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Abstract
The physicist and mathematician Shang-Keng Ma once commented that “the simplest possi-
ble variable is one that can have two values. If there is only one value, no variation is possible."
Guided by this dictum, the telegraphic approximation (TA) is applied to the streamwise veloc-
ity component and air temperature time series acquired in the first metre above the salt flats of
Utah, USA. The TA technique removes amplitude variations and retains only zero-crossing
behaviour in a turbulent series, thereby allowing for an isolated examination of the role of
clustering in intermittency. By applying the TA technique, clustering properties are analyzed
to uncover dissimilarity in temperature and velocity across unstable, near-neutral, and sta-
ble atmospheric stratification. The spectral exponents of the original and of the TA series
are examined, with the inertial-subrange behaviour conforming to prior empirical relations
and the energy-containing range exhibiting deviations. These two distinct scale regimes are
observed in the standard deviations of the running density fluctuations of the TA series,
delineating scaling behaviour between fine and large scales. In the fine scales, clustering
is not appreciably affected by the stability regime and is higher than in the large scales. In
the large scales, the temperature series exhibits stronger clustering with increasing stability,
and higher clustering compared with the streamwise velocity component series under stable
conditions. Amplitude variations are shown to mitigate intermittency in the small scales of
velocity, but play only a minor role in intermittency for temperature. Last, the inter-pulse
period probability distributions are explored and implications to self-organized criticality as
models for TA turbulence are discussed.
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1 Introduction

Dissimilarity between the turbulent streamwise velocity fluctuations u′ and temperature fluc-
tuations T ′ remains a recalcitrant problem in turbulence research (Sreenivasan and Antonia
1997; Shraiman and Siggia 2000; Lumley and Yaglom 2001). At large (or integral) scales, T ′
exhibits distinct ramp-cliff patterns that are not apparent in u′ (Warhaft 2000). These patterns
appear in boundary-layer studies even in the presence of thermal stratification, canopy tur-
bulence, grid-generated turbulence, and several free shear turbulent flows (Gao et al. 1989;
Warhaft 2000; Sreenivasan and Antonia 1997).Within the inertial subrange (a range of scales
that are much smaller than the integral length scale but much larger than the Kolmogorov
microscale), second-order moments of the temperature and velocity structure functions both
exhibit approximate two-thirds scaling consistentwith theKolmogorov and theKolmogorov–
Obukhov–Corrsin hypotheses (Obukhov 1962; Antonia et al. 2009). However, higher-order
structure functions suggest more intermittent patterns in T ′ than u′ (Chambers and Antonia
1984; Warhaft 2000; Sreenivasan and Antonia 1997). This latter point is further underscored
by a much larger time-derivative skewness magnitude in T ′ when compared with u′ (Sreeni-
vasan 1991). It has been suggested that the excess skewness in dT ′/dt is due to the sharp
fronts of ramp-cliff patterns (Celani et al. 2001;Katul et al. 2006; Zorzetto et al. 2018) thereby
connecting intermittency within the inertial scales of T ′ with larger structures.

Two aspects characterize intermittency in turbulent flows—one related to properties of
its positive versus negative excursions and another related to large amplitude variations
within positive or negative states. To separate the two ingredients of intermittency, the so-
called telegraphic approximation (TA) can be employed (Sreenivasan and Bershadskii 2006).
The binary nature of the telegraphic approximation permits isolating event clustering in
time without being influenced by amplitude variations. Hence, telegraphic approximation
preserves the zero-crossing properties in the original time series but eliminates amplitude
variations associated with the energetic state. Although intermittency at integral scales and
within the inertial subrange for T ′ and u′ in the atmospheric surface layer (ASL) has been
studied previously (Chambers and Antonia 1984; Shi et al. 2005), the clustering behaviour
isolated from amplitude variations has rarely been considered except in a handful of studies
(Cava and Katul 2009; Cava et al. 2012, 2019; Chowdhuri et al. 2020; Li and Fu 2013; Liu
and Hu 2020; Poggi and Katul 2009). Moreover, memory in switching properties (positive-
to-negative or negative-to-positive excursions) and persistence in one of the two states across
turbulent scales is beginning to receive closer attention (Cava et al. 2012; Chamecki 2013;
Chowdhuri et al. 2020). The switching properties have been linked to systems exhibiting
self-organized criticality (SOC), a topic that has received attention and controversy starting
from the original work of Per Bak (Bak et al. 1988; Sreenivasan et al. 2004). These issues
motivate the present study.

This work inquires about the role of thermal stratification on clustering, persistence and
intermittencyofu′ andT ′ in theASLclose to the ground.Towhat extent does theTA technique
uncover dissimilarity between u′ and T ′ across various thermal stratification levels? Does the
excess intermittency in T ′ at inertial scales originate from clustering differences or amplitude
variability when compared to u′? Are the distributional properties of the negative events in
u′ and T ′ dissimilar across different thermal stratification? To what extent do analogies to
SOC apply to T ′ and u′? Answering these questions is the main compass of the experiments
and analysis here. The experiments reported here offer a unique perspective as well because
of their high sampling frequency (>100 Hz) and proximity to the ground (0.06–1.0 m).

