting turbulent eddies (see Muñoz-Esparza et al. 2014) and an Ekman spiral wind profile
with a geostrophic wind of 8 m/s. In order to maintain numerical stability, the LES was
run with 0.5 s time steps. Differing from Janzon (2022), the simulations were run with the
radiative transfer scheme turned off, with all downward radiative fluxes set to zero and the
model was allowed to run until obtaining a near-neutral stability condition. The simulations
were integrated for a total of 13.9 hours; after 11.5 hours of simulation, the Obukhov length
asymptotically reached 700 m and the gridded model output was saved at half-hour intervals
for the last 2 hours of integration and these were then time-averaged. At this time in the
simulations, the 3D gridded instantenous wind and stress components were obtained for the
analysis described below.

The 300 m roughness patch LES simulation was filtered by averaging the unique patterns
in the chessboard to obtain a single four-patch pattern, providing a consistent phase average
(in light of the domain periodicity). For the 3000 m patch however, only one such unique
pattern was available and this was used in the analysis.

5 Comparison with 3D Simulations

The analysis of the available LES data was initiated by the identification of the roughness
value for each patch. Both the 300 m and 3000 m heterogeneity length scale domains were
characterized by the alternation of z0 ≈ 0.004 m to z0 ≈ 0.1 m with a sharp transition
between the two. In the 300 m case, the transition is milder due to the used grid resolution.
The surfacewind is not blowing alignedwith the roughness orientation but it has a small angle
of about 20◦ inclination. The roughness height was here determined by fitting a logarithmic

law to the total velocity
(

U 2 + V 2
)1/2

below z =3m to avoid being influenced by the growth
of internal boundary layers starting at the roughness transitions. While this fit provided also
an estimate of the friction velocity, this has been determined instead from the available shear
stress as:

u∗ =
(

u′w′2 + v′w′2
)1/4

. (43)

The latter shear stress differed from the fitted one of approximately 25% and it was preferred
in light of its enhanced physical content. The spatially-averaged friction velocity for the
300 m and 3000 m patch were 0.43 and 0.39 m/s, respectively, with a slightly higher surface
friction for the shorter roughness.

The friction velocity distribution is shown in Figs. 9 and 10 for the chessboard pattern
with 300 m and 3000 m, respectively, for both the LES and theory (namely Eq. (42)). Both
cases agree qualitatively well, especially in the regions with low z0 but also in the friction
enhancement downstream of the roughness transitions. The friction appears a bit overesti-
mated by the model in the regions of high z0, although this is visible only in the 300 m
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Fig. 9 Distribution of the local friction velocity estimated from the LES with chessboard spacing 300 m (left)
and according to the present model (right)

Fig. 10 Distribution of the local friction velocity estimated from the LES with chessboard spacing 3000 m
(left) and according to the present model (right)

case, while the 3000 m case does not provide clear evidence due to the presence of residuals
turbulent spatial structures in the velocity field.

The velocity profiles in the zonal and meridional components are shown in Figs. 11 and
12 for both the available chessboard configurations. In order to limit the effect of local
turbulent eddies (absent in the present theoretical model as it would be in Reynolds-averaged
Navier-Stokes simulations), the profiles have been averaged in two categories depending on
the roughness height. The velocity profiles calculated from the proposed model are obtained
from the integration of the parallel-flow equations (described in Sect. 2.1), plus a spatially-
varying perturbation due to the roughness inhomogeneity. However, the obtained velocity
profile did not match the spatially-averaged profile from the LES, making the comparison of
the spatial development meaningless. This discrepancy might be due to an incorrect mixing-
length distribution (in the model it was assumed to be equal to lm = κz). Rather than trying
to fit the LES-averaged flow by changing the mixing-length value, the mean velocity from
the LES was directly used as an averaged value, while the perturbation from the roughness
distribution was estimated according to the proposed model. While this unfortunately points
out to a deficiency of themodel and to the limits of themixing-lengthmethodology, this is still
practically relevant as the theoretical model can be used combined with a velocity profile
measured in the interested area by means of a meteorological mast, providing a velocity
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Fig. 11 Zonal (pluses and solid lines) and meridional (crosses and dashed lines) velocity profiles averaged
over the high z0 regions (red) and low z0 regions (blue) for the pattern with chessboard spacing 300 m. The
symbols are from LES data while the lines are averages of the main layer from the proposed theory

