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Abstract
Via analysis of velocity and stress fields fromReynolds-AveragedNavier–Stokes simulations
over diverse complex terrains spanning several continents, in neutral conditions we find dis-
placed areal-mean logarithmic wind speed profiles. The corresponding effective roughness
length (z0,eff), friction velocity (u∗,eff), and displacement height (deff) characterise the drag
exerted by the terrain. Simulations and spectral analyses reveal that the terrain statistics—and
consequently deff, u∗,eff and z0,eff—can change significantly with flow direction, including
flow in opposite directions. Previous studies over scaled or simulated fractal surfaces reported
z0,eff to depend on the standard deviation of terrain elevation (σh), but over real terrains we
find z0,eff varies with standard deviation of terrain slopes (σ�h/�x ). Terrain spectra show
the dominant scales contributing to σ�h/�x vary from ∼1–10km, with power-law behaviour
over smaller scales corresponding to fractal terrain used in earlier works. The dependence of
z0,eff on σ�h/�x is consistent with fractal terrain having σ�h/�x ∝ σh , as well as classic the-
ory for individual hills. We obtain relationships for z0,eff, deff, and u∗,eff in terms of σ�h/�x ,
finding that deff acts as a characteristic length scale within z0,eff. Considering flow in oppo-
site directions, use of upslope statistics did not improve z0,eff predictions; sheltering effects
likely require more sophisticated treatment. Our findings impact practical applications and
research, including micrometeorological flow, computational fluid dynamics, atmospheric
model coupling, and mesoscale and climate modelling. We discuss limitations of the z0,eff
formulations developed herein, and provide recommendations for practical use.
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1 Introduction, Background, and Theory

1.1 Motivation and Outline

In general we are interested in understanding flow in the atmospheric boundary layer (ABL)
over hilly terrain, and simulation of such. This includes use of computational fluid dynam-
ics (CFD); because CFD is used both in research and various applications, we have some
focus on Reynolds-averaged Navier–Stokes (RANS) solvers, which give mean flow solu-
tions while also modelling turbulence. We also wish to better understand some simpler
(one-dimensional) aspects, such as vertical profiles of stress and mean wind speed; typical
measurements capture these, and they are also present in parametrisations of larger-scale
models such as mesoscale, weather, and even climate models. For various applications one
wishes to use mesoscale-model output, but needs to know the degree to which the model
does or does not treat variations in terrain elevation; we wish to advance quantification of the
unresolved (subgrid) terrain-induced drag, for a given model resolution and terrain. Further,
for driving RANS (or large-eddy) simulations over complex terrain—whether via mesoscale
output or prescription of inflow conditions—we wish to account for the terrain-induced drag
experienced by the flow in a given simulation, as well as minimise adjustment of simulated
inflow into the most finely resolved computational domains. Yet another motivation arises
when considering applications where a large-scale roughness is required in flow parametri-
sation; for example, use of the geostrophic drag law in wind energy applications requires a
geostrophic-scale roughness length.

More directly, wewish to test the effective roughness concept over actual terrain (elevation
maps) spanning a range of complexities from locations around the world. Further, we aim to
find not only the degree to which complex terrain increases drag on the flow (via a roughness
length), but how the effect of the terrain may systematically vary with height depending on
statistical terrain characteristics; this also includes checking where and whether a surface-
layer (logarithmic) type of wind profile exists above the surface.

1.1.1 Outline

First we introduce the concept of effective roughness and review previous work on the topic;
this ranges from analytical estimates, based on flow physics for single-scale hills, to empir-
ical expressions for multiscale terrain. Section 2 looks into spectra and statistics of terrain
elevation, with particular attention given to terrain-slope statistics. Section 3 presents anal-
ysis of mean flow from computational fluid dynamics simulations, including determination
of quantities describing flow over complex terrain (effective friction velocity, diplacement
height, and roughness) for five different cases. Section 4 compares predictions using previ-
ous formulations with effective roughnesses diagnosed from the flow simulations; it further
presents new forms for effective roughness and analysis of their predictions. Section 5 distills
the utility of the new forms developed herein, and failure of previous forms over multiscale
terrain; it also discusses combination of slope-associated roughness with background (aero-
dynamic) roughness, limitations of our investigation, and recommendations for application
of the new forms. We then summarise the main points of this work, and share our outlook on
its continuation and future research.
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Mean Aerodynamic Parameters for Flow Over Complex Terrain 95

1.2 Effective Roughness Concept and Theory

The concept of an effective roughness is not new, particularly if one generalises to include
roughness over obstacle arrays, forests, and urban canopies—let alone over complex terrain.
Fiedler and Panofsky (1972) first described it as “that roughness length which homogeneous
terrainwould have in order to produce the correct space-average downwardfluxofmomentum
near the ground, with a given wind near the ground.” In the current paper we further develop
this concept without the constraint of being near the ground, further including the terrain-
induced displacement of mean flow analogous to that due to forests, as shown the sections
below.

To deal with the mean effect of hills, Smith and Carson (1977) suggested an effective
roughness relation,

z0h = 0.2

(
�h

)2

Lc
, (1)

for use in single-layer calculations over “variable” (non-uniform) terrain at resolutions coarser
than 10km;�h was the average height range in a given area, and Lc was the average distance
between peaks or ridges. For the relatively flat terrain of the Netherlands Wieringa (1986)
used (1), but set�h to be the maximum elevation difference within 5×5km squares, picking
Lc=5km, to obtain an ‘elevation variability roughness length’.

Noting a number of observational studies over hilly terrain and numerical simulations
over hills, Wood and Mason (1993) noted that areally averaged flow follows the generic law
of the wall; they thus defined effective roughness via the displaced logarithmic profile:

U (z) = u∗0,eff
κ

ln

(
z − d

z0,eff

)
, (2)

whereU is the areally averaged wind speed profile, and u2∗0,eff is the areally averaged surface
force (per area and normalised by density).1 They proposed expressions for the pressure
force due to turbulent flow over hills, employing such to derive an approximate relation for
the effective roughness. Adding the pressure-force and surface-stress contributions to total
momentum transfer, Wood and Mason (1993) gave:

ln

(
Zm

z0,eff

)
�

[
Ca

κ2 + 1

ln2(Zm/z0)

]−1/2

, (3)

for hills of height h and streamwise scale λx ;Ca was a constant proportional to the product of
bulk slope (h/λx ) and ratio of frontal hill area to domain size (“packing fraction”), with Zm

being a pressure scale height.2 The effective roughness in (3) is non-monotonic in hill slope
and packing fraction, though for each it has an increasing behaviour formoderate values (after
first dropping at small values); it converges to z0 for flat terrain. Though Finnigan (2002)
called the Wood and Mason (1993) formulation (3) an “ad hoc derivation,” he admitted that

1 Note Taylor et al. (1987) also proposed a form like (2) for flow over flat surfaces with heterogeneous
roughnesses (but with d = 0). They showed the z0,eff concept applies, for heights above ∼200m, with areal
averaging of ln z0 sufficing to get z0,eff; the latter corresponds to a geometric mean of z0 (e.g. Kelly and
Jørgensen 2017).
2 In Wood and Mason (1993) the pressure scale height Zm was simply prescribed as the maximum of hill
height or middle-layer height hm , with hm = (λx/4) ln−1/2(hm/z0) found numerically (Belcher et al. 1993).

We note one can directly find the analytical solution hm = λx

{
8W

[
λ2x/(8z

2
0)

]}−1/2
via Kelly (2021), where

W[x] is the Lambert-W function.
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96 M. Kelly, D. Cavar

it performs reasonably well for slopes less than ∼0.3; Hignett and Hopwood (1994) found
a crude version of it to estimate z0,eff within a factor of ∼3 for sites over moderately hilly
terrain.3 Finnigan (2002) further wrote that the terrain-perturbed region of mean flow extends
up to z ∼ L (where L is the horizontal lengthscale of the hills)—and that unlike canopies,
flow patterns around hills are not commonly affected by their neighbours. However, here we
note that (3) does not account for collections of hills of different slopes and sizes, as found in
most complex terrain—i.e. over terrain with a broad-band spectrum of elevations; perhaps
more importantly, it does not deal with the interacting effects of shears and stresses induced
by neighbouring hills, which may become significant where there are steep slopes.

Addressing the multiscale aspect of terrain, Beljaars et al. (2004) built upon the Wood
and Mason (1993) formulation, and additionally upon Wood et al. (2001) for stress induced
by sinusoidal hills, to derive height-dependent stress due to orography having a broad-band
spectrum. However, because their work was aimed at parametrisation of unresolved terrain-
induced stress in mesoscale and regional models (having resolutions on the order of ∼10km
or coarser), Beljaars et al. (2004) prescribed a fixed form for terrain spectra, and did not
include an effective roughness.

Towards characterization of flow over complex multiscale surfaces, particularly at smaller
scales, large-eddy simulation (LES) has been used to find the effective roughness over sur-
faces having elevation spectra that follow a power law; examples are Wan and Porte-Agel
(2011) and Anderson andMeneveau (2011). The latter works, along with the review of Flack
and Schultz (2010) for engineering flows based on wind-tunnel observations, gave some
evidence for a connection between the standard deviation of surface elevation (σh) and the
effective roughness; this is elucidated more in the next subsection. Recently Finnigan et al.
(2020) summarised progress in simulating flow over complex topography, stating that future
parametrisations for drag due to unresolved terrain “would use the statistics of the topography
to inform the statistics of the space-time structure of the airflow”; this is precisely what the
current work has aimed to do, as previously seen in presentation of preliminary results (Kelly
et al. 2019a). Here we investigate the connection between areal statistics of terrain elevation
and the flow above, particularly considering complex terrain having broad-band elevation
spectra.

1.3 Previous Attempts to Find Effective Roughness over Multiscale Terrain

Several studies have worked towards finding an effective roughness to account for the (pres-
sure) drag induced by surface height variations occuring at horizontal scales smaller than
some threshold; the latter can correspond to a flow model resolution, to allow parametrisa-
tion of roughness due to unresolved terrain. One commonality they share is the assumption of
σh as the characteristic length scale for z0,eff; this was first proposed by Stone and Dugundji
(1965) for broad geophysical application.

