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Abstract
Surface turbulent fluxes provide a key boundary condition for the prediction of weather, 
hydrology, and atmospheric carbon dioxide. The turbulence cospectrum is assumed to 
typically follow a −7/3 power-law scaling, which is used for the high-frequency spectral 
correction of eddy-covariance data. The derivation of this scaling is mostly grounded on 
dimensional analysis. The dimensional analysis or cospectral budget analyses, however, 
can lead to alternative cospectral scaling. Here we examine the shape of turbulence cospec-
tra at high Reynolds number and high wavenumbers based on extensive field measurements 
of wind velocity and temperature in various stably stratified atmospheric conditions. We 
show that the cospectral scaling deviates from the −7/3 scaling at high wavenumbers in 
the inertial subrange of the stable atmospheric boundary layer, and appears to follow a −2 
power-law scaling. We suggest that −2 power-law scaling is a better alternative for cospec-
tral corrections for eddy-covariance measurements of the stable boundary layer.

Keywords Eddy covariance · Stable boundary layer · Surface fluxes · Turbulence cospectra

1 Introduction

Turbulence cospectra of surface fluxes are typically assumed to follow a −7/3 power-law 
scaling in the isotropic inertial subrange (Kolmogorov 1941) according to derivations 
based on dimensional analysis (Lumley 1964, 1967). The −7/3 power-law scaling has 
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been validated with laboratory experiments (Saddoughi and Veeravalli 1994) and field 
measurements in the atmospheric boundary layer (e.g., the Kansas experiment) (Kaimal 
et  al. 1972; Wyngaard and Coté 1972). The exact shape of the cospectra is important 
for field observations as well as theoretical modeling. Indeed, in eddy-covariance (EC) 
measurements of turbulent fluxes in the atmospheric surface layer (ASL), an assumed 
cospectral shape is used for the spectral correction of momentum, heat, water-vapour, 
and  CO2 fluxes (Moore 1986; Leuning and Moncrieff 1990; Horst 1997; Moncrieff et al. 
1997; Aubinet et  al. 1999; Massman 2000). Recently, Mamadou et  al. (2016) showed 
that the calculated long-term  CO2 fluxes from EC observations are particularly sensi-
tive to the assumed cospectral shape, and a change of the assumed cospectral correction 
scaling can even reverse a net terrestrial carbon sink into a source.

Monin and Yaglom (1975) pointed out that Lumley’s derivation of the −7/3 power-
law scaling (Lumley 1964, 1967) was not sufficiently rigorous and accurate as it relied 
on the rough approximation (Kovasznay 1948) that the spectral energy transfer rate is 
only related to the turbulence energy spectrum and wavenumber. In recent years, other 
slopes of the turbulence cospectra have been reported. In a wind-tunnel experiment, an 
asymptotic −2 power-law scaling was observed for the heat-flux cospectrum (Mydlarski 
and Warhaft 1998) in stably stratified turbulence at R

�
 = 582, where R

�
 is the Taylor-

microscale-based Reynolds number. Mydlarski (2003) also found a −2 power-law scal-
ing for heat flux by analyzing both the cospectrum and the heat flux structure function at 
R
�
 = 407 when a temperature gradient was imposed in the transverse direction, although 

the study suggested that the slope might increase toward −7/3 as Reynolds number 
increases. Sakai et al. (2008) showed a −2 power-law for radial velocity-concentration 
cospectrum in a turbulent jet at R

�
 = 263. These observations are still at lower Reynolds 

numbers than turbulence in the ABL where R
�
 typically exceeds 1000 (Table  1) and 

therefore this raises the question about the actual cospectral shape in the stably stratified 
atmospheric boundary layer.

Among numerical studies, O’Gorman and Pullin (2005) found a power-law scaling 
close to −2 in the velocity-scalar cospectrum in a direct numerical simulation (DNS) of 
homogeneous and isotropic velocity field with a mean scalar gradient at R

�
 = 265. Watan-

abe and Gotoh (2007) observed a −2 power-law scaling regime to the right side of the −7/3 
power-law scaling regime in the cospectrum of scalar flux with a high-resolution DNS of 
isotropic turbulence at R