123



Velocity and Temperature Dissimilarity in the Surface Layer… 387

Throughout, the following notation is used: x , y, and z indicate longitudinal (along mean
wind direction), lateral, and vertical directions, respectively. The variables U , V , W are
the instantaneous velocity components along the x , y, and z directions, respectively, with
U = U+u′, V = V +v′, andW = W +w′, where the overline indicates time averaging over
a 30-min interval and primed quantities indicate deviations from time-averaged quantities.
The coordinate system is selected so that V = W = 0. The instantaneous air temperature
T = T + T ′ is also needed to assess the role of buoyancy generation or destruction of
turbulent kinetic energy. In the ASL, atmospheric stability is quantified in one of two ways
(Garratt 1994; Wyngaard 2004). The Monin–Obukhov stability parameter ζ = z/L , where
L is the Obukhov length given by

L = − u3∗
κ

(
g/T

)
w′T ′ , (1)

and the flux Richardson number R f defined as

R f = (g/T )w′T ′

w′u′(dU/dz)
, (2)

where u∗ =
√

−w′u′ is the friction velocity, g is the acceleration due to gravity, and κ

is the von Kármán constant. The two atmospheric stability representations are related by
R f = ζ/φm(ζ ), where φm(ζ ) is the stability correction function for momentum discussed
elsewhere (Katul et al. 2011; Salesky et al. 2013).

2 Experimental Set-Up

The data were collected at the Surface Layer Turbulence and Environmental Science Test
(SLTEST) facility, located in the western deserts of Utah, USA. A 3-day intensive sampling
period (20 to 22 June 2018) was conducted as part of the Idealized horizontal Planar Array
study for Quantifying Surface heterogeneity (IPAQS) (Morrison et al. 2021). The site is
known for its near-canonical nature due to a low surface roughness and long uninterrupted
stretches of land in the dominant wind directions. Detailed description of the site can be
found elsewhere (Klewicki et al. 1998; Metzger and Klewicki 2001).

Longitudinal velocity component U and air temperature T measurements were simul-
taneously sampled in the ASL at 100 Hz in the first metre above ground using nanoscale
hot- and cold-wires operated in constant-current anemometry mode. The sensing element
of the nanoscale thermal anemometry probe (NSTAP) is a platinum wire filament 100 nm
in thickness, 2 µm in width and 60 µm in length, while the sensing element of its variant
for temperature measurements (T-NSTAP) is also a platinum wire of the same thickness
and width but slightly longer at 200 µm (Vallikivi and Smits 2014; Fan et al. 2015; Arwatz
et al. 2015). Unlike conventional instrumentation used in atmospheric turbulence studies (i.e.
sonic anemometers), the small size of the nanoscale sensors provides unprecedented spatial
resolution that is able to resolve the smallest length scales in the flow and ensure minimal
spatial filtering. By contrast, insufficient resolution of the spatial structure results in spatial
aliasing in the direction aligned with the sensor, and ultimately leads to artificially low mea-
surements, an effect that can be seen in any instrumentation that integrates thermodynamic
effects over space (Citriniti and George 1997). Although they could certainly be sampled at
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Table 1 Mean flow properties and stability classifications relative to the sonic anemometer positioned at z =
2 m for the 30-min periods analyzed (local time = UTC + 6 h)

Date Local time U (m s−1) ζ R f Stability

20/06/2018 2230 2.47 0.27 0.083 Stable

21/06/2018 2000 7.55 0.025 0.014 Near-neutral

2030 6.56 0.053 0.040 Near-neutral

2100 6.02 0.057 0.034 Near-neutral

2200 6.60 0.056 0.035 Near-neutral

2230 7.34 0.038 0.034 Near-neutral

22/06/2018 0430 4.00 0.19 0.091 Stable

0500 3.14 0.12 0.077 Stable

0800 4.10 − 0.13 − 0.18 Unstable

0830 3.86 − 0.13 − 0.23 Unstable

The parametersU and ζ were calculated using the sonic anemometer data, while R f was estimated from both
the sonic anemometer data and the mean velocity profile given by the NSTAPs and evaluated at z = 2 m

higher frequencies, the sensors were sampled at 100 Hz for this initial deployment and do
not capture the dissipation range behaviour.

Five stations of simultaneously sampling NSTAPs and T-NSTAPs were spaced on an
approximately logarithmic scale at heights z = 0.0625, 0.125, 0.25, 0.5, and 1.0 m above the
ground.Due to sensor breakage, not all sampling heights are represented in the analysis below.
Trends caused by a varying freestream velocity were removed following the methodology
of Hutchins et al. (2012) and frequency components lower than 300−1 Hz were filtered
out. Out of 92 30-min records collected, 77 records were discarded due to misalignment
between the incoming flow and the sensors, and five were discarded due to non-stationary
effects. The resulting 10 records are summarized in Table 1 and classified as unstable when
ζ < −0.1, near-neutral when |ζ | ≤ 0.1, and stablewhen ζ > 0.1. The stationarity of themean
longitudinal velocity component U and the turbulence intensity σu/U at each measurement
height was verified using the reverse arrangement test and the runs test with a 95% confidence
interval (Bendat and Piersol 2011).