Flack and Schultz (2010) considered numerous engineering forms for frictional drag due
to rough surfaces, and subsequently derived an empirical relationship for roughness over
irregular (random) surfaces. Their roughness estimate depended primarily on the standard
deviation of surface elevation variations (σh), as well as incorporating the skewness Skh ; it
is expressible as:

z0,eff = cfsσh(1 + Skh)
1.37, (4)

3 The form of (3) used by Hignett and Hopwood (1994) replaces Zm with peak-to-trough elevation difference,
and where Ca does not explicitly include the slope.
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Mean Aerodynamic Parameters for Flow Over Complex Terrain 97

where they reported a proportionality constant equivalent to cfs = 0.148.
Through large-eddy simulations over a series of synthesisedmultiscale topographies,Wan

and Porte-Agel (2011) investigated the postulate that the effective roughness length scales
with the standard deviation of unresolved surface heights,σh,sgs. To account for the lower limit
of roughness in the case of zero subgrid height variations, they suggested a form expressible
as:

z20,eff = z20 + Cσ 2
h . (5)

Examining flows over synthesised terrain whose spectra had roughly the same spectral form
(following a power-law with exponent β � −2), they found (5) to hold, but with the coeffi-
cient C increasing with z0.

Anderson and Meneveau (2011) also used LES to examine the response of flow over
flat rough surfaces whose roughness-element heights were synthesised to possess power-law
spectra (i.e. fractal terrain), considering different surfaces over a range of spectral expo-
nents β. Over statistically homogeneous surfaces they found the hydrodynamic roughness
length (effective z0 within the log-law) to follow z0,� = ασh,�, where the � corresponds to
the filter scale of the LES and α is a coefficient depending on the power-law exponent (β)
of the terrain spectrum. To account for flows over intrinsically rough surfaces4 with (back-
ground) roughness z0, for “numerical convenience” they suggested an effective roughness
of the form:

z20,eff = z20 + [α(β)σh|�]2. (6)

This expression appears to rectify the problem of C not being constant in the form (5) of
Wan and Porte-Agel (2011). However, Anderson and Meneveau (2011) did not include a
background z0 in their analysis; this is because they state consideration of cases (LES) only
where ασh|� � z0. But they did find α to be monotonic in β, and showed α was invariant to
LES resolution and filter scale (�) for the fractal surfaces and flows simulated. From Fig. 8
of Anderson and Meneveau (2011), which plots α diagnosed over different surfaces with
spectral exponents in the range −3 � β � −1.4, the dependence of α on β can be inferred
as:

α(β) � 46e5.1β. (7)

We note their assumption ασh|� � z0 means that for surfaces with more negative spectral
exponents (steeper roll-off of the spectrum), such as their flattest case having β = −3, then
σh/z0 needs to be at least ∼ 106.

Another form for effective roughness was developed by Kelly (2016), but through a differ-
ent means, stemming from simplified treatment of flow over roughness changes. To account
for flowperturbations induced by roughness changeswithin a quasi-linearised spectralmodel,
Astrup and Larsen (1999) described friction velocity perturbations in Fourier space using a
characteristic length scale of (z0�2s )

1/3, where �s is the reciprocal of streamwise wavenumber.
Adapting this form for an efffective roughness to be used in estimation of uncertainty in shear-
based vertical extrapolation ofmeanwinds,Kelly (2016) suggested z0,eff = [z0(σh+z0)2]1/3,
taking the characteristic length scale as σh .

We note that the form of Astrup and Larsen (1999) can be seen to follow from Jensen et al.
(1984), who described the depth of the turbulence-dominated inner layer of (unseparated)
flow over rough hills, where the characteristic hill size (outer scale) Lh is used instead of �s .
Recalling also that both the Jensen et al. (1984) and Astrup and Larsen (1999) forms describe
equilibrium-layer depths, it is sensible to adapt such for a statistical or mean description of

4 Here ‘intrinsically rough’ means a roughness having height variations at scales much smaller than those
synthesised or considered in σh|�.
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98 M. Kelly, D. Cavar

multiscale terrain effects. Over complex terrain the characteristic length scale due to terrain
elevation variations has been presumed to be σh in the studies named thus far; this was also
done for the Kelly (2016) form, which can be written more generally as:

z0,eff = [
z0 (cmσh + z0)

2]1/3 = z0 [1 + cmσh/z0]
2/3 , (8)

with the coefficient cm requiring empirical determination. Looking at the forms (5), (6), and
(8) from Wan and Porte-Agel (2011), Anderson and Meneveau (2011), and Kelly (2016),
respectively, we see that they can be generalised to the σh-dependent form

z0,eff = z0

[

1 +
(
c
σh

z0

)b
]1/a

, (9)

the coefficient c can depend on the shape of terrain spectrum, as in Anderson and Meneveau
(2011).

2 Terrain Analysis

Here we start by considering the statistical character of complex terrain, in terms of surface
elevation variations. We examine a number of sites, each possessing different geological and
geometric character (created via various physical mechanisms over different time scales).
These sites include: a hilly area in north-east China with modest slopes, a Portuguese area
of sharp orography with steep slopes, a South African area with a range of hills, and two
Norwegian areas dominated by mountains and valleys. Again, one aim is to develop robust,
universal statistical descriptions of non-uniform terrain and the (mean) flow above it, so we
have chosen sites with different spectral and statistical character, as will be seen in the next
subsections; however, the number of sites is limited by computational resources needed for
the corresponding flow simulations.

The elevation maps have resolutions which range from ∼ 20–100m, according to the
spacing of contours/points in their digital formats (however, as we will see below, the actual
resolution of themaps can be significantly cruder). The resolution of the terrain data analyzed
herein is sampled at a constant 56m in the streamwise direction parallel to the terrain. To cal-
culate terrain statistics we use linear transects across the domains, which span roughly 40km.

2.1 Spectra of Terrain Elevation and Slopes

Towards statistical characterization of terrain variations in a general sense, we first examine
their spectra. One-dimensional power spectra of the terrain elevation h, defined as Shh(k1) ≡
F[h(x)], where F denotes the Fourier transform and k1 is the wavenumber corresponding
to a given x direction (later corresponding also to the mean flow direction), were calculated
via fast Fourier transform. This was done in 12 different directions (every 30◦), along 21
transects in each direction over a lateral span of 4km (i.e., every 200m). An average over the
21 lateral spectra was also taken to provide a single ‘mean’ spectrum in each direction; these
are shown in the upper plots of Fig. 1 for the least complex (old hills in north-east China, at
left) and most complex (Portuguese mountains, at right) areas considered in this study. Due
to symmetry, only six unique spectra are shown in each plot, along with the omnidirectional
spectrum (average of the six directional spectra). To mitigate the aliasing effect, which is
caused by sampling with a constant spacing �x that is less than the resolution in the outer
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Fig. 1 Spectra of terrain elevation variations (top) and terrain slopes (bottom); 12 directions considered (6
colour lines), with black the mean over all directions. Beljaars et al. (2004) form shown in cyan; mini-
mum/maximum spectral slopes in sub-mesoscale range (k1 > kpeak) shown by dotted lines. Left: north-east
China site; right: Aveiro (Portugal)

part of the domain5 we have applied a fourth-order low-pass Butterworth filter with cutoff
wavenumber of kcut = 0.5kNyquist (i.e., 2π/kcut = 4�x) to the spectra displayed.

Note the lowest wavenumber portion of the terrain elevation spectra represents variations
at horizontal scales approaching the domain size; thus the spectra and the total variance
σ 2
h can be influenced by the choice of domain size. The latter is particularly evident in

Fig. 1 due to the highest spectral magnitudes being found at the lowest wavenumbers, which
is not uncommon for complex terrain. However, the spectra of terrain slope are generally
not affected by the domain size6; these are shown in the bottom of Fig. 1 below Shh(k1).
Subsequently the domain size has less impact on statistics of dh/dx than on statistics of h.
This is seen by noting that the power spectrum of terrain slope is simply the product of
wavenumber squared and the terrain spectrum, i.e.,

F[dh/dx] = k21Shh(k1), (10)

for a given x-direction.

5 The uniform sampling was identical for the terrain elevation and all analyzed flow fields; this was done to
deal practically with data from a large number of simulations, which have a horizontal resolution ranging from
20m in the central area of the domain to more than 70m at r > 17 km from the center (see Sect. 3 for more
detail).
6 Domain size will not affect terrain-slope statistics, unless such a small domain is chosen that the statistics
become very uncertain or the domain becomes unrepresentative.
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We can see that a power law is generally observable from scales of several hundred metres
up to several kilometres; this is shown by the terrain-slope power spectra k2Shh(k) plots as
well as the terrain spectra in Fig. 1. The plots of Shh further show that a different behaviour
occurs at wavenumbers smaller than (scales larger than) the peak of k2Shh(k); such a peak
(kpeak) implies a characteristic length scale 2π/kpeak for the terrain along a given direction.
The peak in k2Shh(k) corresponds to the change in power-law exponent (spectral slope) of
Shh(k) noted by Beljaars et al. (2004); they parametrised a change in spectral exponent to
occur at k = 0.003m−1, i.e. at a horizontal scale of roughly 2km.We find that the peak of the
one-dimensional terrain-slope spectrum varies around this value from one site and direction
to another, generally in the range∼1–10km. The Beljaars et al. (2004) prescription for terrain
spectra is shown by the cyan line in Fig. 1 for the omnidirectional mean. Its quite practical
parametrisation is anchored to the observed value of Shh near k = 0.00035m−1, resulting
in spectra which basically follow observed omnidirectional spectra within a factor of ∼ 3.
However, looking at the terrain-slope spectra one sees that the shape of k2Shh(k)—including
the peak wavenumber—varies sufficiently from one place or even direction to another; the
robust Beljaars et al. (2004) form can (counterintuitively) overpredict slope variance for
complex sites and underpredict it for simpler ones by a factor of ∼ 3, due to its anchor point
being at a relatively low wavenumber and its prescription of a low-k spectral exponent of
−1.9 differing from observations.