�
 = 585. In fact, figure 2 in their paper clearly shows that the −2 

power-law scaling has a larger plateau compared to the −7/3 power-law scaling in the com-
pensated cospectra. Bos et al. (2004) also found a clear −2 power-law scaling in velocity-
scalar cospectrum in large eddy simulations (LES) of isotropic turbulence with a mean sca-
lar gradient. Bos et al. (2004) further suggested that the velocity-scalar cospectrum in the 
direction of mean scalar gradient can in fact have any slope between −7/3 and − 5/3 based 
on a cospectral budget analysis. Cava and Katul (2012) showed, using a cospectral budget, 
that different velocity–scalar scaling laws can be observed in the canopy sublayer above 
tall forests when the flux transfer term becomes important (Li et al. 2015). Recently, Li and 
Katul (2017) used a cospectral budget model to show that the −7/3 cospectrum scaling can 
be modified depending on the relative importance of flux transfer and pressure decorrela-
tion terms. These new theoretical developments motivate us to revisit the cospectral scaling 
in the atmospheric boundary layer (ABL) based on observational data. A specific question 
to be addressed in this paper is whether the power-law scaling for turbulence cospectra 
under stable conditions deviates significantly from −7/3 at high wavenumbers, and whether 
it is closer to −2 scaling. As the −7/3 scaling was first derived for the stably stratified tur-
bulence by Lumley (1964), here we focus on the stable condition.



3Power-Law Scaling of Turbulence Cospectra for the Stably…

1 3

2  Dimensional Analysis

According to Kaimal and Finnigan (1994), a cospectrum is the real part of the Fourier 
transform of cross-covariance. Here we focus on the momentum flux and the sensible 
heat flux but other scalar fluxes (not shown) such as water vapour and  CO2 are assumed 
to have the same scaling as the heat flux in the inertial subrange. For sensible heat flux, 
we have (Kaimal and Finnigan 1994)

where Ew� is the cospectrum of w′
�
′ , k the wavenumber, w the vertical velocity, � the poten-

tial temperature, w′ the vertical velocity fluctuation, �′ the fluctuation of potential tempera-
ture, and 〈 〉 denotes the Reynolds averaging. Assuming that the cospectrum of heat flux 
is only related to the gradient of the mean potential temperature �Θ∕�z , the turbulence 
kinetic energy (TKE) dissipation rate � and the wavenumber k for isotropic turbulence, 
Lumley (1964) obtained the following form for the cospectrum using dimensional analysis

where c1 is a dimensionless parameter. Similarly, Lumley (1967) suggested the cospectrum 
of the momentum to have the following form:

where c2 is a dimensionless parameter, u is the streamwise velocity component and U the 
mean streamwise velocity component.

However, the above dimensional analysis does not yield a unique cospectral scaling 
law. Assuming that Ew� is only related to g∕Θ ( g is the gravity acceleration), � , �Θ∕�z 
and k , based on dimensional analysis, we obtain

where c3 and a are dimensionless parameters. When a = 1/3, this recovers Eq.  2, which 
is the limit of the Boussinesq approximation where dependence on g is absent. When 
a = 2/3, this leads to a − 5/3 scaling, which is the scaling of velocity spectra and is regarded 
as another limit in Bos et al. (2004). On the other hand, when a = 1/2, Eq. 4 yields a −2 
power-law scaling for Ew� , as follows

Similarly, assuming that Ewu is only related to � , �U∕�z and k , we have (Cava and Katul 
2012):

(1)⟨w�
�
�⟩ =

∞

∫
0

Ew�(k)dk,

(2)Ew� = −c1�
1∕3 �Θ

�z
k−7∕3,

(3)Ewu = −c2�
1∕3 �U

�z
k−7∕3,

(4)Ew� = −c3

(
g

Θ

�Θ

�z

) 1−3a

2

�
a �Θ

�z
k2a−3,

(5)Ew� = −c3

(
g

Θ

�Θ

�z

)−1∕4

�
1∕2 �Θ

�z
k−2.
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where c4 and b are dimensionless parameters. Again, when b = 1/3, this recovers Eq.  3. 
However, when b = 1/2, a −2 power-law scaling for Ewu emerges, as follows

In summary, a −2 scaling as reported by many previous studies (Mydlarski and Warhaft 
1998; Sakai et al. 2008) is also possible based on dimensional analysis.

We emphasize that the above dimensional analysis is only strictly applicable for iso-
tropic turbulence (Kolmogorov 1941). It is generally believed that the Dougherty–Ozmidov 
scale (Dougherty 1961; Ozmidov 1965), LO = 2�

(
�∕N3

)1∕2 , characterizes the largest scale 
of isotropic turbulence in stably stratified fluid (Gargett et al. 1984; Waite 2011; Grachev 
et al. 2015; Li et al. 2016), where N is Brunt–Väisälä frequency, which corresponds to the 
Dougherty–Ozmidov wavenumber kO = 2�∕LO . Owing to wall effects (Townsend 1976; 
Katul et al. 2014) in the ASL, the wavenumber ka = 1∕z will also constrain the existence 
of isotropic turbulence, where z is the height above ground. Therefore, we expect the previ-
ously derived power-law scaling for turbulence cospectra to be valid only for wavenumbers 
k > max

(
kO, ka

)
.