For a smooth wall, the onset of the logarithmic layer taken to be z+ = zu∗/ν > 100 (Val-
likivi et al. 2015) places the lowest sampling height of z+ ≈ 850 well within the logarithmic
region. Under near-neutral conditions, the equivalent sand grain roughness was estimated to
be ≈ 2.5 mm with the relation for a zero-pressure-gradient neutral boundary layer as dis-
cussed in Huang et al. (2021), so that the lowest sampling height is about 25 times that of
the roughness height. However, recent evidence suggests that the extent of the buffer layer
may be a function of the Reynolds number δ+ = δu∗/ν and extend to z+ ≈ 3(δ+)1/2 in
smooth-wall conditions (Marusic et al. 2013; Wei et al. 2005). Using this criterion and the
boundary-layer thickness estimated under near-neutral conditions (as discussed in Huang
et al. 2021), this results in an onset of the logarithmic layer at z+ ≈ 2700 so that the
lowest two measurement heights would be within the buffer region below, where sweeps
tend to dominate and contribute to the positive skewness values observed in Fig. 2 (Heisel
et al. 2020). More details regarding the experimental set-up can be found in Huang et al.
(2021).
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(b)

(a)

Fig. 1 Example of a u′(t) series (a) and its corresponding TA series Xu′ (b) collected at z = 0.25 m withU =
5.3 m s−1

3 Method of Analysis

The telegraphic approximation of a turbulent series isolates clustering effects from amplitude
variations by prescribing amagnitude of onewhen the turbulent series exceeds themean value
(or another threshold) and a magnitude of zero when it does not. By construction, a TA series
is a binary series with no information on amplitude variations and retains only clustering (or
zero-crossing statistics) information from the original series. Mathematically, the TA series
of a fluctuating flow variable s′(t) at time t is calculated as

Xs′ = 1

2

(
s′(t)
|s′(t)| + 1

)
, (3)

where the straight brackets denote a time average. To illustrate, Fig. 1 shows a 30-s period
of u′(t) and its TA series measured at z = 0.25 m.

The following discussion assumes Taylor’s frozen turbulence hypothesis to convert tem-
poral to one-dimensional spatial cuts along x . To minimize distortions arising from the usage
of Taylor’s hypothesis, time scales are normalized by the integral time scale �t of a flow
variable s′ that is given by

�t =
∫ ∞

0
ρs(τ )dτ, (4)

where ρs(τ ) = s′(t)s′(t + τ)/s′2 is the temporal autocorrelation function of s′ at time lag τ .
The integration in Eq. 4 is, in practice, terminated at the first zero-crossing of the autocorre-
lation function. This normalized scale variable can be interpreted in space as relative eddy
sizes when Taylor’s frozen turbulence hypothesis is invoked. Because distortions introduced
by Taylor’s hypothesis affect simultaneously the numerator and denominator, the scale ratio
τU/(�tU ) is more robust to such distortions.
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3.1 Non-Gaussianity and the Telegraph Approximation

Asdiscussed elsewhere (Poggi andKatul 2009), the TA technique preserves the non-Gaussian
properties of any flow variable s′ via Γ+, the fraction of time s′ > 0. For illustration, the case
where the probability density function (p.d.f.) of s′ can be approximated using a third-order
cumulant expansion is considered. That is,

p(s′
n) = G(s′

n)

[
1 + 1

6
Sks

(
s′3
n − 3s′

n

)
]

, (5)

where s′
n = s′/σs is normalized to zero-mean and unit variance, σs =

√
s′2 is the standard

deviation of s′, Sks = s′3
n is the skewness of s′, and G(s′

n) = (2π)−1/2 exp
(−s′2

n /2
)
is the

Gaussian p.d.f. In this case, the fraction of time the process exhibits positive excursions (i.e.
Xs′ = 1) is given by

Γ+ =
∫ ∞

0
p(ξ)dξ = 1

2
− 1

12

√
2
π
Sks . (6)

Inclusion of the kurtosis (often linked to intermittency as discussed elsewhere (Townsend
1976)) via a fourth-order cumulant expansion of p(s′

n) (instead of third-order) does not alter
the above linear relation between Γ+ and Sks . A similar expression can be derived for the
negative excursions (Γ−) given by

Γ− =
∫ 0

−∞
p(ξ)dξ = 1

2
+ 1

12

√
2
π
Sks . (7)

Thus, the imbalance Γ is given by

Γ = Γ+ − Γ− = −1

6

√
2
π
Sks . (8)

For a Gaussian distributed s′, Γ = 0. The expression in Eq. 8 is to be explored across
different ζ regimes and for u′ and T ′.

3.2 Spectral Exponents

While the prior section illustrates how skewness is globally captured by the TA technique,
this section describes how correlations (or spectral density functions) are encoded. It was
demonstrated empirically from several numerically generated stochastic series that when the
power spectral density of the original series scales as f −n and that of its TA series as f −m ,

m = n + 1

2
, (9)

where f is the frequency, n is the spectral exponent of the original series and m of its TA
series (Sreenivasan and Bershadskii 2006). This result holds for both velocity and passive
scalars.

