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Abstract
Air-pollution modelling at the local scale requires accurate meteorological inputs such as
from the velocity field. These meteorological fields are generally simulated with microscale
models (here Code_Saturne), which are forced with boundary conditions provided by larger
scale models or observations. Local atmospheric simulations are very sensitive to the bound-
ary conditions, whose accurate estimation is difficult but crucial. When observations of the
wind speed and turbulence or pollutant concentration are available inside the domain, they
provide supplementary information via data assimilation, to enhance the simulation accu-
racy by modifying the boundary conditions. Among the existing data assimilation methods,
the iterative ensemble Kalman smoother (IEnKS) is adapted to urban-scale simulations.
This method has already been found to increase the accuracy of wind-resource assessment.
Here we assess the ability of the IEnKS method to improve scalar-dispersion modelling—
an important component of air-quality modelling—by assimilating perturbed measurements
inside the urban canopy. To test the data assimilation method in urban conditions, we use the
observations provided by the Mock Urban Setting Test field campaign and consider cases
with neutral and stable conditions, and the boundary conditions consisting of the horizontal
velocity components and turbulence. We prove the capacity of the IEnKS method to assim-
ilate observations of velocity as well as pollutant concentration. In both cases, the accuracy
of pollutant concentration estimates is enhanced by 40–60%. We also show that assimilat-
ing both types of observations allows further improvements of turbulence predictions by the
model.
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1 Introduction

Atmospheric-dispersionmodelling is used for numerous applications: air-quality assessment,
exposure indicators, supporting air-quality planning and directives, or for nuclear emergen-
cies, such as an accident or malicious activity (e.g., Hanna et al. 2006; Kumar et al. 2011;
Benamrane et al. 2013). Many of these applications occur at the local scale in urban areas or
around industrial sites where the presence of buildings makes the simulation domain more
complex. Since the evolution of pollutants in the atmosphere is mainly driven by the flow,
dispersion modelling requires knowledge of the meteorology over small domains.

Computational fluid dynamics models, together with the Reynolds-averaged Navier–
Stokes model for turbulence, include only a few approximations and are well suited to
precisely account for buildings and to simulate the flow field and temperature over com-
plex terrain. As a consequence, there is a growing consensus for using computational uid
dynamics (CFD) models in atmospheric-dispersion modelling at the local scale (Robins
2003; Holmes and Morawska 2006; Blocken et al. 2013). Such models generally offer the
possibility of transporting passive scalars and thus representing the evolution of non-reactive
tracer concentration. In order to represent reactive pollutants, CFD models can be coupled
to chemistry or aerosol models (Albriet et al. 2010).

Computational fluid dynamics models used for dispersion modelling are very sensitive to
the input parameters related to the pollutant source term (location and mass rate) and to the
meteorological conditions. In particular, the domains under scrutiny in micrometeorological
studies are relatively small compared with the distance travelled by flow information during
a typical integration time. Finally, the influence of the initial conditions rapidly vanishes
and the solution is largely determined by the boundary conditions which have a substantial
impact on the accuracy of the local-scale atmospheric simulations (Srebric et al. 2008).

Observations are widely used for dispersion studies but mainly for validation purposes.
Currently, the exploitation of observations through data assimilation (DA) has mostly been
performed to solve inverse problems for source identification (e.g., Davoine and Bocquet
2007; Winiarek et al. 2012). A few studies have used DAmethods to improve the knowledge
of the source and flow field input parameters for puff models (Krysta et al. 2006; Kovalets
et al. 2009). In such studies, the assimilated observations are measurements of pollutant
concentration and the typical spatial scales are much larger than those considered in microm-
eteorology. So far, the flow observations available within built environments have rarely
been included to improve micrometeorological simulations. While these observations might
be strongly perturbed by the geometrical features of the domain, they still contain useful
information which could be taken into account through the DA method.

In the DA literature, boundary conditions are rarely considered as control variables. Only
recently,Mons et al. (2017) and Sousa et al. (2018) have used ensemble-basedDAmethods to
estimate the incoming wind speed and direction at one level for input to the CFD simulations,
including only these two variables in the control vector. In the present work, we propose
describing the boundary conditions with a complete vertical profile of velocity (u- and v-
components) and turbulence kinetic energy (TKE), which leads to tens of control variables.
We thus use the DA method to enhance the accuracy of CFD atmospheric simulations at the
local scale through the correction of a large control vector of the boundary conditions.

Among the existing DA methods, the iterative ensemble Kalman smoother (IEnKS) was
chosen and adapted to local-scale simulations by taking the boundary conditions into account.
The IEnKSmethodwas selected after comparing itwith the back-and-forth nudging algorithm
(Auroux and Blum 2008; Defforge et al. 2018); both approaches present the advantage of
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being independent of themodel, in particular because they do not require the adjointmodel. In
addition, the IEnKSmethod is well adapted to parallel computation and to nonlinear systems
such as the Navier–Stokes equations. Previous studies and alternative methods have already
proved the ability of the IEnKS method to assimilate flow observations available within
prospected sites for the installation of wind farms, which has improved the accuracy of wind-
resource assessment (Defforge et al. 2019). Sincewe consider stationary boundary conditions
and assume that the model is perfect, there is no difference between the filtering (IEnKF,
Sakov et al. 2012) and smoothing (IEnKS) formulations. Anticipating future applications
with unsteady boundary conditions, we consider the smoothing method in what follows,
keeping in mind that it is here strictly equivalent to the filtering method.

Below, we evaluate the ability of the IEnKS method, in urban conditions, to assimilate
in situ velocity and concentration observations, perturbed by obstacles, to correct the mete-
orological boundary conditions prescribed for atmospheric simulations with a CFD model.
To achieve this goal, we use the measurements provided by the Mock Urban Setting Test
(MUST) campaign, described in Sect. 2. In Sect. 3, we briefly present the IEnKS algorithm,
followed by the experimental set-up and the methods developed to apply the IEnKS method
to this study case. Section 4 summarizes the results obtained with the IEnKS method by
assimilating first only the flow observations, then only the concentration observations, and
finally both types of observations together. Our conclusions and some perspectives to further
improve the performance of the IEnKS method are given in Sect. 5.

2 TheMock Urban Setting Test Campaign

The MUST campaign was conducted in September 2001 at the U.S. Army Dugway Proving
Ground test site (Biltoft 2001; Yee and Biltoft 2004). The aim of this field campaign was
to provide well-documented cases of urban dispersion by acquiring both meteorological and
dispersion observations. These datasets have been widely used for urban-model development
and validation (e.g. Milliez and Carissimo 2007, 2008; Winiarek 2014; Bahlali et al. 2019).

The site is located in the Utah desert where containers form a regular array over a 200 ×
200m2 area. The containers are aligned on a 12 by 10 grid and each container is 12.2m
long, 2.42m wide, and 2.54m high. Several trials were performed, with each consisting of a
15-min release of a tracer gas (propylene) from a fixed position, either within or immediately
outside the container array, at a height between 0.15 and 5.2m. Biltoft (2001) and Yee and
Biltoft (2004) give a comprehensive description of the experimental set-up and analyses of
the results. Numerous instruments were provided by several organisations, such as the Army
Research Laboratory (ARL), Arizona State University (ASU), the Dugway Proving Ground
(DPG), the Defence Science Technology Laboratory, the Los Alamos National Laboratory
(LANL), and the the University of Utah (UU).