The description of smaller-scale terrain features by single power-law spectra is not new.
Numerous works simply assume this for the entire landscape in a given area; i.e., for fractal
terrain the surface elevation spectrum is taken to follow the simple form:

Shh(k) ∝ kβ . (11)

Following Mandelbrot (1989), for fractal terrain its fractal dimension can be described by
D = E + (3+ β)/2 = (7+ β)/2, where E = 2 is the Euclidean (actual spatial) dimension.
At any rate, like various studies in previous decades (Anderson and Meneveau 2011) and our
earlier work considering various sites around the world for the Global Wind Atlas (Badger
et al. 2015), here we find a power lawwith β ranging between approximately−4.3 and−1.2;
for the most complex (Aveiro) area the mean β over all directions was equal to the Beljaars
et al. (2004) prescription of β = −2.8 for k > 0.003m−1, with less complex areas having
smaller (more negative) β. We note this range of β only corresponds to scales smaller than
the spectral peak of the slope spectrum (i.e., at k > kpeak). For larger scales (k < kpeak) one
sees either a different power law, or yet more complicated behaviour, as notable from the
terrain-slope spectra shown in Fig. 1. In other words, terrain is notmono-fractal in nature—or
at least not having the same fractal dimension across all scales.7

2.1.1 Terrain Slopes and Finite Differencing

In Fig. 1 we showed spectra that had an anti-aliasing filter applied to treat the effects of sam-
pling a domain having non-constant horizontal spacing. In practice we can also mitigate the
aliasing issue by calculating the spectra of ∂h/∂x using F(�h/�x), where �x is optimally
themap resolution (grid spacing). A first-order finite difference in physical space corresponds
to combination of low-pass filter sinc2(k1�x/2) andmultiplying by k2 in wavenumber space,
i.e., F(�h/�x) = F(∂h/∂x)sinc2(k1�x/2).

7 One can further argue that terrain having a power-law spectrum with β < −3 at small scales (which tends
to occur more over flatter terrain) is not strictly fractal: such values of β lead to fractal dimensions D < 2,
which are not physical. However, the terrain undulations still lead to excess drag, though vanishingly so.
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Fig. 2 Spectra of finite-differenced slopes for Chinese (left) and Portuguese (right) cases corresponding
to Fig. 1, without anti-aliasing filters. Top: spectra in log-log coordinates to show power-law shapes and
Beljaars et al. (2004) form (cyan). Bottom: spectra from fine-resolution central subdomain, plotted in variance-
preserving coordinates

For the least complex terrainwe studied (north-east China case in left-hand plots of Fig. 1),
without the anti-aliasing filter a spurious upturn at high k1 occurs not only in F(∂h/∂x), but
even in F(h) (not shown); such noise is more easily seen in terrain-slope spectra, because
the factor of k2 amplifies such.8 Due to this k2 amplification, map processing artifacts may
be substantial enough to also cause an upturn in the spectrum of finite-differenced slope,
S�h/�x at the finest scales; this is the case for the north-east China region when considering
the entire map, due to the subsampling which occurs for the parts of the map at distances
increasing beyond ∼ 8 km from the domain center.9 This is seen in Fig. 2, which displays
S�h/�x for the same cases shown in Fig. 1, but without an anti-aliasing filter applied. The
top plots in Fig. 2 present finite-differenced terrain slope spectra, with the upper-left plot
(north-east China region) exhibiting a high-wavenumber upturn.

The spectra of finite-differenced slopes from Aveiro (upper-right) do not suffer from the
high-wavenumber upturn; unlike all other regions considered, its finest-resolution area was

8 Even without undersampling, high-wavenumber noise is not unusual, due to various methods used in map
processing; we recommend checking it on a case-by-case basis. However, getting into the details and effects
of Kriging, pixellation removal, or various interpolations is beyond the scope of this article.
9 The sampling of outer areas having resolution exceeding �x further involves interpolation (which reduces
high-wavenumber noise), but also projection; the latter results in noise atwavenumbers approaching kNyquist =
π/�x .
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102 M. Kelly, D. Cavar

larger (the central 17×17 km), so that sampling issues only occurred over a small part near
the outer-most domain edges.

To further demonstrate terrain-slope spectra via finite-differencing, the bottom plots of
Fig. 2 display S�h/�x calculated over thefinest resolution central 1/3 of themaps (r < 12 km),
where there is less undersampling. These plots in Fig. 2 are also made in variance-preserving
coordinates, specifically k1S�h/�x (k1) versus ln k1, meaning they directly show the terrain
scales which contribute to σ�h/�x . For hilly terrain we find the majority of variance in slopes
is contributed by variations at horizontal scales ranging from ∼ 0.5 km to 3 km, as seen by
the peaks in the bottom plots of Fig. 2 for the least and most complex cases analyzed in this
work.

Employment of anti-aliasing filters or �h/�x to damp the high-wavenumber noise is
defensible from a physical standpoint, as the geological processes which create the terrain
on average cause an observed decay in Shh(k) with wavenumber, particularly at the smallest
scales

(
k � 0.1m−1

)
; erosion processes, such as those driven by the wind, help to wear down

sharp edges which would otherwise give contributions to the spectrum at these scales (e.g.
Brown and Scholz 1985; Sulebak 1999). The use of low-order finite difference is justifiable,
as long as the map resolution is fine enough relative to the variance-containing part of the
spectrum; this is evident from Figs. 1, 2.

For robustness and universal applicability, hereafter we primarily consider statistics of
�h/�x for our analyses, because the anti-aliasing filter needed could depend on both the
range of resolutions for a given terrain map and any processing that may have been done on
the map. Further, calculation of such statistics are more accessible to readers, and advanced
filter techniques are not the focus of this work. As we will see in later sections, the high-
wavenumber noise, discussed above, does not prevent relation of terrain-slope statistics to
large-scale effective roughness—rather, it facilitates the latter.

If a spectral exponent can be estimated for k > kpeak, this can be used to extend the
spectrum and avoid the effects of processing-induced noise, provided that care is taken to
ensure that the exponent is not affected by the filtering caused by finite-differencing; this
is pertinent considering the left-hand plot in Fig. 2, for example. For the purposes of this
work—notably considering effective roughness as seen from hundreds of metres (or more)
from the surface—the smallest-scale effects due to the highest wavenumber slope variations
act more locally and do not contribute substantially to the mean flow at such heights.10

2.1.2 Terrain Asymmetry: Upslopes

In the above presentation of one-dimensional terrain spectra, for the 12 directions considered,
only 6 unique spectra were found for each area, as shown in the figures above; this is because
the Fourier spectra of elevation are invariant to coordinate reversal. But the geological pro-
cesses that form terrain, including wind-driven erosion (for example), are not expected to be
symmetric: for a one-dimensional transect across the terrain, the upslopes and their statistics
differ when viewed from opposite directions.

Indeed one can calculate upslope spectra, e.g., by setting the negative slopes to zero. Doing
so, we obtained different spectra in all 12 directions for each terrain map (not shown); the
upslope spectra have the same peaks as the slope spectra shown in Fig. 2, but with more

10 The smallest-scale slopes contribute negligibly to the aggregated drag or effective roughness seen at the
depth of the ABL, as long as the terrain slope spectra is truly decaying with wavenumber; we assume this
to be the case, and find it to be true for terrain maps which have been obtained without interpolation-type or
pixellating operations. This is also consistent with analysis of such in geological contexts (e.g., Sulebak 1999).

123



Mean Aerodynamic Parameters for Flow Over Complex Terrain 103

Fig. 3 Probability density function of terrain upslopes from central 1/3 of domain, for least complex (Chinese)
and most complex (Portuguese/Aveiro) cases; transects shown for every 30◦

variation of spectral shapes. Across all sites and directions we find the standard deviation of
upslope in a given direction can be as much as 8/5 times larger than in the opposite direction,
with the ratio of mean up/downslopes reaching 4/3. Collecting all cases together we note
both these ratios are centered around 1 (with the mean slope ratio following from neglect of
domain-mean slope, see Sect. 3.1.2). Considering the slope asymmetry found, and that the
upslope portion of hills tend to dictate more of the form drag, upslope terrain statistics may
be of use in predicting effective roughness and other complex terrain effects; this is discussed
in the following sections.

2.2 Terrain Statistics and Universal Statistical Features

One exploitable aspect, which can find use in predictive applications such as ours and poten-
tially be described in a universal way, is the statistics of terrain slopes; most notably, this
includes the probability distribution function (PDF) of slopes and subsequently low-order
moments. In particular one sees a pattern emerge upon comparing the PDFs of slopes, in
contrast with terrain elevation distributions. To show this, the probability density function
of �h/�x is displayed in Fig. 3 for the Portuguese and Chinese areas analysed, for all 12
directions and across 21 different transects over 4km (separated by 200m) for each direction;
i.e., each line corresponds to a histogram over 21 transects, covering an area of 4km×34km.
Only positive slopes are shown, because the twelve directions span 360◦; for a given direction
�h/�x < 0 simply appears as �h/�x > 0 from the opposite direction.

One can see a collapse of P(�h/�x) for the most common slopes; we note that the
shape of the PDF in this range depends on the power-law exponent β defined in the high-
wavenumber (sub-mesoscale) range. Themagnitude ofwhat is common (e.g., the slopewhere
the cumulative density function exceeds 0.3) depends on the complexity of the area, with
more complex sites having larger slopes occuring more frequently. Again, as with Figs. 1
and 2, only the least and most complex sites are shown; the other three sites have plots which
fall between these two, depending on the complexity.