3  Experiment Setup and Results

3.1  Observations of the Stable Atmospheric Boundary Layer

An eddy-covariance (EC) system over Lake Geneva was set up to measure high-frequency 
(20  Hz) velocity and temperature at four different heights (1.66  m, 2.31  m, 2.96  m and 
3.61 m above water level) during August–October 2006 (Bou-Zeid et al. 2008). Four sonic 
anemometers (Campbell Scientific CSAT3) and open-path gas analyzers (LICOR LI-7500) 
were used in the experiment. The resolution of the wind velocity was 0.001 m s−1 and that 
of temperature was 0.002 °C. 18 representative 15-min periods of EC data at 1.66 m were 
selected to calculate turbulence cospectra of heat and momentum fluxes, where z∕L ranged 
from 0.037 to 0.145 (Table 1), z is the measurement height above the water surface, and L 
is the Obukhov length (Obukhov 1946). The 18 periods (0.037 ≤ z∕L ≤ 0.145) in the lake 
experiment are more stable with larger z∕L in the 36 available stable periods during 
August–October 2006 (Bou-Zeid et al. 2008), while the rest of the dataset (e.g., z∕L ~ 0.01) 
are closer to neutral conditions. Here, we focus on more stable conditions. Besides, the 
cospectral slopes from all 36 periods (not shown) do not differ from the results from the 18 
periods. By estimating the Taylor-microscale-based Reynolds number through 
R
�
=
(

20

3

q2

��

)1∕2

 , where q is turbulence kinetic energy and � is kinematic viscosity, as in 
Pope (2000), we find that R

�
 ranged from 657 to 3236 in the 18 periods. The reader is 

referred to previous studies (Bou-Zeid et al. 2008; Vercauteren et al. 2008; Li and Bou-
Zeid 2011; Li et al. 2018) for detailed descriptions of the experiment set-up and data.

An EC system at Dome C, Antarctica was set up to measure the high-frequency (10 Hz) 
velocity and temperature using an ultrasonic anemometer (Metek USA-1) at 3.5 m above 
ground (Vignon et  al. 2017a, b). Balloon sounding measurements provided temperature 

(6)Ewu = −c4�
b

(
�U

�z

)2−3b

k2b−3,

(7)Ewu = −c4�
1∕2

(
�U

�z

)1∕2

k−2.
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gradient (Petenko et  al. 2018). The accuracy of wind speed was 0.05  m  s−1 and that of 
temperature was 0.01  °C. In fact, 70 representative 30-min stable periods in 9–12 Janu-
ary 2015 were selected, where z∕L ranged from 0.182 to 5.891 (Table 1). The 70 periods 
(0.182 ≤ z∕L ≤ 5.891) in the Dome C experiment are more stable with larger z∕L in the 93 
available stable periods during 9–12 January 2015, while the stabilities of the rest of the 
dataset overlap with those of the lake experiment. The Taylor-microscale-based Reynolds 
number R

�
 ranged from 313 to 2091 in the 70 periods. The reader is referred to Vignon 

et al. (2017a) for details on the experiment setup.
An EC system over an Arctic ice pack during the Surface Heat Budget of the Arc-

tic Ocean experiment (SHEBA) was set up to measure high-frequency (10  Hz) velocity 
and temperature using ATI (Applied Technologies, Inc) three-axis sonic anemometer at 
2 heights (2.2 m and 3.2 m) from October 1997 through September 1998 (Andreas et al. 
2006; Grachev et al. 2013). The resolution of the wind velocity was 0.01 m s−1 and that of 
temperature was 0.01 °C. 10 available 60-min periods of EC data from 8 nights at 3.2 m 
were used for analyzing the cospectra of heat and momentum fluxes, where z∕L ranged 
from 0.040 to 2.538 (Table 1). The cospectra were calculated from overlapping 13.65-min 
blocks (corresponding to  213 data points) and then averaged over 1-h periods following 
Persson et  al. (2002). The experimental setup and data have been extensively discussed 
elsewhere (Grachev et al. 2005, 2013; Andreas et al. 2006, 2010a, b).