2.1 Meteorological Measurements

Many meteorological instruments were installed within and outside the MUST array during
the release experiments. Figure 1 shows the MUST domain with the container array and
the meteorological instruments within the domain. In the experiments, all the containers
representing the buildings are not exactly identical, and the position of the instruments is
approximately known. As with previous authors, and with these reasons in mind, we also
have idealized the grid with an identical aligned container to simplify the mesh.
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212 C. L. Defforge et al.

Fig. 1 Representation of the MUST array within the domain used for the Code_Saturne simulations; adapted
from Biltoft (2001). The location of all meteorological instruments (such as the three- and two-dimensional
(3D, 2D) sonic anemometers) is also shown

Within the domain, numerous two- and three-dimensional (2D, 3D) sonic anemometers
established to provide observations of the velocity at a frequency of 10Hz. Information about
these instruments is given in the legend of Fig. 1 and more details are available in Biltoft
(2001). As in Milliez (2006), for the 2D sonic anemometers we estimate the 3D TKE from
its 2D value using

k3D = 1.3k2D, (1)

which is approximate and valid for the neutral and stable conditions considered here; more-
over, the 2D sonic anemometers are not used in the assimilation but only the validation.

For each 15-min trial, Yee and Biltoft (2004) extracted one 200-s quasi-steady period
duringwhich themeteorological variables aswell as gas concentration are nearly constant.We
aim to represent the velocity and concentration fields during two of these periods as stationary
simulations with a CFD model with a Reynolds-averaged Navier–Stokes turbulence closure.
To be consistentwith this closure, the observations assimilated correspond to themean values,
averaged over the 200-s period (i.e. 2000 sonic observations).

Other instruments are permanently installed in the vicinity of theMUST array and provide
supplementary information. We use observations provided by the Portable Weather Infor-
mation and Display System (PWIDS) and the Surface Atmospheric Measurement System
(SAMS), located less than 2 km upstream of the containers array. A sound detection and
ranging (sodar) system, located 400m north-east of the domain, also provides flow mea-
surements, especially in upper layers of the atmospheric boundary layer (see Fig. 21). These
instruments provide observations of the horizontal velocity components (u, v) at 2m above
the ground for the PWIDS station, at 10m for the the SAMS station, and at several levels
between 15 and 200m above ground level in 5-m intervals for the sodar.
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Fig. 2 Representation of the MUST array with the location of the instruments measuring gas concentration,
adapted from Biltoft (2001)

2.2 Gas-ConcentrationMeasurements

The instruments for measuring gas concentration installed in the domain are of two types:

– ultraviolet ion collector (UVIC) installed on the 6-m towers, near the 32-m tower and at the
centre of the array. These instruments were calibrated over a range of 0.01–1000 ppmv.

– digital photo-ionization detectors (digiPID) located on the 32-m tower and along four
east–west lines inside the containers array with a calibrated operating range of 0.04–
1000 ppmv.

Figure 2 shows the location of the 48 digiPID and 26 UVIC instruments. The observations
of gas concentration are available during all the 15-min trials with a frequency of 50Hz such
that the assimilated values are averaged over 10,000 observations (200 s).

3 Methods

3.1 Experimental Set-Up

The meteorological fields in the region containing the MUST array are simulated using
the atmospheric module of Code_Saturne(Archambeau et al. 2004), which is developed by
the Centre d’Enseignement et de Recherche en Environnement Atmosphérique (CEREA)
to simulate atmospheric flows in the atmospheric boundary layer. This numerical model
has been used to simulate 20 different releases during the MUST campaign with varying
meteorological conditions (see Milliez and Carissimo 2007 for details). Here we mention
that, in the basic CFD code, an option has been introduced for atmospheric simulations, which
includes the equation of energy written with the potential temperature variable, modifications
of the buoyancy production/destruction of turbulence, and a modification for the stratified
wind-speed profile over a rough surface (Monin–Obukhov similarity theory).
The domain used for the simulations is 348 × 348m2 horizontally and extends up to 50m
vertically. The domain is centred on the container array and includes a band of flat terrain
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(a) (b)

Fig. 3 Mesh used for the Code_Saturne simulations. The points represent the cell edges. (a) Cross-section at
constant h = 1.5m and (b) a cross-section at a constant x = 115.5m

outside the array (77mon the eastern andwestern sides and 87mon the northern and southern
sides). The horizontal resolution is somewhat coarse outside the MUST array (Δx = Δy =
4m) and refined inside the container array down to 0.5m. The vertical resolution decreases
with altitude from Δz = 0.25m near the ground to Δz = 7.8m for the uppermost layer (see
Fig. 3), and the containers representing the buildings were not exactly identical. In addition,
the positions of the instruments were only approximately known.

The turbulence is modelled using the k−ε model, where k is the TKE and ε its dissipation
rate. Since we use a Reynolds-averaged Navier–Stokes closure model, all the simulated
variables correspond to ensemble means.

In our method, we can impose several profiles on the boundary to represent spatial gra-
dients, which are very small here and so we used only one profile arbitrarily located at the
centre of the face, implying the same boundary conditions over all the faces. Therefore, the
boundary conditions included in the control vector correspond to one vertical profile, arbi-
trarily located in the middle of the southern border of the domain. From this vertical profile
of boundary conditions prescribed as model input, the Code_Saturnemodel extrapolates the
values to all the boundary faces. The boundary conditions are considered constant in all the
studies presented here. The profile is defined by 22 vertical levels for the three variables: u,
v, and k. At the first timestep of the model, the field of the dissipation rate is computed in
order to ensure the equilibrium between turbulence production and dissipation. The values
calculated at the boundaries of the domain are kept as boundary conditions of the dissipation
rate for the next integration steps. This process is performed for each simulation to adapt the
ε boundary conditions to the prescribed boundary conditions. The model is integrated for
5000 iterations with a fixed timestep of 0.1 s, which is enough to reach a steady state (Bahlali
2018). Note that over the IEnKS algorithm iterations, the boundary conditions recalculated
and prescribed to the model may not be in equilibrium with the model physics. As a result,
the flow may evolve between the border boundaries, where the boundary conditions are
prescribed, and the first obstacles. We verified that this evolution is small enough.

We consider two different trials of the MUST campaign:
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– The neutral case (2681829) which was recorded on the 25 September 2011 at 1829 LT
(local time = UTC −6 h). The meteorological conditions at this time corresponded to
neutral stability with an estimated Obukhov length of L = 28,000m (Yee and Biltoft
2004). The pollutant source is located between two containers in the bottom-left corner
of the domain, at h = 1.8m above the ground.

– The stable case (2692157) whichwas recorded on the 26 September 2011 at 2157 LT. The
conditions were stable with an estimated Obukhov length of L = 130m (Yee and Biltoft
2004). The tracer gas is released from the roof of the first container in the bottom-right
corner, at h = 2.6m above the ground.

3.2 The Iterative Ensemble Kalman Smoother

The IEnKS algorithm (Bocquet and Sakov 2014) is an ensemble variational DA method. As
a variational method, it is based on the minimization of a cost function and as an ensemble-
based method, the analysis error space is spanned by a limited number of vectors consisting
of the ensemble members. We consider stationary boundary conditions, referred to as vector
z of size l, for which a first estimate, or background, is available: zb. The background-error
statistics are represented by an ensemble of N vectors of boundary conditions, centred on
zb: Eb. The matrix Eb is of size l × N such that the ensemble members correspond to its
columns. We can thus define the (normalized) anomalies as the departure of each member
from the background as

A = 1√
N − 1

[
Eb − zb1T

]
, (2)

where 1 is a vector of size N with all components equal to one. The available observations
are referred to as the vector y of size p and the observation-error covariance matrix is R.