In the inertial subrange where n = 5/3, Eq. 9 predicts m = 4/3 in the TA series, or a slower
spectral decay rate. Generally, m < n indicates that there is more ‘memory’ in the TA series
than in the original time series; that is, amplitude variations seem to have ‘de-correlating’
effects on the series. The applicability of Eq. 9 to scales associated with larger eddies (e.g.
attached to the wall) as well as any thermal distortions to them are considered here. For
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scales larger than the inertial scales for both u′ and T ′ under near-neutral conditions, n = 1
(which corresponds explicitly to wall-attached eddies and are discussed in Townsend (1976);
Perry et al. (1986); Banerjee and Katul (2013); Katul et al. (2012); Li et al. (2016)) yields
a predicted m = 1 for the TA series, the same spectral decay rate as its original signal. For
non-neutral conditions, the value of the spectral exponent n is dependent on the stability
regime and can be found elsewhere (see e.g. Chamecki et al. 2017).

3.3 Clustering Exponents

The clustering tendency of a signal is characterized by the clustering exponent α. The average
density nτ of zero-crossings is first determined by counting the number of zero-crossings
within a time interval τ and then normalizing by the number of points in that time interval
(note that this is the same zero-crossing information as in the original signal). The clustering
exponent α is then determined from the scaling behaviour of the standard deviation of the
running density fluctuations 〈δn2τ 〉1/2 with τ , where δnτ = nτ −〈nτ 〉, and the angled brackets
denote time averaging for window size τ . That is,

〈δn2τ 〉1/2 ∼ τ−α. (10)

For reference, it can be determined analytically that white noise, which exhibits no clus-
tering behaviour, has a clustering exponent of α = 0.5. Sreenivasan and Bershadskii (2006)
empirically showed that as the Taylor microscale Reynolds number Reλ → ∞, α → 0.1
such that finite clustering persists. They also observed that for 200 < Reλ < 20,000, the
clustering exponent α ranged from 0.25 to 0.4 for scales in the dissipative and inertial ranges,
but is approximately a white noise value of α = 0.5 for scales larger than the integral scale
of the flow.

3.4 Intermittency Exponents

The variance dissipation rate of s′ is characterized by the quantity

ξ(t) =
∣∣∣∣
ds(t)

dt

∣∣∣∣

2

. (11)

Its local average, as first introduced by Obukhov (1962),

ξτ = 1

τ

∫ t+τ

t
ξ(t)dt, (12)

is used to determine the intermittency exponent μq from scaling of its q th moment,

〈ξqτ 〉
〈ξτ 〉q ∼ τ−μq . (13)

A non-zero μq value indicates that there is a clusterization of pulses and the series is
intermittent. By contrast, a uniform random distribution of pulses with no clusterization
yields μq = 0. To compare with previous literature, only μ2 (q = 2) is considered. Going
forward, μs denotes μ2 of the original series, and μT A of the corresponding TA series.

Determined from the original series, μs contains information on both clusterization and
amplitude variations, while μT A retains only information on clusterization. As noted earlier,
intermittency is composed of two aspects, one related to amplitude variability and one related
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to clustering. It follows that a comparison of the magnitudes of μT A and μs could indicate
the role of amplitude variability in the observed intermittency. That is,μT A/μs > 1 suggests
that amplitude variations mitigate intermittency; μT A/μs < 1 that amplitude variations
amplify intermittency; and μT A/μs ∼ 1 that much of the observed intermittency is due to
clusterization and not amplitude variability.

3.5 Probability Density Function of the Inter-pulse Period

Lastly, the p.d.f. of the inter-pulse period is considered. The inter-pulse period Ip is defined
as the interval of time between successive zero-crossings, or

Ip (i) = t̂i+1 − t̂i , (14)

where t̂i is the timeof the i th zero-crossing. The p.d.f of Ip , p(Ip), can be related to persistence
defined as the probability that the local value of a fluctuating quantity s′ does not change sign
up to a time Ip (Sreenivasan et al. 1983; Kailasnath and Sreenivasan 1993; Chamecki 2013).
As a result, p(Ip) is also referred to as the persistence p.d.f.

The statistical characteristic describing the persistence p.d.f. continues to draw significant
attention (Chowdhuri et al. 2020). Sreenivasan and Bershadskii (2006) showed that the prob-
ability law of the persistence p.d.f. may offer a classification of turbulence. A log-normal
distribution, which is characteristic of a white noise process, classifies turbulence as ‘passive’
(i.e. for a passive scalar in shear-driven turbulence). On the other hand, a power-law scaling
such that

p(Ip) ∼ I−γ
p (15)

classifies turbulence as ‘active’ (i.e. in convective turbulence). More recently, studies have
shown support for the persistence p.d.f. to follow a power-lawdistributionwith an exponential
cut-off (a stretched exponential) (Chowdhuri et al. 2020; Cava et al. 2012; Chamecki 2013).
The occurrence of power laws (or stretched exponentials) in the persistence p.d.f. is of
interest to phenomenological models of turbulence. Jensen et al. (1989) formally showed
that for systems near critical behaviour,

m = 3 − γ. (16)

Further, to account for intermittency Bershadskii et al. (2004) modified the relation to

m = 3 − γ − μ/2. (17)

Hence, μ inferred from m and γ for u′ and T ′ across different stability regimes may also
offer new perspectives about intermittency and clustering in the ASL.