With regards to the PDFs of terrain slopes shown in Fig. 3 and asymmetry of opposing
directions, we note that themean upslope varied from1/40 to 1/8, while the standard deviation
of upslope (σ�h+/�x ) ranged from roughly 0.035 to 0.21.
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3 Analysis of Mean Simulated Flow over Complex Terrain

3.1 Flow Simulations

Simulations were made for 36 directions, i.e. every 10◦, for each site; however, due to the
terrain and flow statistics not changing significantly over such a small angular increment, we
analyse the flow in every third 10◦ sector, as done for the spectra in Sect. 2.1.

Though we present results for five cases, several more had been considered, including the
Columbia Gorge region in the north-west contiguous United States and a Pakistani site in
the outer Himalayas; however, achieving convergence in all directions for these simulations
required excessive resources, so these sites were not included.11

3.1.1 FlowModel and Mesh

The RANS solver Ellipsys3D (Sørensen 1995) was used to simulate mean flow in 36 direc-
tions over each of the various areas considered here, calculating steady-state solutions (as
opposed to unsteady solutions from so-called ‘URANS’). Ellipsys3D is a parallelised multi-
block finite-volume code, employing the two-equation k-ε turbulencemodel and the SIMPLE
pressure-solving algorithm (Patankar and Spalding 1972)12. The circular computational sur-
face mesh, suitable for calculation of any wind direction, was created with the hyperbolic
generator HypGrid2d (Sørensen 1998). The three-dimensional hexagonal volume mesh is
grown away from the surface (thus vertical faces can be treated) using the HypGrid3d mesh
generator, with nearly orthogonal cells having negligible skewness. The surface boundary is
treated via shear stress prescribed with a high-Reynolds number assumption, consistent with
both k-ε closure and surface-layer theory (Cavar et al. 2016).

The simulations were conducted with neither buoyancy nor Coriolis force, and were
consequently Reynolds-number independent (Chew et al. 2018; van der Laan et al. 2020).
So the solutions do not depend on the geostrophic wind or Uin(z) or u∗in, and only one
simulation is needed per direction per map.

3.1.2 Model Boundary Conditions

Bottom conditions: The bottom boundary has a uniform roughness z0 = 9 cm, essentially
equal to the roughness z0,in characterising the logarithmic inflow wind profile. The height
of the bottom surface is dictated by an elevation map for each site/area considered. For
manageable calculations the RANS mesh resolution is 20m only in the innermost 4 × 4 km
of the domain, and gradually stretches outward, reaching 25–40m within a 7 × 7 km extent
around domain center. Beyond that, the map is gradually smoothed, and the computational
grid spacing likewise increases, with both approaching a resolution of 80–100m for r �
10 km from the center and progressing to∼ 200m for r ∼ 20 km. The elevation is smoothed
to a uniform height towards the outermost part of the circular domain bottom. The flat outer
zone is designed to both ensure the incoming log-law profile from inlet on the upwind side,

11 We note that due to its high complexity and difficulty converging, a map with inner-domain extent of
17×17km (constant app. 20 m resolution) and total radial extent of 40 km was used in the Aveiro-Viseu case.
12 Here we have used the k-ε turbulence model, with ABL-appropriate values of its constants (Cμ,Cε1,Cε2)
as reported in Bechmann (2016) and used in validation studies of e.g. Troen et al. (2014) and Troen and
Hansen (2015). A first-order upwind discretization scheme was used for the k and ε transport equations, and
the QUICK scheme was employed for the discretization of the RANS (velocity) equations (Leonard 1979).
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Fig. 4 Depiction of flow domain
with terrain, inflow direction,
outflow region (shaded), and
coordinate system; analysis
domain denoted by black circle.
Case shown corresponds to
Norwegian ‘NO52’ area

and that the flow can settle to a steady-state near the outflow boundary on the downwind side
with proper convergence (flow variable residuals less than 10−6).
Top boundary conditions: The top boundary is located at a constant height of about 15km
above the mean surface and has a constant wind velocity boundary condition imposed. It is
sufficiently high to ensure (a) no damping of any variable is necessary, and (b) no artificial
speed-up effects arise due to height differences between the inner domain’s hilly surface and
the uniformly flat surface in the horizontal outer zone. A constant-velocity condition was also
chosen at the top boundary to enhance the numerical stability of the computations, ensuring
that only the streamwise velocity component has a constant non-zero value at domain top.
Thus we are considering RANS in neutral conditions without a capping inversion, where the
domain height ztop is much greater than the dominant terrain scale (ztop � σh � z0) such
that there are no ‘top-down’ effects.
Inlet/outlet conditions: The RANS simulations have an inlet condition described by a loga-
rithmic wind profile, covering the incoming part of the cylindrical surface of the grid domain
(which has a uniform flat surface). A zero-gradient boundary condition was applied to define
the outflow part of the cylindrical domain boundary on the downwind side; the outflow zone
width is approximately 45◦, which gives optimal trade-off between the outlet zone needed
for the finite-volume RANS solver, and ability to obtain numerically stable convergence. An
example flow domain is shown in Fig. 4.

3.1.3 Consideration of Flow-Field Analysis Domain

Here we have avoided the effect of transition from flat inflow far-field to hilly surface (and
more broadly themomentum flux footprint aspect), by conservatively limiting the calculation
of flow statistics to the downwind two-thirds of each (∼40 km long) simulated domain; even
for the least complex terrain cases, such a buffer (wider than 12 km) eliminated the impact of
such artifacts on finding the effective roughnesses and (displaced) friction velocities. Also,
the peaks of the terrain slope spectra correspond to scales much smaller than the domain
extent, so the terrain was statistically well-sampled; the loss at the lowest wavenumbers due
to taking flow statistics from the downwind 2/3 of each domain, did not affect the terrain
statistics (< 1% loss in standard deviations of slopes). Further, when taken over the lateral
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extent considered (or just the 4km width corresponding to the flow variables output for
each direction simulated), the terrain statistics in the downwind 2/3 of the domains differ
negligibly from the statistics over the entire (unsmoothed portion of the) domain: i.e., despite
the progressive smoothing of the outermost parts approaching the domain edges, the terrain
statistics were essentially homogeneous.

3.2 Statistical Displacement by Complex Terrain

Wieringa (1993) discussed the general notion of a transition sublayer over heterogeneous
terrain, whose depth was also known as the blending height (zb); above this height, horizontal
homogeneity of the mean flow is approached. Similarly over forests, a logarithmic profile
and effective roughness length can be found for the areal-mean flow above a displacement
heightd; thiswas derived for flowover forest canopies (Thom1971; Finnigan 2002; Sogachev
and Kelly 2016) and has become a common approach there. In order for the concept of
an effective roughness to be valid, the displaced logarithmic form (2) should apply to the
mean wind speed profile; an effective displacement height deff can be defined as the height
above which a log-law describes the temporal and areal mean speed following the surface,
depending on the character (statistics) of the terrain.13 Towards describing the flow, it is
useful to consider how the kinematic streamwise momentum flux (negative shear stress)
uw or local friction velocity u∗ ≡ (−uw)1/2 behaves, particularly the vertical profile of
its horizontal-area mean in terrain-following coordinates. Similar to behaviour in the ideal
surface layer over a uniform rough surface, the height of maximum 〈u∗〉xy defines deff; above
this virtual displaced surface, 〈u∗〉xy decreases with z, as in a flat homogeneous ABL. This is
shown in Fig. 5, which presents vertical profiles of the terrain-following areal (and implicitly
temporal) mean 〈u∗〉xy from the RANS simulations for all directions at the sites considered.

Figure 5 illustrates that for different directions in a given area, the character of the terrain
affects the height of maximum 〈u∗〉xy (i.e. deff), as well as the magnitude of 〈u∗〉xy and shape
of its vertical profile. Larger variations in both of these are seen for increasingly complex
terrain; this is elucidated further below.

3.3 Diagnosing Effective Friction Velocity and Roughness Length

To find the roughness length representative of the terrain’s effect on the flow in a given
direction over a given area, there are a number of methods one could consider, when invoking
the logarithmic profile (2). In addition to considering the flow above deff, these generally
depend on how one finds an effective friction velocity (u∗,eff).

Starting with the blending-height (zb) concept, Wieringa (1986) and Mason (1988) pro-
posed finding u∗,eff at z = zb. This was used by Bou-Zeid et al. (2004) to find z0,eff over a
heterogeneous flat surface possessing different z0. However, picking u∗ at just one height can
incur significant uncertainty, due to vertical variations in 〈u∗〉xy . A more robust method is
to fit the (displaced) log law to the profile of terrain-following areal mean wind speed above
the estimated deff. This is what we do here; it gives both u∗,eff and z0,eff, with less sensitivity
to diagnosed (or estimated) deff than selecting 〈u∗〉xy from a single height, as shown below.
Further, it is sensible given the area-mean friction velocity profiles observed: ∂〈u∗〉xy/∂z is

13 Jackson (1981) also physically described d as the level at which the mean drag on the surface appears to
act; the analysis here is also consistent with this definition.
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Fig. 5 Profiles of plane-mean friction velocity for all (12) directions at each site, in (roughly) terrain-following
coordinates

zero in the neighbourhood of deff, just like a displaced ‘surface layer,’ with 〈u∗〉xy beginning
to decrease further above as typical in ABL flow over flat terrain.

For the results and analysis presented here, we calculate vertical profiles of 〈U 〉xy and
〈u∗〉xy in terrain-following coordinates, for each wind direction. In order to examine and
mitigate the effects of adjustment of the inflow, we first consider areal means for calculating
flow statistics using both the downwind two-thirds of the domain (i.e., excluding the first
∼10km of the flow) in addition to flow statistics calculated over the entire horizontal domain.

Examining the plane-mean profiles of friction velocity and wind speed, we indeed find a
logarithmic profile for 〈U 〉xy above the height of maximum 〈u∗〉xy , following (2); again we
take this maximum to be the effective displacement height, deff. Examples of this logarithmic
fit and the corresponding planar-mean profiles of u∗ are shown in Fig. 6.