The IEnKS cost function derived for micrometeorological applications (Defforge et al.
2018, 2019) is the same as that obtained in previous DA schemes (e.g., Bocquet and Sakov
2014), albeit replacing the initial conditions by the boundary conditions

J̃ (w) = 1

2
‖y − F(zb + Aw)‖2

R−1 + 1

2
‖w‖2, (3)

where w is the weight vector of size N and F is the forward operator, which returns the
simulated observations for a given vector of the boundary conditions, and we use the notation
‖x‖2 = xTx and ‖x‖2Y = xTYx. In practice, this operator corresponds to the integration of the
Code_Saturnemodel forced with the boundary conditions and the extraction of the simulated
values at the position of the available observations. The variables at the end of the analysis
are referred to with the superscript “a”.

Here, the cost function (3) is minimized following the Gauss–Newton algorithm. Alterna-
tively, we could use other minimization schemes such as the Levenberg–Marquardt approach
(Björck Å 1996). A significant advantage of working in the ensemble space is that the calcu-
lation of the gradient of the cost function requires neither the full (in state space) adjoint nor
the tangent linear of the forward operator F . One analysis cycle is schematically explained
in Fig. 4.
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Fig. 4 One analysis cycle of the IEnKS algorithm. The background ensemble Eb is an input of the method.
The best estimate of the weight vector wa is obtained by minimizing the cost function J̃ as shown by the
cycle: for each value of w, a new ensemble of BC (Eb′

), centred on z′, is transformed using the ensemble
transform matrix (T = H

−1/2) obtained at the previous iteration. The forward operator is applied to this
transformed ensemble, which gives an ensemble of simulated observations (Obs.) with mean ys that can be
compared to the observations y. The increment dy = y − ys and the spread of the ensemble of simulated
observations around the mean are used in the estimation of the gradient and approximate Hessian (i.e., without
the second-order derivative correction) of the cost function (∇J̃ andH). The weight vector w is thus updated
following the Gauss–Newton algorithm until the convergence criterion is reached, defined as thresholds for
the change in w (e) or in J̃ (eJ ). At the end of the analysis, the best estimate of the control vector za and the
analysis ensemble Ea can be used as a first guess for the next analysis cycle in general cases. In the particular
case studied here (steady state), only one analysis cycle is performed

3.3 Anamorphosis for the Turbulence Kinetic Energy

In the DA experiment presented here, the control vectors correspond to the micrometeo-
rological boundary conditions for the flow field. While the background errors relative to
the horizontal velocity components u and v can be considered as Gaussian variables (not
shown), it is certainly not a valid hypothesis for the TKE, which is always positive. Analyz-
ing observations of the TKE during all the trials shows that its probability density function
approximately follows an exponential distribution (see Fig. 20b in the Appendix).

The cumulative distribution function (c.d.f.) of the exponential distribution is

F(k) = 1 − exp(−λk), (4)

where λ is the rate parameter. Since the IEnKS method assumes a Gaussian behavior of the
control variables, we must use anamorphosis for the TKE.

The principle of anamorphosis is to find a bijection between the c.d.f. of a non-Gaussian
variable (here k) and aGaussian variable which is included in the control vector in place of the
non-Gaussian variable (Cohn 1997; Bertino et al. 2003). We thus define a new, non-physical
variable γ following the normal law n(0, σγ ) and its c.d.f. G(γ ), such that

k = F−1 ◦ G(γ ) (5)

γ = G−1 ◦ F(k). (6)
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The choice of the standard deviation σγ of the parameter γ does not affect the DA experiment
in general. Here, as we apply an ensemble-based DA technique, the construction of the
ensemble is clarified in the next section.

The control vector considered includes the 22 values of the variables u, v, and γ and its
total size is l = 66. The forward operator F includes one more step to convert the values of
γ into TKE values, then prescribed as boundary conditions for the TKE.

3.4 Construction of the Background Ensemble

In order to construct the background ensemble necessary for the DA experiment with the
IEnKS method, we first estimate the background-error covariance matrix, B. The ensemble
anomalies are then determined as the leading modes of this matrix such that

B = AAT. (7)

The coefficients of the background-error covariance matrix are decomposed as the product
of correlation coefficients Ci, j and standard deviation of the individual background errors
σi ,

Bi, j = Ci, jσiσ j . (8)

In order to determine the coefficientsCi, j and σi , we analyzed themeasurements available
for all the trials within the domain and above the containers, choosing to describe the vertical
correlations with a Balgovind function (Balgovind et al. 1983) which is usually applied to
represent the spatial structure of error statistics (Winiarek 2014). Based on the climatology,
we set the correlation length R = 3m (see Appendix 1 for more details).

Using the climatological analyses and expert judgement, we set the background error
standard deviation for the velocity components u and v to σ b

uv = 5 m s−1. For the TKE, we
estimated the rate parameter to be λk = 1.25 s2 m−2 and we set the standard deviation of the
anamorphosis variable γ to σ b

γ = 5 to give as much weight to the velocity components as
TKE in the DA experiment.

Eventually, we obtain an estimate of the background-error covariance matrix used to
define the background ensemble. The background ensemble corresponds to the N − 1 lead-
ing modes of the background-error covariance matrix–i.e., eigenvectors associated with the
largest eigenvalues, with a N th member necessary to recentre the ensemble. The ensemble
of N members thus formed is rotated using a random rotation matrix to obtain a recentred
ensemble with statistically equivalent members.

3.5 Assimilating Observations of Concentration

Values of gas concentration are always positive, such that the distribution of the observation
errors cannot be considered as Gaussian. This issue can be overcome by assuming that the
observation error for concentration observations follows a log-normal distribution (see Liu et
al. 2017). Liu et al. also highlighted that the logarithmic function may give too much weight
to small concentration values, which is why they proposed a threshold-constant value ct in
the logarithmic function; the innovation vector thus becomes

dy = ln (ct + y) − ln (ct + F(z)) . (9)

In the DA experiments involving concentration observations, we set ct = 0.05 ppmv.
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3.6 Observation-Error Covariance Matrix

The observation-error covariance matrix R is diagonal, and the coefficients on the diagonal
are equal to

(σ o)2Nxy, (10)

where (σ o)2 is the variance associated with the observation error and Nxy is the number of
observations available, and assimilated, at the same horizontal position but different heights.
This scaling factor aims at giving similar weight in the cost function to the different areas
of the domain and to not favour regions that are more observed (more details are given in
Appendix 2).

For flow observations, the standard deviation of the observation error is set to σ o
uv =

0.2m s−1, and for the concentration observations (after applying the logarithmic transforma-
tion defined by Eq. 9, we set σ o

c = 0.05.

3.7 Estimation of the Background Boundary Conditions

The background boundary conditions are estimated from observations provided by instru-
ments outside of the container array, referred to as “background observations” (see Table 1).
The profile of the wind speed is assumed to follow a semi-logarithmic law given by Monin–
Obukhov similarity theory (Stull 1988). The surface stress is estimated from the background
observations: u∗ = 0.57m s−1 in the neutral case and u∗ = 0.40m s−1 in the stable case.
The profile of TKE is also obtained from the Monin–Obukhov similarity theory.

The vertical profile of the wind direction is obtained as the sum of a constant value, the
average of the background observations, and an empirical perturbation, which is equal to
10◦ near the ground and vanishes with height. In the neutral case, the mean wind direction
is equal to − 42.2◦, and in the stable case it is estimated as 45.4◦. Note that these angles
correspond to the flow direction, measured anticlockwise from the x-axis. More details about
the construction of the background boundary conditions can be found in Appendix 3.