A sonic and hot-film anemometer dyad (Kit et  al. 2017) was installed at the Granite 
Mountain Atmospheric Sciences Testbed (GMAST) of the US Army Dugway Proving 
Ground (DPG), Utah, as part of the field measurements of the Mountain Terrain Atmos-
pheric Modeling and Observations (MATERHORN) program during September–October 
2012 (Fernando et  al. 2015) to capture fine-scale turbulence in the ABL. Wind velocity 
was measured at a height of 2 m with a temporal frequency of 2000 Hz. The spatial resolu-
tion of the composite probe was ~ 0.7 mm, and the measurement resolution of the hot-film 
X-wire probes was ~ 1 mm. 6 available 30-minute periods on 9 October 2012 were used for 
analyzing the momentum cospectrum, where z∕L ranged from 0.027 to 0.647 (Table 1). 
The reader is referred to details on the instrument setup and measurement methods else-
where (Fernando et al. 2015; Kit and Liberzon 2016; Kit et al. 2017; Conry et al. 2018; 
Sukoriansky et al. 2018).

3.2  Turbulence Cospectra

The stability parameter z∕L was calculated to characterize the stability of the ABL, where z 
is the measurement height above the surface, L = −

u3
∗

�g

�0
w���

 is the Obukhov length (Obukhov 

1946), u∗ is the friction velocity, � is the von Kármán constant, �0 is the reference potential 
temperature and �′ is the potential-temperature fluctuation. Note that we use air tempera-
ture to approximate potential temperature, as our measurements were all below 3.5  m 
above the surface. Rather than directly measuring the cospectra in wavenumber space, we 
converted the frequency cospectra into wavenumber cospectra, invoking Taylor’s frozen 
turbulence hypothesis (Taylor 1938). Wavelet transform (Torrence and Compo 1998) was 
used to calculate turbulence cospectra (software was provided by C. Torrence and G. 
Compo, and is available at: http://paos.color ado.edu/resea rch/wavel ets/) for observations at 
Lake Geneva and Dome C. The fast Fourier transform (Frigo and Johnson 1998) was used 
to calculate turbulence cospectra for observations from the SHEBA and MATERHORN 
experiments. Both wavelet and Fourier transform are used to eliminate the possible effects 

http://paos.colorado.edu/research/wavelets/
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of the calculation method on cospectral slopes, while both methods were routinely applied 
to calculate turbulence cospectra in the ABL (Hudgins et al. 1993; Cornish et al. 2006; Li 
et al. 2015).

Both frequency and cospectra (based on wavelets) were normalized in a similar way to 
Kaimal et al. (1972). Four examples from the lake experiment are shown in Fig. 1. A few 
cospectra at the highest wavenumbers are seen due to the limitation of the instrumental 
temporal sampling. At low wavenumbers, the cospectral slope is shallower than −2, and 
even approaches zero in some cases (Fig. 1). This is because internal gravity waves (Lum-
ley 1964; Caughey and Readings 1975; Smedman 1988) and wall effects (Townsend 1976; 
Katul et al. 2014) have stronger impacts on larger eddies. Hence turbulence deviates more 
from isotropic condition at lower wavenumbers (Lienhard and Van Atta 1990), as expected.

To further examine whether the −2 or the −7/3 slope better captures the observed 
cospectral scaling at high wavenumbers, the median cospectrum of 18 different stable peri-
ods for each frequency is shown (Fig.  2a) for the lake experiment. The −2 slope starts 
matching the cospectrum at around 1.5 Hz, which is lower compared to that of the −7/3 
slope. The −7/3 slope seems to match the cospectrum at frequencies higher than 5 Hz. In 
fact, the slope at frequencies higher than 5 Hz is even steeper than −7/3. However, Bos 
et al. (2004) showed that the asymptotic slope should be between − 5/3 and −7/3 using a 
cospectral budget analysis, and thus a slope steeper than −7/3 is likely caused by the tem-
poral sampling cutoff of instruments.