Instead of showing dozens of profiles and fits, in Fig. 6 we present the two most extreme
and different cases: one site and direction where the terrain is quite complex, such that the
downwind-2/3 and full-domain u∗,eff differ the most; and a site where the terrain variations
aremildest butwith a flatter 〈u∗〉xy profile, which gives largest variation in deff. Themaximum
〈u∗〉xy and the height of its occurence (deff) are both higher in the downwind subdomain,
due to the full-domain flow still retaining some residual artifacts of the more uniform inflow.
One can see that even in these most deviant cases (compared to other flow directions at all
sites), the logarithmic profile fits the data well. Also slightly notable is that near the top of the
domain there can be a deviation from the terrain-inducedmean log law,where the background
upwind roughness over smoothed simulated inflow surface is still felt. To mitigate this effect,
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Fig. 6 Terrain-following areal-averaged profiles of wind speedU (z) and friction velocity u∗(z) for two cases,
to illustrate diagnosis of effective roughness and displacement height. Blue lines denote full-domain values;
red lines denote ‘downwind’ 2/3 of domain values. Bars (onU ) and points (on u∗) correspond to d, and dashed
lines correspond to log-law fits above d for the full and 2/3-domain profiles

when fitting (2) above deff, the top height of the 〈U 〉xy profile being fit was taken to be the
maximum of half the domain height and 3deff; thus one can see the dotted/dashed lines (fit
log-law) in Fig. 6 falling slightly below the mean profiles at the very top of the left-hand plot.
Further, to check this fitting, the dimensionless sensitivity of fitted z0,eff to the upper cutoff
height zcut was calculated: d ln z0,eff/d ln zcut was found to be on average less than 0.5%, and
did not exceed 1%.

4 Results

4.1 Prediction of Effective Displacement Height

One might expect simple relations based on σh—perhaps like previously postulated depen-
dences for z0,eff (such as Eqs. 5–9)—to suffice for predicting deff. But σh depends on the
domain size, as shown earlier considering the terrain spectra (Fig. 1): larger domains include
yet more contributions from smaller wavenumbers (larger scales). Further, σh does not
account for the steepness of slopes and contains no information about different steepness
occurring in opposite directions. Thus low-order statistics of terrain slope—such as the stan-
dard deviation (σ ) of ∂h/∂x , its finite-difference approximation �h/�x , or the upslope
finite-difference �h+/�x ≡ (�h/�x)|�h>0—are expected to be more appropriate for pre-
dicting deff and ultimately z0,eff. Figure 7 demonstrates this, showing simple predictions for
deff assuming it is proportional to σh , σ�h/�x , or σ�h+/�x , respectively. In the figure the esti-
mates for deff are plotted against diagnosed deff, where the latter is again simply the height of
maximum stress (thus maximum u∗) as shown earlier in Fig. 5; the respective proportionality
constants relating σh , σ�h/�x , and σ�h+/�x to deff are shown above each plot.

The effective diplacement height is somewhat difficult to predict accurately from terrain
statistics, though a monotonic and roughly linear relationship is observed in Fig. 7. The
figure demonstrates that σh might only predict a lower-bound for deff (but it may contain
some useful information for simpler sites). However, taking deff to be simply proportional to
σ�h/�x or σ�h+/�x , as:

deff ≈ rd+

√√√√
〈(

�h+
�x

)2
〉

xy

≈ rd

√√√√
〈(

�h

�x

)2
〉

xy

, (12)
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Fig. 7 Estimates for effective displacement height deff, versus deff diagnosed as the height of maximum
u∗. Each point corresponds to one direction (of 12); colours correspond to site (cyan: north-east China,
orange: S. Africa, green: Norway 56, brown: Norway 52, magenta: Portugal). Blue lines indicate ‘perfect’
(1:1) prediction

Fig. 8 Estimates for effective
displacement height versus
diagnosed height of
maximum u∗. Blue/large
dots: 1000σ�h/�x ; yellow/small
dots: 670σ∂h/∂x (blue is same as
in Fig.7b). Each point
corresponds to one direction (of
12), at one site. Blue line
indicates perfect (1:1) prediction

providesmodestly good approximation (with an r.m.s. error of∼40%).While one can see that
σ�h/�x and σ�h+/�x aremuch better than σh for predicting deff, they also require prescription
of a length scale (rd+ or rd ). For the estimations shown in Fig. 7, these were found to be
rd+ = 1 km and rd = 1.65 km; these values give distributions of dpred/deff with maxima
at 1, as does the coefficient in deff ≈ 1.6σh ; the latter approximiation provides a much cruder
estimate. The figure also shows that the upslope statistic σ�h+/�x provides little improvement
over σ�h/�x . This is likely because calculating the variance of upslopes does not consider
the shadowing effect that bigger hills have on the smaller ones immediately downwind. It
also hints at the difficulty of defining a unique upslope version of terrain-slope variance; e.g.,
including shadowing effects would itself introduce an extra length scale, and we leave such
to future work.

We also note that the slope statistics thus far have been calculated using first-order finite
differences, and thus differ from (are smaller than) σ∂h/∂x due to the filtering effect at the
finest scales. This can be seen considering the previous section on terrain spectra, as in
Figs. 1 and 2. We also calculated σ∂h/∂x , by integrating the spectra F(dh/dx) = k2xF(h)

over wavenumber and averaging across all y for each wind direction. But use of the exact
slope statistic σ∂h/∂x leads to predictions of deff significantly poorer than those using σ�h/�x

or σ�h+/�x .
Figure 8 compares predictions using areal σ�h/�x and σ∂h/∂x , respectively, showing the

latter to be less accurate. We postulate that the decreased utility of the exact terrain slope
∂h/∂x , i.e., the increased error and reduced correlation with deff, is due to the smallest-scale
fluctuations contributing a relatively larger amount of variance (in part due to sampling issues
as discussed earlier in Sect. 2.1), while contributing relatively little to the aggregate drag. The
smallest features are the most likely to be sheltered by larger hills upwind, and the pressure-
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blocking effect of larger hills contributes more to the drag. Further, since the maps used for
the simulations had 20-m horizontal resolution, the 56m-resolution output data (which we
use to calculate statistics) is not likely to be affected by any processing on the original maps.

Given that expressions simply based on slope statistics such as these also require a length
scale (such as rd+ or rd in Eq. 12), dimensionally one might expect that a form such as
σhσ�h/�x would improve results; in fact, combinations involving σh were found to degrade
estimates of deff. We also note that fits using combinations of σh and σ�h/�x (including
additive and multiplicative forms, including exponents on each σ ) did not give deff estimates
appreciably better than those given in (12). Linear (arithmetic, additive) combinations of
〈�h/�x〉eμxy and σ

eσ
�h/�x , where eμ and eσ are exponents of order 1 from fits to data, gave

only slightly better results than the simple forms in (12).
However, it is not necessary to have a very accurate deff in order to obtain z0,eff. That is,

fitting planar-mean wind profiles above deff to the logarithmic form (2) does not significantly
affect z0,eff; more on this is shown in the following subsections. We also note that using
upslope standard deviations, whether σ

eσ+
�h+/�x by itself or in combination with 〈�h/�x〉eμxy ,

did not improve results; again using a simple form in terms of σ�h+/�x gave slightly worse
results than using σ�h/�x , as shown in Fig. 7.

4.2 Prediction of Effective Friction Velocity

Associated with the displaced areal-mean logarithmic flow is an effective friction velocity,
u∗,eff; this is diagnosed via log-law fits to the areal-mean wind profile above deff, as detailed
further in the next section. As with the effective displacement deff, the friction velocity u∗,eff
can be predicted using a simple form based on the standard deviation of terrain slope or
upslope. The most robust form is found to be a simple linear relationship between u∗,eff/u∗in
and the standard deviation of slope; for terrain slope and upslope, we find:

u∗,eff = u∗in(1 + 2.7σ�h/�x ), (13)

u∗,eff = u∗in(1 + 5σ�h+/�x ). (14)

These give predictions with an r.m.s. error of 8–9%; expression (13), based on σ�h/�x ,
performs slightly better. More complicated empirical relations may be fit, but do not offer
much improvement over the above; further, they tend to lack physical justification. However,
crudely including the effect of the cross-sectional area through the mean absolute lateral
slope μ|�h/�y| is possible via:

u∗,eff = u∗in[1 + 4σ�h/�x (1 − csμμ|�h/�y|)], (15)

and is seen to give a small amount of improvement for csμ between 4 and 5; e.g., for csμ = 4.5
the r.m.s. error is reduced to 6%.14 This is shown in Fig. 9, along with predictions using (13)
and (14).

We also note that a pair of relations like (13)–(14), but which add to u∗in instead of scaling
by it, perform slightly better. That is, the form:

u∗,eff = u∗in + au∗σ�h/�x , (16)

and its counterpart u∗,eff = u∗in + au*upσ�h+/�x reduce the r.m.s. error to 6–7%, if choosing
au∗ = 1.7ms−1 and au*up = 2.8ms−1. Extending them by incorporating (1− csμμ|�h/�y|)

14 We note that an analogous form to (15), but using upslope σ�h+/�x with csμ = −7, similarly reduces the
r.m.s. error to 7%; but this negative value of csμ is somewhat suspect, as steeper mean slope tends to correlate
with relatively smaller frontal area (silhouette).
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Fig. 9 Predicted effective friction
velocity u∗,eff, versus u∗,eff
diagnosed from 〈U 〉xy(z) above
the effective displacement height
deff. Blue dots are (13) based on
σ�h/�x ; yellow crosses are (14)
based on σ�h+/�x ; green open
squares are (15) based on
σ�h/�x with μ|�h/�y|. Blue
lines indicate perfect (1:1)
prediction

Fig. 10 Prediction of previous theories (i.e., based on σh ), versus diagnosed z0,eff. Left: Flack and Schultz
(2010); middle: Anderson and Meneveau (2011); right: Kelly (2016) in blue, with updated form (9) using
a = b = 2 and c = 0.01 in yellow

as in (15), but with csμ = 3, reduces the error to 5–6%. Nevertheless, it is not clear what the
velocity scales au∗ and au*up are comprised of or represent, and the improvement they appear
to offer is small compared to the error itself. We view (13)–(14) as defensible, with more
work needed to understand or endorse additive forms like (16) which use a characteristic
velocity scale that is independent of u∗in, though such independence is logical considering
the terrain-affected integral length scales of the turbulent flow.