3.8 Reference Simulations

The MUST campaign has already been used in previous studies for validation purposes
(Milliez 2006;Winiarek 2014;Bahlali 2018). TheCFDsimulations performed in these studies
corresponded to the 200-s quasi-steady periods for each 15-min experiment, selected by Yee
and Biltoft (2004). The boundary conditions were estimated from the observations provided
by the sonic anemometers installed on the 16-m tower at the southern edge of the domain
(see Fig. 21). Since the tower is very close to the location where the boundary conditions
are prescribed, the simulation obtained with these boundary conditions are very close to the
observations within the domain. Comparing the wind speeds in these previous simulations to
all the available flow observations, we calculate that the mean error is 0.5m s−1 in both the
neutral and stable cases. Consequently, the simulations performed in these previous studies
are considered as reference simulations. The results obtained here with the IEnKS method,
using different input data, are compared with these reference simulations.
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4 Results with the Iterative Ensemble Kalman Smoother and Field
Measurements

4.1 Experimental Set-Up

As previously detailed, the domain used for the numerical simulations with the CFD model
Code_Saturne is of size 348m × 348m × 50m with unstructured mesh. The control vector
corresponds to a vertical profile of boundary conditions located in the middle of the southern
boundary of the domain, and defined by 22 vertical levels for three variables: u, v, and γ

(which is the anamorphosis variable representing k), giving a control vector of size l = 66.
The neutral and stable cases were treated slightly differently and the differences of

parametrization are summarized in Table 1.
For both neutral and stable cases, we show the results of three DA experiments aiming at

correcting the boundary conditions related to the parameters u, v, and k.

1. The first experiment, referred to as “W” for wind only, consists of assimilating 14 obser-
vations of the two components of the horizontal velocity (u, v) with the IEnKS algorithm.

2. In the second experiment, refererred to as “C” for concentration only, the IEnKS algorithm
is applied to assimilate 13 observations of tracer gas concentration.

3. The last experiment, referred to as “WC” for wind and concentration, considers observa-
tions of both (u, v) and c. In order to keep a similar number of observations in total, we
considered 15 observations: four of u, four of v, and seven of concentration.

The selected measurements for these three experiments in the neutral and ntable cases are
detailed in Table 1.

As mentioned in Sect. 3.4, the background-error covariance matrix has diagonal val-
ues (σ b

uv)
2 = 25m2 s−2 and the observation-error covariance matrix is diagonal with

σ o
uv = 0.2m s−1 for the u and v observations and σ o

c = 0.05 for the c observations (see
Sect. 3.6). These choices yield more weight to the observations than the background, which
is representative of the operational conditions.

For all the experiments, the ensemble considered is composed of N = 5 members and
the convergence criterion is set to eJ = 0.01, which means that the iterative minimization
algorithm is stopped when the variation of the cost function between two iterations is smaller
than 1% of the initial value of the cost function. If this criterion is not reached after jmax = 10
iterations, the algorithm is stopped anyway. The analysis is set equal to the value of the control
vector which leads to the minimum of the cost function within the available iterations—10
or less if the algorithm has converged before.

Cross-validation is performed with all the flow and concentration observations available
during the studied trials and not assimilated in any of the three experiments. These obser-
vations are referred to as validation observations below. For the neutral case, there are 24
validation observations for the u velocity component, 24 for the v velocity component, 29
for the TKE, and 40 for the concentration. For the stable case, there are 24 validation obser-
vations for each of u and v components, 30 for the TKE, and 44 for the concentration. The
small difference comes from instruments that were not operational during the neutral trial
for unknown reasons.

Below, we present the results obtained for the two cases studied here (neutral and stable)
and for each of the three different experiments.
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Table 1 The background boundary conditions are estimated by fitting a semi-logarithmic velocity profile to
the observations (obs.) provided by the instruments indicated in the first row (see Sect. 3.7)

Neutral Stable

Background observations PWIDS (2m), SAMS (10m),
and sodar (45m)

SAMS (10m) and sodar (20 and
45m)

θ perturbation Δθ0 = −10◦ Δθ0 = −10◦
Experiment W: 14 obs. of (u,

v)
Tower A at (2, 6m), Sonic V3
(1.15m), 5-m tower (1, 1.8,
2.6, 3.7m)

Tower C (2, 6m), Sonic V3 (1.15m),
5-m tower (1, 1.8, 2.6, 3.7m)

Experiment C: 13 obs. of c Towers C (1, 2, 3m) and D
(1, 2, 3m), 32-m tower (1,
2, 4, 6, 8, 10m), DPID #26
(1.6m)

Towers A (1, 2, 3m) and B (1, 2,
3m), 32-m tower (1, 2, 4, 6, 8,
10m), DPID #23 (1.6m)

Experiment WC: 15 obs. (8
of (u,v) and 7 of c)

(u, v): 5-m tower (1, 1.8,
2.6m) and Sonic V3
(1.15m), c: Towers C (1,
2m), D (1, 2m), and 32-m
tower (1, 2, 4m)

(u, v): 5-m tower (1, 1.8, 2.6m) and
Sonic V3 (1.15m), c: Towers A (1,
2m), B (1, 2m), and 32-m tower
(1, 2, 4m)

The vertical profile of wind direction (θ ) is perturbed following Eq. 23 with a perturbation near the ground
given by the second row (see Fig. 22c). The observations used in the three assimilation experiments (W, C,
and WC) are indicated in the three last rows

4.2 Neutral Case

With the background boundary conditions constructed as explained in Appendix 3, the depar-
ture of the simulated velocity field from the available u and v observations selected for the
DAmethod (see Table 1) is on average 1.44m s−1. With the parametrization given in Table 1,
the optimal boundary conditions are obtained after eight IEnKS iterations in the experiment
W, four in experiment C, and nine in experiment WC.

Figure 5a, b shows, for the reference simulation, the horizontal velocity field (arrows) and
concentration (colours) at two constant heights above the ground: h = 4m and h = 1m
respectively. Note that, for the sake of clarity, arrows are depicted every 15m in Fig. 5a
and every 2m in Fig. 5b. For similar reasons, we represent the concentration field on a
logarithmic scale in Fig. 5a, b. The departure from the reference simulation is computed
for the background and the analyses of the three experiments. The error fields are shown at
h = 4m in Figs. 6a, 7a, 8a, and 9a, and at h = 1m, magnifying the vicinity of the pollutant
source, in Figs. 6b, 7b, 8b, and 9b.

Figure 6a indicates that the background error for the velocity (arrows) is mostly along
the y axis and in opposite direction compared with the mean flow, which means that the
background velocity field underestimates the magnitude of the v-velocity component and the
u-component slightly. As a result, the incidence angle is larger than the reference simulation
(Fig. 5a) and the flow is less aligned with the containers. Moreover, the wind speed is slightly
smaller in the background simulation than in the reference one. Consequently, the gas is less
diluted by the airflow and the concentration in the plume is higher, which is shown by the
positive values of concentration error larger than negative ones (see the colourscale in Fig. 6a).
In addition, the background pollutant plume, which is well aligned with the wind direction at
this height (above obstacle top), driftsmore to the left than the reference plume.Consequently,
the concentrations are overestimated to the left of the plume and underestimated on the right.
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(a) (b)

Fig. 5 Reference simulation for the neutral case. Horizontal cross-section of the concentration field in loga-
rithmic scale (colours) and the velocity field (arrows) at (a) h = 4m and (b) h = 1m (zoom near the source).
The black cross locates the source

(a) (b)

Fig. 6 Departure of the background simulation from the reference in the neutral case. The error field of
concentration field (colours) and velocity (arrows) are plotted at (a) h = 4m and (b) h = 1m (zoom near the
pollutant source). The black cross locates the source

Figure 5b shows that, below the canopy top, the presence of obstacles tends to slow and
tilt the flow to the right, aligning it to the container array. Figure 6b shows the departure
from this reference simulation in the background simulation. The larger departure between
the background incidence angle and the alignment of the containers causes a greater effect of
the obstacles on the background flow: the wind speed decelerates more within the container
array in the background simulation than in the reference one. Moreover, we can observe large
background errors in between the obstacles, indicating that the deviation of the flow due to
the obstacles is stronger, which results in recirculation near the source. The variation of the
deflection angle of the pollutant plume–within the container array–with the incidence angle,
has been previously observed by Yee and Biltoft (2004). In the bottom-left region, the gas is
propagated towards the south in the background simulation, whereas this effect is weaker in
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(a) (b)

Fig. 7 As Fig. 6 but for the analysis state of the experiment W

(a) (b)

Fig. 8 As Fig. 6 but for the analysis state of the experiment C

the reference simulation. As a consequence, the background simulation substantially over-
estimates the concentrations in this region, as shown in Fig. 6b.