4 Results and Discussion

4.1 Non-Gaussianity and the Telegraph Approximation

To explore whether the TA technique preserves the non-Gaussian properties of the original
time signal, Γ as defined in Sec. 3.1 is presented against the skewness Sks of the original
series for both u′ and T ′ for each dataset summarized in Table 1 for all heights in Fig. 2. For
all cases, the agreement of the results with Eq. 8 indicates that the TA series is able to capture
the skewness of the p.d.f. of the original times series.
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Fig. 2 Scatter plot of Γ , the
difference between the fraction of
time the turbulent fluctuations are
positive and negative, against the
corresponding skewness Sks of
the original signal for both u′ and
T ′ for each dataset listed in Table
1 and for all available heights

The ability of the TA technique to preserve skewness via the fraction of time the signal
exhibits positive versus negative excursions has also been shown in TA studies of other
flows (Cava et al. 2012), and demonstrates that non-Gaussianity in the flow is related to not
only amplitude variations (as demonstrated by Katul 1994; Giostra et al. 2002), but also to
clusterization, the other aspect of intermittency.

4.2 Spectral Exponents

The u′ and T ′ spectra were computed using standard fast Fourier transforms with constant
levels of electronic noise subtracted. The spectra of the original series and of its TA series
under near-neutral conditions for both u′ and T ′ are shown in Fig. 3 as an example. For refer-
ence, f −1 and f −5/3 are presented for the original series (Fig. 3a, c), and the corresponding
f −1 and f −4/3 scalings predicted by Eq. 9 for the TA series (Fig. 3b, d).
For each spectrum, two spectral exponents were determined: one from the large scales

(that includes attached eddies), and one from finer scales in the inertial subrange. The energy-
containing range was defined as (6�t )

−1 < f < (�t/6)−1 in accordance with Pope (2000),
where �t is defined as in Eq. 4 and averaged across the available runs for each stability
regime and each height. The inertial subrange was defined to start at f = (�t/6)−1 and ends
just before noise sets in for each run. As a result, each variable and height have different
frequency values that define the two scaling regimes, as indicated by the groups of vertical
lines in Fig. 3.

To explore the relation between the spectral exponentsm and n, and the validity of Eq. 9 to
scales associatedwith larger, attached eddies, exponents from both the energy-containing and
inertial regions are represented in Fig. 4, and exponents from the respective regions in Fig.
5. Further, a synthetic turbulence series was generated from each spectrum by randomizing
its phase angle while preserving its shape to examine whether the relation between m and n
is an exclusive property of turbulence related to the Navier–Stokes equations. The spectral
exponents of the phase-randomized series are also calculated and represented byopenmarkers
in each figure.
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Fig. 3 Ensemble-averaged energy spectra of the original u′ signal (a) and its TA series (b) and of the original
T ′ signal (c) and its TA series (d) as a function of frequency f for near-neutral conditions. The vertical lines
represent the frequencies used to calculate m and n; from left to right, the groups of vertical lines correspond
to (6�t )

−1, (�t/6)−1, and the frequency before noise sets in

When data from both regions and for both u′ and T ′ are considered (Fig. 4), despite
deviations from the n = 1 scaling in the energy-containing range and the n = 5/3 in the
inertial subrange, the linearity m = an + b holds (where in Eq. 9, a = b = 1/2), confirming
that the TA spectra contain significant information about the scaling laws of the original
spectra for both velocity and scalar time series. This was also demonstrated by a number
of other studies that examined this relationship in the inertial subrange (Sreenivasan and
Bershadskii 2006; Cava and Katul 2009; Cava et al. 2012), among which the exact values
of a and b differ. The current data exhibit a linear regression with a = 0.60 and b = 0.33,
as compared to a = b = 1/2 found by Sreenivasan and Bershadskii (2006). A regression
fit that deviated from that of Sreenivasan and Bershadskii (2006) was also observed by Cava
and Katul (2009) in the canopy sublayer when combining all flow variables including scalars
(a = 0.66 and b = 0.09), which is also plotted in Fig. 4 for reference.

To delineate the large- and small-scale behaviours, the results are considered by their
respective regions. For energy-containing eddies, the relation between m and n exhibits a
higher slope and lower intercept at a = 0.75 and b = 0.16. That is, for scales associated with
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Fig. 4 Scatter plot of the spectral exponents of the original data (n) and of the corresponding telegraph
approximations (m) calculated from ensemble-averaged energy spectra for each stability regime for both u′
and T ′ and for each available height. The filled markers represent the real data, while the open markers
represent the corresponding phase-randomized, synthetic data (denoted “PR” in the legend)
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Fig. 5 As Fig. 4 but for the energy-containing region only (a) and for the inertial subrange only (b)

attached eddies, the m = (n + 1)/2 expression derived for turbulence far from boundaries
generally overestimates the observed spectral slope of the TA series. This suggests that while
linearity between m and n holds, a different scaling relation exists for the energy-containing
range. However, the limited number of datasets prevents any significant insight being drawn
on the exact values of a and b for this region. On the other hand, the relation for data in the
inertial subrange, presented in Fig. 5b, does not appear to be statistically different than the
relation proposed by Sreenivasan and Bershadskii (2006) given the scatter in the data.