4.3 Prediction of Effective Roughness

4.3.1 Performance of Earlier Theories

For context and comparison, we first examine the behavior of the parametrisations which
precede this work and have been discussed in the previous sections. Using the simulated
flow data and corresponding terrain statistics discussed in Sects. 2–3, we calculated z0,eff via
the form (4) of Flack and Schultz (2010), (6) of Anderson and Meneveau (2011), and (8) of
Kelly (2016). For the Anderson and Meneveau (2011) form we have already obtained the
high-wavenumber spectral exponent β from fits to the terrain spectra in every direction at
every site; then (7) gives α(β) for use in (6). Figure 10 shows z0,eff predicted by these earlier
formulations, versus the effective roughness diagnosed from the simulated flows.

The figure shows that none of the extant forms capture the effective roughness, giving
predictionswhich do not generally follow z0,eff. TheFlack andSchultz (2010) parametrisation
overpredicts z0,eff by one order ofmagnitude, though it does show a slight correlation (upward
trend) for z0,eff beyond 1m. Similarly, the Kelly (2016) form overpredicts z0,eff, but not as
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Fig. 11 Left: z0,eff predicted using only terrain statistics, via (17)–(18); right: predictions using terrain statistics
along with diagnosed deff, via (19)–(20). Both have γ = γ+ = 3. Circles are results using terrain slopes,
triangles using terrain-upslopes

severely, though it does not increase as much with z0,eff. The Anderson andMeneveau (2011)
form, on the other hand, underpredicts z0,eff by roughly an order of magnitude, and is not
correlated with z0,eff. In the right-hand plot of Fig. 10 one can also see that the general
form (9) can be made to give predictions within one order of magnitude of diagnosed z0,eff
by using a = b = 2 and c = 0.01, but it does not really follow z0,eff.

4.3.2 New Forms for Effective Roughness Based on Terrain Slope Statistics

Considering all of the data analyzed from the five areas, using only the standard deviation
of terrain slope σ�h/�x , an optimal fit in logarithmic z0,eff space was found when using the
form:

z0,eff = z0,in + rsσ
γ

�h/�x , (17)

considering r.m.s. upslope σ�h+/�x , the analogous relationship:

z0,eff = z0,in + rs+σ
γ+
�h+/�x , (18)

emerged. Whether using σ�h/�x or σ�h+/�x , i.e., for both (17) and (18) above, the best
fits were found when the exponent value was between 2.5 and 3. For γ = γ+ = 2.5,
characteristic length scales rs � 125m and rs+ � 500mwere found; but for γ = γ+ = 3, the
corresponding scales were found to be rs � 325m and rs+ � 1450m. The standard deviation
of ln(z0eff,pred/z0eff,obs) was essentially equal for both sets of exponents and coefficients
mentioned above, but we note that a better fit across all z0,eff was exhibited for γ = γ+ = 3.
The left-hand plot of Fig. 11 shows estimates of the effective roughness length employing (17)
and (18), with the optimal exponent γ = γ+ = 3.

Given the character of the problem, onemay expect the length scale in simple formulations
such as (17) or (18) to have physical meaning; we note rs is on the order of the diagnosed
terrain-induced displacement over all sites and directions, 〈deff〉 � 150m. Further noting
that earlier in (12) we found deff ∝ σ�h/�x , we anticipate z0,eff to then be proportional to

either deffσ
γ−1
�h/�x or alternately deffσ

γ+−1
�h+/�x . Indeed fitting diagnosed z0,eff and using deff as

the characteristic length scale (instead of rs or rs+ ), we find the best results are offered by:

z0,eff = z0,in + cd deff(σ�h/�x )
γ−1 � z0,in + 1

3
deffσ

2
�h/�x , (19)

and:
z0,eff = z0,in + cd+deff(σ�h+/�x )

γ+−1 � z0,in + deffσ
2
�h+/�x . (20)
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Fig. 12 Red plusses are z0,eff
predicted using terrain statistics
including 〈|�h/�y|〉 and
diagnosed deff, via (21). Blue
circles are (19) without
〈|�h/�y|〉, as in Fig. 11

As with (17)–(18), again optimal γ = γ+ is found to be in the range 2.5–3, with the best
fit over all scales ocurring for γ = γ+ = 3; here cd � 1/3 and cd+ � 1. The results of
using (19) and (20) are shown in the right-hand plot of Fig. 11. Comparing these results to
those from (17)–(18) in the left-hand plot of the figure, one can note the improvement when
incorporating the deff found from the simulations. For z0,eff predictions which include deff,
the standard deviation of ln(z0eff,pred/z0eff,obs) is reduced by roughly 40%.Whether including
deff or not, the z0,eff parametrisations based on simple terrain slope, i.e. (17) and (19), give
better results than (18) and (20) based on terrain upslope.

Earlier we found that incorporation of lateral terrain-slope statistics, i.e. μ|�h/�y| in
(15), offered some improvement to predictions of u∗,eff based on streamwise terrain-slope
variance. This was attempted in part because �h/�y is the only information that we have
about the terrain silhouette (cross-sectional area), which is expected to be a scaling factor for
the terrain-induced drag (e.g. Brown and Wood 2003). Doing so for (19), analogous to (15),
we obtain the form:

z0,eff = z0,in + cd,ydeff(σ�h/�x )
γ−1(1 − cμyμ|�h/�y|)

� z0,in + 0.5deffσ
2
�h/�x (1 − 4.7μ|�h/�y|),

(21)

where optimal results are found with cd,y = 0.5 and cμy = 4.7. Using expression (21) gives
a further decrease of 10–15% in the standard deviation of ln(z0eff,pred/z0eff,obs), compared
to (19); this is conveyed by Fig. 12.

A similar form in terms of σ�h+/�x was also found (but with cd,y = 1.4 instead of 0.5),
and also decreased the error by about 10% compared to (20); however, it still does not give
an improvement compared to (19), let alone (21).

Recalling that the Wood andMason (1993) approximation (3) for z0,eff due to a collection
of single-scale hills incorporated both the slope as well as the area fraction (density) of hills
in an area, we can adapt (3) to be generically expressed in terms of terrain-slope statistics for
complex terrain with broad-band spectra. Their form (3) has Ca ∝ (hλy/Ad)(h/λx ) where
h is hill height, {λx , λy} are the characteristic hill scales in the streamwise and crosswind
directions, and Ad is the domain size; this becomes ∼ (|dh/dy|)(dh/dx) in terms of the
terrain statistics analyzed here. Using σ�h/�x for the streamwise slope dependence and
|�h/�y| for the cross-sectional area per domain (hλy/Ad in Wood and Mason 1993), we
have:

ln

(
Z p

z0,eff

)
�

[

cσ σ�h/�x 〈|�h/�y|〉 + 1

ln2(Z p/z0)

]−1/2

, (22)
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Fig. 13 Left: predictions of summed-stress form (23), using the terrain-driven part of (19), z0,terrain ∝
deffσ

2
�h/�x (black triangles); blue circles are (19) as in Fig. 11. Right: error metric of predictions,

ln(z0,eff|pred/z0,eff|obs), corresponding to triangles in left-hand figure; colours correspond to different ter-
rains as in Fig. 7

where the pressure scale-height is Z p , and the constant cσ is of order 1. By fitting to the
diagnosed z0,eff we find the scale Z p � 100m and cσ � 4, but this still gives predictions
with 40% larger error than (17); the analagous version of (22) using upslopes gives yet worse
predictions. However, taking the scale height in (22) to be proportional to the diagnosed
effective displacement height, optimal results using (22) arise for Z p � 0.06deff, with the
same r.m.s. log-error as (19); we note that expression (21), which also uses 〈|�h/�y|〉, gives
better results. Alternate forms were also examined for the terrain-drag portion of (22), but did
not give reasonable predictions (e.g. using other combinations involving 〈|�h/�x |〉 and/or
means and standard deviations of �h/�x , instead of the product σ�h/�x 〈|�h/�y|〉).

Recognizing the physical basis for the summation of roughness- and terrain-induced
stresses which gave rise to (3), if the latter is applied with the terrain-induced contributions
shown in (17)–(21), we have the generalised expression:

ln

(
addeff
z0,eff

)
�

{[
ln

(
addeff
z0,terrain

)]−2

+
[
ln

(
addeff
z0,in

)]−2
}−1/2

, (23)

where z0,terrain is equivalent to the right-most terms in each of (17)–(21); i.e., z0,terrain ≡
(z0,eff−z0,in) for linear combinations of roughness. Here in (23) we havewritten Z p = addeff
with ad a constant; this is preferable to attempting to find some 〈Z p〉 applicable over all
terrain, which is physically difficult to defend, as the pressure scale-height should depend on
the terrain statistics. It is analogous to use of cddeff in (19) giving substantially better results
than the implied all-terrain scale rs in (17).

For the form z0,terrain = 1
3deffσ

2
�h/�x of (19), fitting (23) to diagnosed z0,eff we find

ad � 0.04; the mean of implied pressure scale-heights is then 0.04〈deff〉 � 6m, varying
from about 2–17m over the range of terrains considered here.15 The resultant z0,eff are
shown in Fig. 13, along with those predicted by (19) alone.

From the left-hand plot in the figure one can see that the two expressions are essentially
identical over complex terrain with z0,eff � 1m; over simpler terrain, the form (23) gives
yet better predictions. The right-hand plot in Fig. 13 also shows that using (23) with z0,terrain
from (19) gives predictions of z0,eff that do not appear to favor complex or simpler terrain.