Figure 7a shows that in the analysis of experiment W, the error for the velocity field
is largely reduced as compared with the background simulation, resulting in the pollutant
plume more similar to the reference, with the error for the concentration field also reduced to
very small values. Figure 7b shows the error fields for concentration and velocity within the
urban canopy for the analysis of experiment W, illustrating the very good agreement with the
reference in terms of wind direction, wind speed, and concentration. As a result, the analysis
errors are substantially reduced as compared with the background simulation, but a slight
overestimation of the gas concentration still persists.

Figure 8a, b shows that for the analysis of experiment C, the picture is more nuanced.
Upstream, the error of velocity, shown in Fig. 8a, is somewhat aligned with the mean flow,
which means that the wind direction has been corrected in the boundary conditions; however,
the wind speed is still underestimated. Downstream, the downwards arrows indicate that the
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(a)

(b)

Fig. 9 As Fig. 6 but for the analysis state of the experiment WC

error for the v velocity component has been reduced but the error for the u velocity component
has increased. As a result, the incidence angle of the flow is now too small and the pollutant
plume far from the source goesmore to the right than the reference simulation. The remaining
errors for the wind speed and direction, or alternatively for the u and v velocity components,
explain the slight overestimation of the concentrations on the right side of the plume. Still,
the errors for concentration values are largely reduced between the background and analysis
C. Figure 8b shows that, near the pollutant source, the wind speed is still underestimated,
though the effect of the buildings is here less pronounced due to the better alignment of the
flow with the containers. The concentrations are slightly overestimated in analysis C, though
only along the gas plume axis (compare with Fig. 5b), which indicates that the shape of
the pollutant plume simulated with the analysis C is very similar to the reference within
the canopy. In particular, the concentrations decrease with the distance from the source at a
similar rate and, in the vicinity of the source, the recirculation has vanished and there is no
more overestimation of the concentrations south of the gas source.

Figure 9a, b shows the results of the experiment WC for which both the velocity and
concentration observations are assimilated. The global picture of the error field (Fig. 9a)
shows that the wind direction, and the velocity to a lesser extent, are corrected upstream of
the containers, leading to very small errorswithin the container array, and resulting in the large
reduction in the errors for the concentration field. The magnified view at h = 1m in Fig. 9b
shows errors that are localized andwith small amplitudes, whichmeans that both velocity and
concentration fields simulated with the analysis WC are similar to the reference simulation.
The results obtained in this experiment are noticeably better than those of experiments W
and C.

In order to further quantify the benefit of the DA process, Fig. 10 shows the simulated
versus observed values for the wind speed and direction, the TKE, and tracer concentration.
These scatter plots are presented line by line, respectively, for the reference simulation, the
background, and analyses of all three experiments. Selected error statistics–MAE, the r.m.s.
error, and the Pearson coefficient–are also shown.

The error statistics shown in Fig. 10 are calculated by taking into account all the
observations—even the assimilated ones—and without any specific averaging. However,
some masts provide several observations at the same horizontal location but at different ver-
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Fig. 10 Simulated versus observed values for the reference simulation (first row), the background (second
row), Analysis W (third row), Analysis C (fourth row), and Analysis WC (last row) for the neutral case. The
scatter plots are shown for wind speed and direction (U , θ ), the TKE (k), and the concentration of the tracer
gas (c). The Pearson correlation coefficient, the mean absolute error (MAE), and the r.m.s. error are also
calculated for each variable and simulation. All the available observations are plotted and taken into account
in the statistics calculations
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Fig. 11 Mean absolute error and r.m.s. error calculated over the validation observations of the wind speed and
direction, k, and c within the urban canopy (h < 2.5m) for the reference, background, and analyses W, C, and
WC in the neutral case. The mean values are calculated as an average over the errors, weighted by the inverse
of the number of observations available at the same location. Error bars represent twice the standard deviation
of the background and analysis ensembles

tical levels. In order to avoid giving more weight to these densely-observed locations, the
errors are multiplied by a coefficient equal to the inverse of the number of available observa-
tions (for the same variable) at the same horizontal position. The statistics shown in Fig. 11
are obtainedwith this weighting convention and considering only the validation observations;
Fig. 11 also shows the standard deviation of the MAE and the r.m.s. error, calculated over
the background and analysis ensembles (error bars).

From the quantitative statistics in Figs. 10 and 11, we confirm the conclusions drawn from
the previous qualitative analysis of the velocity and concentration fields (Figs. 7, 8, 9). In
the experiment W, the assimilation of velocity observations enables the reduction in most
of the error for the velocity and direction to levels very close to that obtained with the
reference simulation. As a result of a better estimation of the velocity field, there is a better
agreement between the observed and simulated values of concentration and the error for the
concentration is significantly reduced.

In contrast, assimilating observations of concentration does not necessarily improve the
knowledge of the velocity field. In the present example, the error for the wind speed in analy-
sis C is quite similar to that observed in the background (systematic underestimation), while
the wind direction is significantly better estimated after assimilation. This result is consis-
tent with the fact that dispersion—and especially the pattern of pollutant concentration—is
particularly sensitive to the wind direction. Consequently, the errors of concentration estima-
tions are largely reduced for the Analysis C. Dispersion, and thus the values of concentration,
are the result of two additive effects: dilution, which increases with the wind speed and tur-
bulent diffusion, which increases with the value of k. We can suppose that observations of
concentration only are not enough for the DA algorithm to discriminate which of the two
variables (wind speed or TKE) should be corrected. We can see in Fig. 10 that both wind
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speed and TKE are underestimated here, which is consistent with the slight overestimation
of concentrations near the source observed in Fig. 8b.

In all the simulations corresponding to the background, W and C analyses, the turbulence
is underestimated and the IEnKS method does not help much to reduce this error. The
small impact of the IEnKS method on turbulence boundary conditions (not shown) and
consequently on the field of simulated TKE suggests that, in the present case, the inflow
turbulence does not impact much the gas dispersion. In fact, most of the turbulence is formed
due to the presence of obstacles. The results of analysisWC are quite similar to analysisW for
for the wind speed and direction, and improved for the variables TKE and c. In addition, the
assimilation of both types of observations also enables the correction of the inflow turbulence,
probably because the combined information from the velocity and concentration observations
allows the discrimination of dilution and diffusion.

Figure 11 also shows the standard deviation of the updated ensembles, which provide a
measure of uncertainty for the simulated values of wind speed and direction and the variables
k and c. We see that assimilating observations of velocity, besides decreasing the error, also
reduces the uncertainty of all the variables. Assimilating the observations of concentration
substantially reduces the uncertainty of the simulated concentrations, but the uncertainties
of the wind speed remain quite large.