The synthetic, phase-randomized data are not statistically different than the real turbulence
data. This finding suggests that the relation between the original spectral exponent n and
the TA spectral exponent m is not an exclusive property related to the temporal evolution of
turbulence through theNavier–Stokes equations, but rather a property of stochastic processes.
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Fig. 6 Standard deviations for the running zero-crossing density fluctuations for u′ under unstable (a), near-
neutral (b), and strongly stable (c) stability regimes, and for T ′ under unstable (d), near-neutral (e), and strongly
stable (f) stability regimes. For each variable and each height, the standard deviations are ensemble-averaged
across cases with the same stability regime as given in Table 1. As a reference, the values for white noise (α =
0.5) and for the limit Re −→ ∞ (α = 0.1) are also featured. The straight black lines are best-fits that indicate
the scaling laws of the two regions separated at τ/�t ∼ 1/6

Whether the observed slope of the linear relation is a stochastic property specific to wall-
bounded turbulent flows remains to be explored.

4.3 Clustering Exponents

Figure 6 presents the standard deviations of the zero-crossing density fluctuations 〈δn2τ 〉1/2
as a function of τ/�t , where �t is the integral time scale. There is a visible break in scaling
behaviour at τ/�t ∼ 1, indicating a difference in clustering tendencies between the fine
scales (those in the inertial subrange) and the large scales (those associated with energy-
containing eddies). For the current analysis, the demarcation between the two ranges of
scales was taken to be τ/�t = 1/6 in accordance with the cut-off frequency in calculating
the spectral exponents. As reference, α = 0.1 in the limit of infinite Reλ as predicted by
Sreenivasan and Bershadskii (2006) and α = 0.5 representative of a white noise process
(with no clustering behaviour) are also plotted.
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Fig. 7 As Fig. 6 but for the multi-point telegraphic approximation u′ (a) and T ′ data (b)

In addition, this analysis was repeated in a multi-point framework by conditioning the
TA series to be one at all heights, so that the occurrence of a coherent TA value ensures
that all heights exceed their local mean simultaneously. That is, the multi-point telegraphic
approximation is prescribed a value of one only when all available heights had positive
turbulent excursions. This analysis serves as a generic telegraphic approximation that can
assess the differences between u′ and T ′ without regard to sampling height, and represents
coherent clustering behaviour of large-scalemotions across the range of heights sampled. The
quantity 〈δn2τ 〉1/2 is plotted against τdU/dz for the multi-point telegraphic approximation in

Fig. 7, where
(
dU/dz

)−1
is calculated at z = 1 m and represents the mean shear time scale.

Lastly, to examine the effects of stability and distance from the surface on the clustering
behaviour, profiles of α are presented in Fig. 8, with the results of the multi-point TA featured
on the z = 0 axis. The following observations can be made:

1. The fine scales for both u′ and T ′ exhibit higher clustering (lower α values) than the large
scales. For the fine scales across both variables and under all three stability classes, α ∈
[0.23, 0.31], consistent with α values reported elsewhere for the fine scales (Sreenivasan
and Bershadskii 2006).

2. Overall, distance from the ground does not seem to be a dynamically significant variable
in clustering at all scales of both u′ and T ′. Despite a tenfold difference in measuring
height, the clustering exponentwasmore or less vertically homogeneous under all stability
conditions.

3. The fine scales of both u′ and T ′ exhibit less scatter in α across the three stability classes
in comparison to the large scales.

4. In the fine scales, the T ′ series exhibit slightly higher clustering than the corresponding u′
series for the same stability conditions. The average α values across all sampling heights
for u′ and T ′ are 0.28 and 0.27, respectively, for near-neutral conditions, 0.30 and 0.27
for unstable conditions, and 0.29 and 0.25 for stable conditions.

5. The large scales of T ′ appear to be the most sensitive to atmospheric stability and exhibit
higher clusterization (lower α values) under stable conditions. When compared to the
corresponding u′ signal, the T ′ series reveals higher clusterization under stable conditions,
but lower clusterization under unstable conditions.
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Fig. 8 Profiles of clustering exponents ensemble-averaged for each stability regime for the small scales of u′
(a), the large scales of u′ (b), the small scales of T ′ (c), and the large scales of T ′ (d). The data points on the z
= 0 axis represent the clustering exponents of the multi-point telegraphic approximation for the corresponding
variable and stability regime. The dashed vertical line indicates α = 0.1 in the limit of infinite Reλ

6. The coherent clustering behaviour of large-scale motions represented by the multi-point
TA generally conforms to the observations above. The fine scales for both u′ and T ′ exhibit
similar clustering tendencies across all stability regimes with a value close to α = 0.2.
The large scales exhibit less clustering in comparison, with α > 0.33. For the large scales,
higher clustering in T ′ compared with u′ was observed under all stability conditions.