15 We note that fits to diagnosed z0,eff using a constant 〈Z p〉, instead of addeff in (23), gave 〈Z p〉 � 8m; how-
ever, the resultant predictions (not shown) did not follow the diagnosed z0,eff as well, causing overprediction
in simpler terrain and underprediction of larger z0,eff.
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Similar to using (23) with z0,terrain from (19), if using the z0,terrain part of (20) in (23),
one obtains analogous results, with slightly better predictions by (23) at the smallest z0,eff
compared to (20); however, this is still not an improvement over (19) or using its z0,terrain
in (23). Further, use of z0,terrain from (21) in (23) gives slightly improved predictions over
(21) alone, though negligibly compared to the r.m.s. log error of 0.25 found for (21).

Although the summed-stress form (23) gives better results for smaller z0,eff when employ-
ing z0,terrain = 1

3deffσ
2
�h/�x from (19) with ad = 0.04, there is no clear basis for this value

of ad . Considering the coefficient Ca of (3) is proportional to the ratio of hill cross-sectional
area to domain area (Wood and Mason 1993), one might might suppose ad ∝ dh+/dx ; but
taking ad ∝ �h+/�x considerably degraded predictions when used in (23).

Earlier we obtained estimates for deff such as (12), which could also be used with (19) or
(20), but doing so does not improve predictions over the simple estimates given by (17)–(18).
Further, one could also simply invert the log law, using u∗,eff based on terrain statistics; using
(13) and assuming deff � Lz , as z → Lz one obtains:

z0,eff ≈ z
1/(1+2.4σ�h/�x )

0,in L
1−1/(1+2.4σ�h/�x )
z . (24)

However, this relation, as well as its analogue using �h+/�x from (14), result in log-
prediction errors 2–3 times larger than using (17)–(20); because of this, and since it depends
on the domain depth Lz , use of (24) is not recommended.

5 Discussion

Above we found from RANS simulations over large areas (> 40×40 km) of complex terrain
that the horizontally (areally) averaged flow exhibits a displaced logarithmic wind speed
profile, with an effective roughness and displacement height diagnosed from the output of
O(100) simulations. Effective roughness formulations based on terrain elevation variance
(e.g. Flack and Schultz 2010; Anderson and Meneveau 2011; Kelly 2016) have difficulty
predicting z0,eff within one order of magnitude, over the range of terrain complexities found
in nature. This is due primarily to form-drag being connected to the slopes of hills, while
σh is not directly related to slope statistics—unless the terrain elevation (and slope) spectra
exhibit a simple power-law dependence. As shown in Sect. 2.1, actual terrain slope spectra
exhibit a more complex behavior, with a peak occuring at scales between 1km and 10km.

For example, the Anderson and Meneveau (2011) expression (6) underpredicts z0,eff by
at least an order of magnitude for z0,eff greater than about 0.5m, increasingly so for more
complex terrain. This is presumably due to its design originally being for smaller-scale
roughness, where a fractal-like surface was (reasonably) assumed to induce the drag. Fractal
terrain, i.e. those whose surface-slope spectra have simple power-law behavior, permit direct
connection between σh and σ�h/�x ; this kind of idealised terrain allows σh-based forms
for effective roughness. The Flack and Schultz (2010) formulation (4) exhibits the opposite
behavior to Anderson and Meneveau (2011), predicting within an order of magnitude for
most cases with z0,eff >∼ 5m but giving worse results for less complex sites. Incorporation
of the skewness of h in Flack and Schultz’s model provides a slight correlation in predictions
(rising with increasing z0,eff); we find Skh exhibits modest correlation with z0,eff only for
more complex cases having z0,eff > 1, while it offers no predictive value for less complex
terrain.
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5.1 Combining Surface Roughness with Roughness Induced by Terrain Slopes

The addition of stresses caused by complex terrain at different distances upwind is still
somewhat of an open research question, due in part to the difficulty of defining or calculating
a momentum-flux footprint. One can expect the extent of upwind terrain that contributes
significantly to z0,eff over a given area to depend on deff and the terrain-slope statistics
themselves, though analysis of such is beyond the scope of the current article. At any rate,
for practical use, the excess stress caused by hills (pressure drag) must be combined along
with the roughness-induced stress for a given area—or expressed as an effective roughness
length which is somehow added to the background z0.

5.1.1 Summation of Stresses

Anumber ofworks have summed stresses due to heterogeneous surfaces, to obtain an effective
roughness. This has included contributions from different roughnesses (i.e. patches) on a
flat surface (e.g. Wieringa 1986), or summing contributions due to a collection of identical
hills (e.g. Wood and Mason 1993). These provide z0,eff formulae which all have the same
mathematical character as (3) and (22)–(23), i.e. quadratic in 1/ ln(Z p/z0,i ) where Z p is a
pressure-drag scale height and z0,i represent the different roughness contributions. The form
(23) indeed offers good predictions of z0,eff, when using (17)–(21) for the terrain-induced
part of roughness; e.g. z0,terrain = deffσ 2

�h/�x/3 from (19), as shown earlier in Fig. 13.
However, such combination via summation of stresses, as in (23), requires knowledge of
the effective pressure scale-height addeff; one might question how ‘universal’ the value of
ad is, as its physical basis is not clear. We note that different values of ad were found,
depending on whether we used z0,terrain(σ�h/�x ) from (19), z0,terrain(σ�h+/�x ) from (20), or
alternately the z0,terrain(σ�h/�x , μ|�h/�y|) from (21) for the terrain-drag contribution to (23).
Mason (1988) reported this vertical scale to be ∼ Lc/200 for summing drag quadratically
as in (23), where Lc is the characteristic horizontal scale of variations; here taking Lc to
be the peak scale from terrain-slope spectra, this and ad = 0.04 would imply Lc ∼ 8deff,
though we find deff to be roughly 1/25th to 1/15th of the peak spectral scale; this difference
is reasonable, considering the PDF and spectra of slopes are quite broad (with significant
contributions spanning several orders of magnitude of slope and wavenumber, respectively).
Although ad is of similar magnitude as 〈|�h/�y|〉, and the constantCa inWood andMason’s
formulation suggests use of such (it is proportional to sillhouette hλy per area for uniform
hills), incorporating first- or second-order statistics of �h/�y within the pressure-scale
height (via ad ) caused degradation of predictions.16

5.1.2 Simpler Combinations

The best results for z0,eff were obtained using the stress-based form (23) to add contributions
from background roughness and terrain drag, as shown in the previous section. However, we
also find robust results using simple addition: the inflow roughness z0,in, which corresponds
to the profile over flat terrain upwind and the surface roughness, is simply added to the
terrain-induced drag contribution as in (17)–(20). Such summation gives the same results as
stress-based addition, except for some lower-complexity cases where it underestimates z0,eff,
as shown in Fig. 11. We again note that (19)–(20) offered better predictions compared to

16 This occurredwhether using positive or negative exponents on the lateral slope statistic(s); i.e. they degraded
predictions when incorporated within ad , regardless of exponent and fitting.
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(17)–(18); i.e., deff appears to be the characteristic length scale which acts as a coefficient
multiplying the terrain slope variance and carries additional information about z0,eff, while
use of a constant length scale resulted in ln z0,eff error that was at least 1/3 larger.

Alternatively, formulations like (5) ofWan and Porte-Agel (2011) and (6) of Anderson and
Meneveau (2011) follow a quadratic form, summing the squares of roughness contributions;
adapting these for use with terrain-slope variance, they can be generally expressed with the
form z20,eff = z20,in + z20,sl, where z0,sl is the terrain slope-induced component. Employing this
form to combine z0,in with the respective z0,sl parts of (17)–(21), we get results nearly equal
to the linear combinations (17)–(21) for more complex terrain, z0,eff � 1m. Unsurprisingly,
however, over less complex terrain this quadratic combination causes yet more substantial
underpredictions; this follows by noting that:

√
z20,in + z20,sl = (z0,in + z0,sl)

√

1 − 2z0,inz0,sl
(z0,in + z0,sl)2

. (25)

5.2 Limitations and Interpretation

For clarity in assessing the slope-induced contributions to z0,eff, we used only a uniform back-
ground (surface) roughness in all simulations, z0,in = 9 cm. Previous studies (see Sect. 1)
indicate that other (uniform) values of z0,in would combine with terrain slope-induced rough-
nesses in the same way as found here; however, for smaller z0,in, our results and analysis
imply that simple addition of z0,in to z0,sl would be equal to the stress-based combination
over a wider range of z0,eff than shown here, i.e. down to lower z0,eff. For areas where z0,in
is appreciably larger than the 9cm considered here, the stress-based summation of z0 would
give relatively better results, but such large roughnesses generally occur only in forested or
built-up areas, which tend to be inhomogeneous. We do not consider inhomogeneous surface
roughnesses, as this is beyond the work of the present study.

The high-resolution part of the domains in the simulations had limited extent, with the
amount of high-wavenumber terrain-slope variance decreasing with distance beyond 7km
from the center (due to progressive smoothing, see Sect. 3); this could be interpreted as
a weak violation of homogeneity of terrain statistics. However, the limited extent of the
high-resolution area had negligible effect, for multiple reasons: first, the relative contribution
of smallest-scale terrain-slope variance (2π/k <∼ 300m) was much smaller than that from
larger scales; secondly, the use of the downwind two-thirds of the domain for analysis reduced
this effect; third, the output data analyzed had a resolution of 56m, corresponding to a region
about 8–10km from domain center. Reduction of the analysis domain to the downwind 2/3
portion for each wind direction was intentionally done, to reduce the aforementioned issue:
conducting tests where we analysed subdomains progressively further downwind and with
decreasing areas, we found that the displacement heights first increased and then converged,
with u∗,eff and z0,eff following suit.