Comparing the results obtained for the two experiments, one can see that assimilating
observations of the velocity reduces the error and uncertainty of the flow than the assimilation
of observations of concentration. Since dispersion is mainly driven by the flow, the error
and uncertainty of concentrations are also significantly reduced through the DA process.
Assimilating observations of the velocity allows for a better simulation of the full state
of the system and is more efficient than assimilating observations of concentration. The
assimilation of both types of observation leads to additionally the reduction in the error of
the inflow turbulence.

4.3 Stable Case

Figure 12a, b shows the velocity and concentration fields simulated with the reference bound-
ary conditions in the stable case. Figure 13a shows the departure of the background simulation
from this reference, above the containers (h = 4m). The field of velocity error is oriented
towards the left, which indicates that the background error is here again mainly along the
v-component. In addition, the wind speed is globally overestimated. The erroneous wind
speed and direction in the background simulation produce quite different behaviours of the
pollutant plume, which can be contrasted to the neutral case: since the wind speed is higher,
this leads to an overall underestimation of the concentrations. Moreover, due to the error
of wind direction, the pollutant plume far from the source drifts more to the left than the
reference plume, which explains why the concentrations are overestimated on the left of the
plume (i.e. in line with the buildings) and underestimated on the right.

We can verify in Fig. 13b that the wind speed is overestimated within the container array
and that the wind-direction error is globally directed towards the west-south-west (with
variations near the source), which means that the background flow is nearly aligned with
the streets. As a result, the gas is transported more along the street where the concentrations
are thus overestimated left of the plume and underestimated on the right. In the canopy and
near the source, the underestimation is more important than overestimation in terms of the
amplitude of the errors and extent of the area where concentrations are underestimated.
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(a) (b)

Fig. 12 Reference simulation for the stable case. Horizontal cross-section of the concentration field in a
logarithmic scale (colours) and the velocity field (arrows) at (a) h = 4m and (b) h = 1m (magnifying the
source)

(a) (b)

Fig. 13 Departure of the background simulation from the reference in the stable case. The errors of the
concentration field (colours) and velocity (arrows) are plotted at (a) h = 4m and (b) h = 1m (magnification
near the pollutant source)

We perform the DA experiments starting from the background described above. The
optimal BC value is obtained after five IEnKS iterations in experimentW, eight in experiment
C, and nine in experiment WC.

Similar to the results obtained in the neutral case, the velocity field of analysis W is closer
to the reference than the background and the velocity errors are significantly reduced (see
Fig. 14a, b), but small errors of wind speed and direction such that the deviation of the plume
to the left persists. The errors for concentrations are reduced by the DA method and are still
much smaller than for the background.

Figure 14b shows that, near the source, the same conclusions hold: the velocity field
errors are somewhat small such that the pollutant plume is closer to the reference than the
background, though not exactly the same. The pattern of concentration errors is similar to that
observed for the background, though the amplitude of the errors is reduced and the areawhere
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(a) (b)

Fig. 14 As Fig. 13 but for the analysis state of experiment W

(a) (b)

Fig. 15 As Fig. 13 but for the analysis state of experiment C

(a) (b)

Fig. 16 As Fig. 13 but for the analysis state of experiment WC
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Fig. 17 Simulated versus observed values for the reference simulation (first row), the background (second
row), Analysis W (third row), Analysis C (fourth row), and Analysis WC (last row) for the stable case. The
scatter plots are shown for wind speed and direction (U , θ ), the TKE (k), and the concentration of the tracer
gas (c). The Pearson correlation coefficient, the MAE, and the r.m.s. error are also calculated for each variable
and simulation. All the available observations are plotted and taken into account in the statistics calculations
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Fig. 18 Mean absolute error and r.m.s. error calculated over the validation observations of U , θ , k, and c
within the urban canopy (h < 2.5m) for the reference, background, and analyses W, C, and WC in the stable
case. The mean values are calculated as an average over the errors, weighted by the inverse of the number of
observations available at the same location. Error bars represent twice the standard deviation of the background
and analysis ensembles

concentrations are notwell estimated has shrunk. The remaining negative concentration errors
in the top-left corner come from the fact that the plume is less spread towards the right in
analysis W than in the reference.

Figure 15a shows that the velocity errors for analysis C are aligned with the flow, which
means that the wind direction has been corrected. As a result, the pollutant plume is dispersed
in the correct direction.However, thewind speed is still overestimated such that the gas ismore
diluted by the airflow and the concentrations are globally underestimated. The behaviour near
the source is also better captured in terms of the location affected by the pollution; however,
the concentrations are slightly smaller than the reference. This can be seen in Fig. 15b in the
lack of positive concentration errors on the left of the plume, indicating that the direction of
plume dispersion is well represented.

Finally, analysis WC shows errors for the velocity field smaller than the background
and also smaller than analysis C. Moreover the velocity field errors vanish in the container
array (Fig. 16a). Since the velocity is somewhat overestimated, the concentration values
are still slightly underestimated after assimilation. We observe in Fig. 16b that, inside the
urban canopy, the wind speed is slightly overestimated but the wind direction is in very good
agreement with the reference such that the concentration field statistics are very well captured
and the concentration errors are very small.

Figures 17 and 18 show a comparison of the results obtained in the stable case for the three
experiments with the available observations, with results very similar to those obtained with
the neutral case. Note though that the wind direction simulated with background boundary
conditions compares quite well with available observations and the mean error is of the same
order of magnitude as for reference simulations.

The assimilation of velocity observations in experiment W enables the improved repre-
sentation of the wind speed and direction. The assimilation of concentration observations
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in experiment C efficiently corrects the wind direction but the error for the wind speed is
slightly larger than the error in background simulations. In experiment WC, the assimilation
of both types of observations leads to similar results as analysis W in terms of wind speed
and direction. Note that the errors related to the wind direction for the background simulation
are of the same order of magnitude than for reference simulation.

In this case, the TKE is slightly overestimated in the background and the assimilation of
velocity observations (experiments W and WC) allows for slight reduction of this error but
not the assimilation of concentration observations. As mentioned in Sect. 4.2, the combined
effects of dilution and diffusion complicate the assimilation of observations of pollutant
concentration alone.

Regarding the concentrations, all analyses show errors that are significantly reduced.
Analysis C and WC give better agreement with the observations (see Fig. 17). Figure 17
shows that low values of concentration tend to be underestimated in analysis W, which is
consistent with the behaviour of the pollutant plume near the source described above. The best
results in terms of concentration are obtained when both types of observations are assimilated
(experiment WC).

In the stable case, we can also observe that the DA process leads to a reduction of the
uncertainty for all the studied variables (Fig. 18).

4.4 Additional Tests

In addition to the results presented in the two previous sections, we tested the revised version
of the IEnKS method with other parametrizations.

In particular, we evaluated the performances of this DA system with different background
errors, and performed other DA experiments (not shown) with:

1. the unperturbed background—estimated from the PWIDS, SAMS, and Sound Detection
And Ranging (sodar) observations

2. the background perturbed with Δθ0 = +10◦,
3. the background perturbed with ΔU = 1m s−1.