As observed in other studies, the large scales exhibit less clustering and approach the
white noise value of α = 0.5, while the fine scales exhibit higher clustering (Sreenivasan
and Bershadskii 2006; Cava and Katul 2009). The fine scales of both u′ and T ′ appear less
sensitive to atmospheric stability compared with the large scales, consistent with the idea that
small-scale fluctuations approach local isotropy and are thus less affected by thermal insta-
bilities. The large scales of T ′, on the other hand, exhibit increased clustering with increasing
atmospheric stability. This could be related to the non-stationary and localized shear pro-
duced by submesoscale motions, which are present in stable boundary layers (Anfossi et al.
2005). Increased clustering in T ′ compared with u′ was also observed in the small scales for
all stability conditions, the extent of which was most noticeable under stable conditions. This
could be a signature of large-scale structures such as shear-driven ramps impacting scales in
the inertial range, reflective of the connection between sharp fronts of ramp-cliff patterns and
an excess time-derivative skewness magnitude in T ′ when compared to u′ (Celani et al. 2001;
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Fig. 9 Normalized second moment of the squared temporal gradients ensemble-averaged across datasets with
unstable stability for u′ and its corresponding TA series Xu′ , (a) and (b) respectively, and for T ′ and its
corresponding TA series XT ′ , (c) and (d) respectively. The straight lines are best-fits that indicate the scaling
laws for the two regions separated at τ/�t ∼ 1/6

Katul et al. 2006; Zorzetto et al. 2018). Lastly, a multi-point TA analysis (a coherent TA value
that takes on a value of one only when all heights exceed their local mean simultaneously)
was performed and shown to conform largely with the observations above, thereby providing
a generic TA framework that can assess differences between u′ and T ′ without regard to
distance from the ground.

4.4 Intermittency Exponents

The intermittency exponents μs and μT A were computed for both u′ and T ′ for all three
atmospheric stability conditions. As an example, the scaled second moment as described by
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Fig. 10 Profiles of the ratio between μT A and μs ensemble-averaged across datasets with the same stability
regime as given in Table 1, for the small scales of u′ (a), the large scale of u′ (b), the small scales of T ′ (c),
and the large scales of T ′ (d)

Eq. 13 (withq = 2) against τ/�t for the unstable condition is plotted in Fig. 9. Twodistinctive
scaling regimes are again present with separation at τ/�t ∼ 1, permitting estimation of
intermittency exponents in both fine and large scales. The demarcation was again taken to
be τ/�t = 1/6 here. Profiles of the ratio μT A/μs are presented in Fig. 10. The following
observations can be noted:

1. In both the small and large scales of u′, μT A/μs > 1 across all stability regimes, which
suggests that amplitude variations weaken intermittency for u′.

2. By contrast, in the fine scales of T ′, μT A/μs ∼ 1 suggests that amplitude variations do
not play a significant role in intermittency, so that much of the observed intermittency is
due to clusterization.

3. The magnitude of μT A/μs is homogeneous across all stability conditions and all heights
in the small scales of u′ (where μT A/μs ≈ 1.5) and of T ′ (where μT A/μs ≈ 1).

4. The large scales of T ′ appear the most sensitive to stability conditions, with stable con-
ditions yielding larger μT A/μs values than those under the unstable and near-neutral
conditions, which are comparable. That is, stability seems to increase the role of ampli-
tude variations in weakening the observed intermittency for the large scales of T ′.

In the small scales of u′, amplitude variation seems to weaken intermittency, while in the
small scales of T ′, amplitude variations do not seem to play a role in the observed intermit-
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Fig. 11 Ensemble-averaged p.d.f.s of the inter-pulse period for each stability regime and for both u′ and T ′,
offset to permit comparisons. The power-law fit is applied to Ip/�t < 1/6, and the legend for the sampling
heights is the same as in Fig. 6

tency and much of the observed intermittency is due to clusterization. This observation is
consistent with Cava and Katul (2009). The insensitivity of these μT A/μs ratios to thermal
stability in the small scales is again reflective of the idea of smaller scales approaching local
isotropy. By contrast, the large scales of T ′ appear the most sensitive to stability conditions,
where the extent to which amplitude variation weakens intermittency increases with atmo-
spheric stability. That is, as stability increases, the magnitude variations play an increasingly
prominent role in smoothing the clusterization effects in the large scales of T ′.

4.5 Probability Density Function of the Inter-pulse Period

The persistence p.d.f.s at all heights and under all stability regimes for both variables are
presented in Fig. 11. The inter-pulse periods have been normalized by the respective integral
time scales.
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Fig. 12 Spectral exponent m (of
the TA spectra) from the inertial
subrange plotted against γ
obtained from a power-law fit to
the small inter-pulse periods
(Ip/�t < 1/6). For reference,
m = 3 − γ for systems near
critical behaviour and its
modification to account for
intermittency are also plotted
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The results presented here are consistent with the observations made by Chowdhuri et al.
(2020), where the persistence p.d.f.s display a power-law behaviour at smaller Ip up to a
threshold, then display an exponential cut-off. Here, it is evident that at small Ip , the power
law is the optimal distribution for the persistence p.d.f. As Ip approaches �t , the onset of an
exponential cut-off can be seen. This picture can be shown statistically, with the stretched-
exponential distribution providing a good fit to the persistence p.d.f.s (R2 > 0.93) for all
cases.