The results here correspond to terrain-induced momentum transfer under neutral atmo-
spheric stratification, such that hundreds of metres above the terrain a logarithmic profile is
recovered—with an effective roughness that we can predict based on the terrain statistics. In
that regard, the simulations and analysis have been capturing ‘bottom-up’ effects, ignoring
anything from above; we remind that the RANS simulations have no capping tempera-
ture inversion, but rather a tall domain much larger than the diagnosed terrain-displacement
heights. Consequently for shallower ABLs observed to have depths approaching or less than
the terrain-induced mean displacement (zi � 3d) occurring under neutral conditions, obvi-
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ously the theory presented here would break down. Stability effects are also neglected, but
the effective roughness results and expressions here can be taken as a representative aver-
age: most places have nearly neutral conditions in the mean, i.e. the long-term distribution
of inverse Obukhov length has a significant peak and is centered around zero (Kelly and
Gryning 2010).

5.2.1 Beyond �1h/1x : Consideration of Other Terrain Statistics

We have shown that the variance of streamwise terrain slope is the key quantity for charac-
terizing the effective roughness of areal-mean wind profiles displaced by complex terrain.
In particular, σ�h/�x was found to be the optimal predictive terrain statistic, in contrast with
σ∂h/∂x . Statistics of ∂h/∂x (calculated in Fourier space) were not as well-correlated with
z0,eff and offered less predictive power; we attribute this to high-wavenumber noise, as well
as the more local impact of the smaller scales filtered out by�h/�x . For example, analogous
relations to (17)–(21), but using σ∂h/∂x instead of σ�h/�x (with different fitted constants),
gave 2–4 times larger error in predicted ln(z0,eff).

Streamwise upslope statistics were also considered, since the flow experiences different
slopes, and presumably different terrain drag, in opposite directions; we thus expect statistics
of h+, notably σ�h+/�x , to facilitate better prediction of effective roughness. Indeed u∗,eff,
deff, and z0,eff were all found to differ in opposing directions. The effective roughness differs
by a factor as large as 5, while the rectified geometric mean17 of z0,eff|ϕ+180◦/z0,eff|ϕ , over all
directions ϕ and sites considered, is a roughly 1.6; i.e., on average z0,eff in a given direction
is different from z0,eff in the opposite direction by a factor of about 1.6±1. Complementing
this, the difference in deff seen from opposite directions was on average about 40% of deff
from either direction, with the largest difference having deff being three times larger in one
direction than its opposite. However, σ�h+/�x did not give better predictions of z0,eff (or
deff) compared to σ�h/�x . The inability of σ�h+/�x to predict this asymmetry appears to be
due to the simple definition of h+, along with the complexity of the flow: when considering
upslopes, h+ does not account for the sheltering effect of larger hills on smaller hills. In other
words, the form drag due to a hill can also depend on the flow both upwind and downwind;
a hill in the wake of a significantly taller (but not necessarily steeper) mountain will tend
to provide relatively less drag than if it were not sheltered. Introducing a spatially-varying
weighting, to incorporate sheltering in the definition of h+, could in principle help to exploit
observed slope asymmetry; but doing so may depend on the terrain shape itself, quickly
becomes complicated, and is beyond the scope of current work.

Statistics of the lateral slope were also considered here, because form drag for single hills
has been shown to relate to frontal area (e.g. Wood and Mason 1993) and thus �h/�y. The
use of 〈|�h/�y|〉xy as in (21) indeed added small improvements to predictions of z0,eff,
shown earlier in Fig. 12; in contrast, σ�h/�y is not seen to carry information about z0,eff.
However, the improvements which can be offered by using a representative frontal area or
�h/�y are also limited by the sheltering aspect.

5.2.2 Turbulence Model Considerations

As noted by Wood and Mason (1993) and later summarised by Wood et al. (2001), the
amount of form drag captured will tend to depend on the turbulence closure, with eddy-

17 By rectified geometric mean we signify the geometric analogue to the arithmetic mean of absolute value,
i.e., the geometric mean of exp

[∣∣ln
(
z0,eff|ϕ+180◦/z0,eff|ϕ

)∣∣].
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viscosity closures giving larger drag and z0,eff compared to second-order closure. But, as
Ayotte et al. (1994) pointed out, the mean flow over hills will only be weakly affected by the
turbulence parametrisation. A weakness of commonly-used two-equation RANS closures,
such as the k-ε one used here, is the lack of accounting for the pressure-strain terms (see
e.g. Pope 2000) which become significant due to hills. The results of the current work are
expected to hold for RANS using typical (eddy-viscosity) closures. Use of more advanced
turbulence modelling which includes e.g. pressure-transport or pressure-related anisotropy
for RANS (e.g. Reece and Rodi 1975; Speziale et al. 1991; Wallin and Johansson 2000), or
alternately using LES, will reduce the total form drag; the latter would subsequently require
reduction of the leading coefficient in each of (17)–(21), consistent with the reduction in
Wood and Mason (1993) of their shear factor. The equations given in the current work may
thus slightly overpredict z0,eff if compared with LES or RANS with higher-order closure.
However, for common stand-alone application or for RANS driven by mesoscale modelling,
this will not be an issue: the forms given here correspond to the displaced effective roughness
reproduced by RANS with eddy-viscosity closure.

5.3 Application and Recommendations

Because the terrain-slope variance is easier to calculate than the corresponding upslope
statistic, and because the latter was not found to improve predictions, we recommend use of
(17), (19), or (21) to find z0,eff in applications. Though it is not as accurate as (19) or (21),
the form (17), using γ = γ+ = 3, serves as a practical estimate of effective roughness in
applications where one cannot observe or diagnose deff a priori. But given the results shown
in Sect. 4.3.2, for applications where deff can be diagnosed following the method given in
Sect. 3.3 (such as those involving RANS), we recommend the simple and robust form (19). In
such applications, if the map and model resolution is finer than ∼1km and the lateral slopes
can be readily calculated, one may obtain further improvement by using (21).

6 Summary and Outlook

For brevity, we summarise what we have found and reported, via bullet points below.

• Complex terrain causes a displaced areal-mean logarithmic profile, with effective dis-
placement height deff, friction velocity u∗,eff, and roughness length z0,eff.

– Terrains have different {u∗,eff, deff, z0,eff} in opposite directions.

• Previous works cast z0,eff in terms of σh , but

– σh does not correlate with z0,eff unless terrain is mono-fractal.
– Previous methods mis-predict z0,eff by one order of magnitude.

• We can predict {u∗,eff, deff, z0,eff} using variance of streamwise terrain slopes.

– σ�h/�x using first-order finite differences gives robust results.
· Incorporating deff from flow field improves results, where deff is
diagnosed from terrain-following plane-mean profiles u∗(z).

· Further improvement found by also using lateral terrain slope.
– Using up-slope σ�h+/�x does not improve over σ�h/�x ;

· this upslope statistic does not account for hill sheltering.
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We note that the arguments of Beljaars et al. (2004) for choosing to parametrise terrain-
induced stress (instead of z0,eff) can still be considered, if one is looking to parametrise
unresolved terrain drag in mesoscale and climate models having (effective) resolutions of
several kilometres or greater. Consistent with this, and becausewe have seen that terrain slope
spectra can differ significantly from the Beljaars et al. (2004) form (see Fig. 1), ongoing work
includes extension of (17)–(21) to further account for limited mesoscale resolutions. One can
argue that simple analytical adjustment of our z0,eff for a given model resolution is possible,
if one knows σ�h/�x along with the high-wavenumber spectral exponent β and peak of the
terrain-slope spectrum for a given terrain (map); however, this needs to be further explored
and verified.

Our findings and statistical relations for terrain-induced effective roughness have multiple
applications involving microscale flow models, not limited to RANS. This includes choice
of z0,eff for inflow profiles to microscale flow models, to reduce the amount and spatial
extent of adjustment of the incoming flow as it approaches finely-resolved terrain. Another
usage involves the geostrophic drag law (GDL) in applications such as wind energy; use of
z0,eff in the GDL allows observations from an area of one terrain complexity to be used for
predictions in another area following the European Wind Atlas method (Troen and Petersen
1989), whether using e.g. linearised flowmodels or RANS solvers. The forms given here also
facilitate better coupling of mesoscale with RANS models: output from the former, which
typically do not resolve the drag below scales of several or even tens of kilometres (e.g. for
WRF having an effective resolution of 6–8 times its horizontal grid spacing, Pielke 2013),
may not resolve the peak part of the terrain-slope spectrum, while typical RANS application
resolves the terrain drag as found in this work. Mesoscale model wind speed (and possibly
velocity) output could be scaled using the ratio of low-pass filtered terrain slope variance to
said variance resolved by a microscale model, per direction; study and validation of such is
an ongoing task.

Brown and Wood (2003) found for stable conditions that using an effective roughness
length, independent of stability, gave reasonable results within one-dimensional models pre-
dicting total surface drag. Future work can include use of RANS solvers in stable conditions
(see van der Laan et al. 2017, 2020) to check the validity of such, and potentially extend our
z0,eff forms for these conditions. Further, RANSwith length-scale limited k-ε turbulence clo-
sure (Apsley andCastro 1997) or capping inversion can be used to investigate the development
of displaced mean profiles where the ABL depth is limited and stable stratification spreads
downward (Kelly et al. 2019b), though we note that RANS solvers generally cannot address
hill- or inversion-induced waves. Large-eddy simulation can more effectively facilitate such
investigation, though it is currently expensive in terms of computational resources.

Other ongoing and future work involves continued investigation into discoveries made in
this study, but beyond the scope of the current article. This includes: a relation observed
between the profile of terrain-following areal mean eddy viscosity and shape of the
probability density function of terrain slopes, which can be used to inform or improve
e.g. single-column models or PBL schemes; relations between terrain-slope PDF shape
and the high-wavenumber power-law exponent β; and relating spatial spectra of mean
(Reynolds-averaged) velocity and shear stress to terrain spectra at heights approaching
(or exceeding) deff. Growth of deff over complex terrain, downwind of simpler terrain, is
also ripe for investigation; this goes along with further testing of the results here in larger
finely-resolved domains, as well as investigation over terrain having different aerodynamic
roughnesses.
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