In all the cases, assimilating observations of the velocity components helps reduce the error
and the uncertainty of the simulated velocity field. Due to the important sensitivity of the
plume dispersion to the velocity field, the pollutant plume is generally also better captured.
When concentration observations are assimilated, the mean error of concentrations signif-
icantly decreases, especially within the urban canopy (h < 2.5m). Note that when the
perturbation of the wind direction is reversed, as compared with the results shown above
(Δθ = −10◦), the background error of the v-component of velocity is smaller than the error
of the u-component and assimilating concentration observations tends to correct the error of
u but may worsen the v estimations. Introducing correlations between these two variables,
or considering different error statistics for the u and v components in the background-error
covariance matrix, could help correct both components of velocity when assimilating con-
centration observations.

The analyses obtained in the different experiments described above depend on the back-
ground, even though this sensitivity is small, which is consistent with the fact that the weight
given to the observations is much larger than the one given to the background. This comes
from the fact that the eigenvalues of the background error covariance matrix are roughly 25
whereas the eigenvalues of R are approximately 0.025. As a matter of fact, the part of the
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cost function associated with the background

J b = 1

2
wTw (11)

is practically 10 times smaller than the term associated with the observations

J o = 1

2
‖y − F(zb + Aw)‖2

R−1 . (12)

The influence of the radius of vertical correlation (see Eq. 14) has been assessed. A very
large radius (typically 50m) is equivalent to assuming that the error is a bias, nearly constant
in the vertical, which is not representative of a typical background error as explained in
Appendix 3. As a result, assimilating observations in the canopy helps correct the boundary
conditions near the ground and the strong correlation tends to also modify the profile in the
upper levels. This may increase the error higher in the atmosphere where the background
error is typically small and no additional information is available (observations are more
frequent at low altitudes).

5 Conclusions

The IEnKS algorithm has been applied to a case of dispersion modelling in an urban area
where buildings affect the flow. These DA experiments also differ from the application of
wind-resource assessment presented in Defforge et al. (2018) because the size of the control
vector is smaller, though it includes turbulence variables. Moreover, the final outcome of
interest here is the concentration of a tracer gas, which is nonlinearly related to the velocity
field. The MUST campaign, used here to validate the method, has been widely studied
and has the significant advantage of providing numerous observations of velocity and gas
concentration.

Among the several trials of gas release performed during theMUST campaign,we selected
two trials, corresponding to stable and neutral stability. For each of these two cases, we per-
formed three DA experiments assimilating either velocity or concentration observations, and
then both types of observations. For all the experiments, the IEnKS algorithm reduces the
error and uncertainty for the assimilated variables: either velocity components or concen-
tration. The departure of simulated concentration fields from validation observations (mean
absolute error) is reduced by more than 55% in the neutral case and by nearly 40% in the
stable case. Since dispersion is largely driven by the flow, when velocity observations are
assimilated, the correction of the flowfield through use of theDAmethod also leads to a better
representation of pollutant dispersion. Consequently, the connection between the airflow and
dispersion explains that assimilating velocity observations is more efficient for improving the
overall dispersion simulation. In constrast, assimilating concentration observations is able to
improve the wind direction, which is the parameter that influences the most dispersion. As
a result, the concentration field simulated with the analysis boundary conditions is closer to
the observations. However, since both the inclusion of the mean wind speed and TKE in the
DA algorithm improves the simulation dispersion, assimilating concentration observations
only complicates the error reduction for these two variables.

When both types of observations are assimilated, complementary information is added as
compared with the case with only velocity observations. As a result, the remaining variables
that influence the concentration field, such as turbulence, is also corrected and concentra-
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tion errors are even more reduced. Further work would be required to check if assimilating
observations of TKE also improves the results.

We assessed the sensitivity of themethod to the background error, consistentwith the larger
confidence placed in the observations compared with the background. While we assume that
the observation errors are uncorrelated, this assumption is probably incorrect, especially for
the u and v velocity components. Consequently, it would be interesting to perform further
sensitivity analyses regarding the observation-error covariance matrix. Moreover, we always
worked with ensembles of five members and it would be beneficial to assess the evolution of
the performances of the IEnKS algorithm with an increasing ensemble size.

The three experiments presented here correspond to a similar (small) number of observa-
tions and one could consider evaluating the sensitivity of the results to the number and the
position of the observations. Such an analysis could be particularly beneficial for experimental
design of the sensor layout.

Another perspective would be to apply the IEnKS method to the remaining trials per-
formed during the MUST campaign. In particular, the cases 2671934, 2672033 and 2672101
corresponding to very stable atmospheric conditions such that the usual formulae to estimate
the vertical profile of boundary conditions cannot be applied. As a result, these cases are
known to be particularly difficult to simulate and it would be interesting to try recovering the
boundary conditions using the IEnKS algorithm (Kumar et al. 2015).

With the continuous increase in urban monitoring stations, the DAmethod presented here
could be applied for numerous applications.We can expect that, inmore complex urban areas,
the estimation of background and observation error statistics would be more difficult, while
the method might be more sensitive to these parameters. This difficulty apart, the method
should still be able to improve the knowledge of boundary conditions and thus the accuracy
of pollution maps.

Acknowledgements The CEREA laboratory is part of the Institut Pierre-Simon Laplace.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix 1: Estimation of the Background-Error Variances and Correla-
tions

Correlation Coefficients

Since the container array is quite small, we assume that themeteorological variables above the
urban canopy are homogeneous in the 348m×348m region simulatedwith theCode_Saturne
model. Consequently, we assume that the velocity observations above the containers within
the domain are representative of the values at the border of the domain at the same vertical
level.

We thus study the observations provided by:

1. the 6-m towers A, B, C, and D at 6m,
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2. the 16-m towers North and South at 4m, 8m, and 16m,
3. the 32-m tower T at 4m, 8m, 16m, and 32m.

In order to estimate vertical and horizontal correlations that are representative of the back-
ground error, we analyzed the horizontal anomalies of the velocity components (Au and Av).
The horizontal anomalies are defined as the departure of each observation from the spatial
mean computed at the same vertical level:

Ax j = x j
i − 1

N j

N j∑

i=1

x j
i , (13)

where x can be u or v, the superscript j refers to a given height above the ground (4m, 6m,
8m, or 16m), x j

i is the measurement of the i th instrument at the j th height, and N j is the
number of available observations at this height. The values of standard deviation observed
for these horizontal anomalies of velocity and TKE are relatively small, thus confirming the
assumption that the meteorological variables are nearly homogeneous over the small domain
considered here. It is important to recall that all the trials were selected with south-east to
south-west wind directions. Consequently, the asymmetric results obtained for the u- and
v-components of velocity can be explained by this bias in the selection of the meteorological
conditions for which the releases were performed.

Figure 19 shows the vertical correlations evaluated for the u, v, and k horizontal anomalies
from the observations provided by the towersN, S, andT at 4m, 8m, and 16m. The horizontal
anomalies of the velocity components u and v show a slight correlation in the vertical.

The correlation coefficient Ci j between the two vertical levels i and j of the same profile
is assumed to follow the Balgovind law

Ci j =
(
1 + di j

R

)
exp

(
−di j

R

)
, (14)

where di j is the distance between the two levels and R is the correlation length to be deter-
mined. As mentioned in the introduction, this law is a simple solution to represent the spatial
structure of error statistics (Winiarek 2014). Representing the error statistics well is a signif-
icant challenge for the DA method and more sophisticated descriptions could be used, but
we chose to use the Balgovind law in all the experiments presented here.

In light of the correlations observed among the horizontal anomalies, and assuming that
the climatological correlations underestimate the background error correlations (as explained
below), we chose a correlation length R = 3m for the three variables u, v, and k, with the
corresponding Balgovind function is shown in Fig. 19. We further assume that the different
variables (u, v, and k) are not correlated. Using this hypothesis and the Balgovind correlation
function (Eq. 14) with the correlation length given above, we can construct the background-
error correlation matrix. This matrix must be multiplied by the standard deviations associated
with the i th and j th variables, to get the background-error covariance matrix.