Overall, the persistence p.d.f. seems to follow different shapes in the various scaling
regimes (much like the energy spectrum behaviour). The log-normal distribution shape as
seen in Sreenivasan and Bershadskii (2006) for Ip/τd < 100, where τd is a dissipative
time scale, characterizes the smallest inter-pulse periods corresponding to the dissipative
scales (which were beyond the sampling frequency of 100 Hz and thus not apparent in the
current dataset). At longer inter-pulse periods commensurate with the inertial subrange, an
approximate power law characterizes the persistence p.d.f., while at the longest inter-pulse
periods corresponding to the energy-containing scales, an exponential tail describes the p.d.f.
well.

To examine links between the small-scale turbulent behaviour and SOC processes, Fig.
12 presents the TA spectral exponent m from the inertial subrange against γ obtained from a
power-law fit to small Ip (here, to Ip/�t = 1/6). For all cases except the stable T ′ series, the
dataset exhibits a linear behaviour that is close to that of the expected relation for systems near
critical behaviour (m = 3− γ ), but with a lower intercept. Modification of the SOC relation
to m = 3 − γ − μT A/2 was able to significantly improve the agreement between measured
and modelled m. However, some deviation still exists, mainly in the T ′ data, suggesting that
there is excess intermittency not captured by μT A. This could be a signature of the presence
of ramp-like patterns often found in scalars that tend to introduce extra intermittency and
generate sharp edges, which have been shown to have an impact on inertial scales (Katul
et al. 2006). By contrast, m and γ appear to be uncorrelated in T ′ under stable conditions,
suggesting that the small-scale turbulent behaviour under stable conditions deviates from a
SOC process. Overall, the SOC process seems a plausible model for small-scale-turbulence
behaviour, at least within the confines of the TA framework.
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5 Conclusions

TheTA techniquewas applied to the streamwise velocity component u′ and air temperature T ′
data taken in the first metre above the surface of salt flats. The current study utilizes nanoscale
hot- and cold-wires with high spatial resolution, thereby permitting analysis with no spatial
filtering effects, sampled at 100 Hz to capture inertial-range behaviour. The telegraphic
approximation removes amplitude variations in turbulent excursions, and distills only clus-
tering effects, one key component of intermittency. To examine dissimilarities in clustering
behaviour of u′ and T ′, the spectral exponents and zero-crossing properties (including clus-
tering, intermittency, and inter-pulse period distributions) were computed and relationships
among them were analyzed across unstable, near-neutral, and stable regimes. This analysis
extends studies that consider isolated clustering behavior without amplitude variations to the
flow very near the surface (≤1 m) over a smooth terrain. In addition to the inertial subrange,
which is the main focus of past studies, TA properties in the energy-containing region are
presented and discussed.

Signatures of excess intermittency in T ′ as compared to u′ can be seen in the clustering
exponents, where it was shown that in the stable case, T ′ exhibits higher levels of cluster-
ing compared with u′ in both the small and large scales. This suggests that the large-scale
structures could also be impacting the inertial scales. When considering the relative ratio of
intermittency exponentsμT A/μs , most of the observed intermittency comes from clusteriza-
tion in the small scales of T ′ (that amplitude variations play a comparatively negligible role
in intermittency), and that the relative ratio of intermittency exponents in the large scales of
T ′ is noticeably higher in magnitude compared with the respective u′ counterparts (that is,
the extent at which amplitude variability smooths out the signal is higher in T ′). Generally,
the distributional properties of the inter-pulse periods in u′ and T ′ are similar, in which the
persistence p.d.f. exhibits a power law at inter-pulse periods commensurate with the inertial
scales, followed by an exponential cut-off at the larger inter-pulse periods, consistent with
Chowdhuri et al. (2020). The TA properties share attributes with a SOC process by consid-
ering the relation between the power-law exponent of the persistence p.d.f. and the spectral
exponent of the telegraphic approximation in the inertial subrange. Except for the stable T ′
data, the modified SOC relation m = 3 − γ − μT A/2 is applicable for both flow variables
and stabilities—at least under the confines of the TA framework—and displays signatures of
excess intermittency in T ′ beyond the intermittency exponent μT A.

Due to the limited number of datasets in the current study and the positive skewness (as seen
in Fig. 2), which ismost often observed in the near-wall region (e.g. buffer region or roughness
layer) where sweeps tend to dominate (see e.g. Heisel et al. 2020), whether the above findings
are general and apply throughout the surface layer or are limited to near-surface phenomena
remains to be explored. Nonetheless, the results here indicate that the TA approach is able to
uncover dissimilarity between u′ and T ′ across various thermal stratification levels and serve
as a starting point for further studies concerning clustering within the ASL.
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