profile unaffected by the systematic bias of the analysis. Figures 11 and 12 demonstrate
that the theory provides a good quantification of the effect of surface roughness on the
velocity profile for both components (the reader is reminded that the theory at leading order
is unaffected by the Coriolis force and therefore the perturbation is just projected into the
different directions according to the surface wind orientation). The short chessboard pattern
has a small deviation between the high and low roughness regionsmostly concentratedwithin
the first 10 m from the surface. The theory predicts a similar qualitative behaviour with a
better agreement for the high surface roughness region than for the low one. The analysis
of the 3000 m patch shows instead that the roughness pattern (statistically the same of the
300 m one) creates an effect that is much deeper in the boundary layer (up to approximately
40 m) with larger variations between the low and high roughness regions, a trend visible in
both the LES and theoretical model.

6 Conclusions

The present work describes a theoretical framework to calculate the effects of surface rough-
ness heterogeneity in the boundary layer above. The theory is composed mainly by two
layers: one very near the surface roughness where the shear stress is constant in the vertical
and the flow is dominated by the surface boundary condition, and another one where turbu-
lent diffusion balances mean flow advection. The latter layer (called the main layer) enables
the determination of the shear stress applied to the layer underneath (called the roughness
sublayer). The region above the main layer (called the outer layer) is characterised by the
balance between advection and pressure gradient and determines the pressure gradient that
will influence the main layer at higher orders: the description of higher-order corrections has
not been performed in the present work since the leading correction is the one that usually
provides the largest contribution and insight. The proposed theoretical model is a revisitation
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Fig. 12 Zonal (pluses and solid lines) and meridional (crosses and dashed lines) velocity profiles averaged
over the high z0 regions (red) and low z0 regions (blue) for the pattern with chessboard spacing 3000 m. The
symbols are from LES data while the lines are averages of the main layer from the proposed theory

of the work of Belcher et al. (1990) on heterogeneous roughness, with a consistent grouping
of asymptotic terms at leading order.

Three validation cases have been used: two featuring two-dimensional roughness transi-
tions fromexperimental campaigns and onewith a three-dimensional chessboard pattern from
large-eddy simulations. The first quantity to be scrutinized was the surface stress estimated
from the theory that overall agreed qualitatively and quantitatively with the validation data.
The simplest model, composed by the leading-order expression of the shear stress, performed
better, pointing out to a deficiency of the full model that requires higher-order corrections or
the numerical solution of the main-layer problem. This is due to the matching approach that
considers all powers of ln(1/ε) of the same order of magnitude (similarly to Crighton and
Leppington 1973). The possibility to extend to higher-order the present analysis should be
explored. Velocity profiles indicated also reasonable agreement between experimental and
theoretical predictions showing that it is possible to just use the main-layer analysis. The
velocity contours from the experiments of Li et al. (2021) showed as well a good agreement
in the flow response to the rough-to-smooth transition, although these were a bit steeper in
the experimental data when compared to the model.

The final validation case was provided by three-dimensional LES over chessboard rough-
ness patterns with two heterogeneity length scales: 300 m and 3000 m. The theory performed
reasonably well, although less satisfactorily thanwhat the experimental data suggested, prob-
ably associated to the roughness model implemented in the LES being different from the pure
boundary condition used in the proposed theory. This was evident, for instance, in the neces-
sity to analyse the LES data as if they were experimental results to find a posteriori the
roughness distribution from the near surface data points (Perry et al. 1969; Arnqvist et al.
2015). Furthermore, even with a homogeneous roughness distribution the mixing-length
model used was not able to provide a velocity profile close enough to the LES, jeopardizing
the comparison between the theory and the numerical data. In order to cope with this prob-
lem, the perturbation velocity profiles obtained with the theory were added to the numerical
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spatially-averaged velocity profile to focus only on the roughness change effect: when this
was done, the agreement between the two was reasonably good, suggesting that the proposed
model may be used as a standalone tool (if the real mixing-length distribution is sufficiently
linear) or combined with experimental data from a single mast to provide the base flow to be
used. The velocity profiles averaged over low- and high-roughness height regions pointed to
a different penetration of the surface boundary condition into the surface layer (deeper for
longer roughness patches), a behavior well detected by the proposed theoretical model.
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