Background-Error Variances

The background-error variances represent the uncertainty of the first estimate. Consequently,
these values may depend on the sources of information used to estimate the background
boundary conditions. Here, we recreate operational conditions where the first estimate of the
boundary conditions is quite poor whereas the observations are very accurate. However, the
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Fig. 19 Vertical correlations estimated from the horizontal anomalies of the parameters u, v, and k for the
south (S) and north (N) 16-m masts and the 32-m tower (T). Assuming that the climatological correlations
slightly overestimate the background-error correlations, we set the correlation length of the Balgovind function
to R = 3m

(a) (b)

Fig. 20 Statistical analyses of the climatology used to determine the background-error variances. a Values
of standard deviation estimated from the observations of the velocity components u and v above the canopy,
during all the trials. The dashed lines correspond to the standard deviation calculated for each level, merging
all the available observations at this height. b Probability density function of the observed values of TKE
during all the trials compared with the exponential law for the rate parameter λ = 1.25 s2m−2

MUST case is very specific and does not correspond to operational conditions. Indeed, the
trials were performed in particular meteorological conditions, not necessarily representative
of the full climatology in this region.Moreover, the container array is installed in themiddle of
a desert area, such that the meteorological conditions outside the domain are not perturbed by
any geometrical features and remain spatially homogeneous. As a result, we assume that the
climatological variations, observed over all the trials periods, for the velocity components
and TKE slightly underestimate the background-error variances. Using the climatological
analyses over all trials (see Fig. 20a) and expert judgement, we set the background-error
variance for u, v, and k to σ b

uv = σ b
γ = 5.
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Appendix 2: Coefficients of the Observation-Error CovarianceMatrix

The diagonal terms of the observation error covariance matrix are of the form

Ri = (σ o)2Nxy . (15)

Since the extra-diagonal terms ofR are assumed zero (i.e., the observations are not correlated)
with this form for R, (Eq. 10), the part of the cost function associated with the observations
reads

J o = 1

2
‖y − F(z)‖2

R−1 (16a)

=
p∑

i=1

(R−1)i i (dyi )
2 (16b)

=
∑

j

∑Nx j ,y j
i=1 (dyi )

2

(σ o)2Nx j ,y j
, (16c)

where dy is the innovation term and the sum over j represents the different horizontal
positions where observations are available. Consequently, the cost function associated with
the observations is a sum of innovations, averaged for each horizontal position over the
different measurements there.

Appendix 3: Background Boundary Conditions

Estimation from PWIDS, SAMS, and Sodar Observations

The first estimate of the profile of boundary conditions for the wind speed U is assumed
to follow the semi-logarithmic profile given by the Monin–Obukhov similarity theory (Stull
1988)

U (z) = UL

κ

(
log

(
z + z0
z0

)
+ 5

z

L

)
, (17)

where κ = 0.4 is the von Kármán constant, z0 is the roughness length which is set to 0.04m
in the MUST domain (Yee and Biltoft 2004), and L is the Obukhov length. The local friction
velocityUL is estimated from the boundary-layer height hABL and the surface friction velocity
u∗

UL = u∗
(
1 − z

hABL

)
. (18)

In Garratt (1994), the height of the boundary layer is estimated in neutral conditions as

hABL = 0.2u∗/| f |, (19)

and in stable conditions as

hABL = 0.4
√
u∗L/| f |, (20)

where f is the Coriolis frequency, equal to f = 9.4 × 10−5 rad s−1 here.
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Fig. 21 Map of the site around the MUST array. The light orange pins represent the corners of the container
array. The location of the SAMS #8 (red), the PWIDS M6 (blue), and the sodar (green) are also shown

We also assume that the profile of TKE is consistent with the Monin–Obukhov similarity
theory

k = U 2
L√
Cμ

, (21)

ε = U 3
L

κ

(
1

z
+ 4

L

)
. (22)

This scheme has been proved to be well suited for the MUST case (Milliez 2006).
In order to determine the friction velocity u∗, we consider the background observations

provided by the instruments shown in Fig. 21 and detailed in Table 1 for the two cases.
We then fit a semi-logarithmic velocity profile to the observations to determine the value
of u∗. The wind direction is assumed constant over the vertical profile, and is obtained as
an average over the available observations. For the neutral case, we find u∗ = 0.57m s−1,
which corresponds to an atmospheric boundary-layer height of hABL = 1.21 km, and the
mean wind direction is equal to − 42.2◦ (with a standard deviation among the observations
of 2.6◦). For the stable case, the estimated surface stress u∗ = 0.40m s−1, hABL = 298m, the
wind direction is estimated as 45.4◦ (with a standard deviation among the observations of 4◦).
Figure 22a, b show the profiles of wind speed and direction estimated from the observations
(red dots) for the neutral case.
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(a) (b) (c)

Fig. 22 Construction of the background boundary conditions: Vertical profiles of awind speed (U ) and bwind
direction (θ ) for the neutral case, showing the reference boundary conditions, the semi-logarithmic profile
reconstructed from the PWIDS, SAMS, and sodar observations, and the background boundary conditions
(obtained by perturbing the semi-logarithmic profile) are shown. c Perturbation function of wind direction,
decreasingwith altitude, which is added to the constant profile of θ obtained from the average over the observed
values

Perturbation of the Boundary Conditions

As previously mentioned, the MUST case is very specific since the area surrounding the
container array is a flat desert and, in the absence of obstacles, the flow field is spatially
homogeneous. As a matter of fact, the vertical profiles of velocity and TKE observed by the
PWIDS, SAMS, and sodar stations—even though these instruments are quite far from the
container array—is a very good estimate of the boundary conditions. In fact, when the pre-
scribed boundary conditions are estimated as explained above, the mean velocity-field error
inside the domain—computed as the MAE, compared to the available flow observations—is
smaller than 1.1m s−1. This error is smaller than what is usually encountered in operational
studies.

In order to make this study representative of an operational application, we empirically
perturb the boundary conditions according to the function

δX = δX0
α

(h/hL)4 + α
, (23)

where δX is the perturbation for the variable X , δX0 is the maximum perturbation near the
ground, h is the elevation, hL is the level at which the perturbation is equal to pLδX0, and
α = pL/(1 − pL) (Fig. 22c). This function perturbs the profile nearer to the ground than in the
upper layers, which is representative of a typical background error. In operational studies, the
background is generally estimated from mesoscale simulations or from observations outside
the domain under scrutiny.

Mesoscale models generally provide poorer estimations of the meteorological fields near
the surface, where the local effect of topography, which is generally inaccurately represented
in suchmodel, is greater. As a result, if mesoscale results are used to estimate the background,
it is likely that the background error is larger near the ground than in the upper layers. Simi-
larly, the variability in time and space of the meteorological variables is greater in the lower
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levels than in the uppermost ones. Consequently, the observations provided by instruments a
few hundred metres away from the domain of interest can generally be considered as a good
estimation of the boundary conditions above a few tens of metres from the ground (i.e. largely
above the canopy, even for cases where geometrical features perturb the flow field outside the
studied domain). However, in the lower levels, the use of perturbed canopy measurements as
boundary conditions is very likely to be wrong.

In order to be consistent with typical background errors, the perturbation that we apply
is larger near the ground and vanishes to zero with altitude, see (Eq. 23). Here, we perturb
only the wind direction with different amplitudes (Δθ0 = ± 10) and with pL = 0.01 and
hL = 50m (see Fig. 22c).
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