Fig. 1  (a)–(d) Normalized cospectra of the heat flux in four representative 15-min periods of EC measure-
ments over Lake Geneva. EwT is the wavelet cospectrum of the vertical velocity fluctuations w′ and tem-
perature fluctuation T ′ in time, U the mean streamwise wind velocity, z the measurement height above the 
lake, u∗ the friction velocity, T∗ the scaling temperature, k the wavenumber, and L the Obukhov length. E 
denotes the normalized heat flux cospectrum; kO and ka denote the Dougherty–Ozmidov wavenumber and 
the wavenumber ka for the distance to the wall, respectively. Note that the units on the y axis are not neces-
sarily non-dimensional
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To better assess the exact slope, we then evaluate the compensated cospectra and multi-
ply the median cospectra by f 2 and f 7∕3 , respectively (Fig. 2b, c), where f  is the sampling 
frequency in Hz, to better distinguish the two slopes. At frequencies 1.5  Hz < f  < 4  Hz, 
there is a plateau for f 2EwT . However, there is a positive slope before approximately 4.5 Hz 
and a negative slope after 4.5 Hz for f 7∕3EwT . It is possible that f 7∕3EwT might reach a 
plateau at higher frequencies but this cannot be observed due to the instrumental sampling 
cutoff. Besides, the 25th and 75th percentiles of cospectrum denoted by empty circles at 
each frequency also show a larger plateau in f 2E compared to f 7∕3E . In Dome C observa-
tions, it is harder to observe a plateau for f 7∕3EwT but a small plateau exists for f 2EwT at 
around 2 Hz (Fig. 3a, b) for the heat flux. In the SHEBA campaign, the median of f 7∕3EwT 
shows a positive slope from 2 to 4  Hz but f 2EwT has a plateau in the same frequency 
regime (Fig. 4a, b). The cospectrum jump after 4 Hz is possibly due to instrumental noise. 
These atmospheric observations of the compensated cospectra therefore suggest that −2 
better characterizes the cospectral scaling of sensible heat flux at high frequencies (> 2 Hz) 
compared to −7/3.

For the momentum flux cospectrum (Fig. 2d–f), the difference between the −2 and 
−7/3 slopes is smaller than that of heat-flux cospectrum in the lake experiment. In the 
Dome C observation, a plateau is observed for f 2Ewu at 1.5–2.5  Hz (Fig.  3c) but not 
for f 7∕3Ewu (Fig. 3d), which keeps increasing with frequency. In the SHEBA campaign, 

Fig. 2  (a) The median of the normalized cospectra of heat flux (denoted by EwT∕
(
u∗T∗

)
 or E ) across 18 

representative 15-min periods over Lake Geneva. (b) EwT∕
(
u∗T∗

)
 in (a) multiplied by f 2 . (c) EwT∕

(
u∗T∗

)
 

in (a) multiplied by f 7∕3 . (d) The median of normalized cospectrum of momentum flux (denoted by Ewu∕u
2

∗
 

or E ). (e) Ewu∕u
2

∗
 in (d) multiplied by f 2 . (f) Ewu∕u

2

∗
 in (d) multiplied by f 7∕3 . Empty circles (blue for f 7∕3E 

and red for f 2E ) denote the 25th and 75th percentiles of cospectrum at each frequency. p is an exponent 
equal to 7/3 or 2, f  is the sampling frequency in Hz, and the other variables have the same meaning as those 
in Fig. 1
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a slightly larger plateau is seen in f 2Ewu compared to f 7∕3Ewu in high-frequency parts 
(Fig. 4c, d). In the MATERHORN campaign, the median of f 7∕3Ewu shows a positive 
slope from 10 to 300  Hz, while f 2Ewu is flat in the same frequency regime (Fig.  5). 
Again, the cospectral scaling of momentum flux better matches −2 than −7/3 in these 
field observations.

In addition to these analyses, we further fitted a slope for the heat flux cospec-
trum between 1.6  and 3.4  Hz in each period (e.g., the frequency domain in Fig.  2b) 
and obtained a mean slope of −2.03 and a standard deviation of 0.22 for 18 periods 
(Table  1) in the lake experiment. The frequency domain was selected to ensure that 
the cospectrum started to match a power-law at the lower limit and was not influenced 
by instrumental cutoff at the higher limit. We extended the frequency range by 33.3%, 
within 1.3 Hz < f  < 3.7 Hz, and found a slope of −2.02, which is very close to the ini-
tial −2.03 slope estimate. We performed similar sensitivity test of the slope fitting the 
slopes of the cospectra in other datasets. The fitted slope for the heat flux cospectra in 
the Dome C and SHEBA campaigns are −2.07 and −1.93, with a standard deviation of 
0.25 and 0.41, respectively (Table 1). Therefore, based on our data, a −2 scaling appears 
to be more likely observed than the −7/3 (−2.33) cospectrum for the heat flux. For the 
cospectrum of momentum flux, the fitted slopes in the 4 campaigns are −2.00, −2.11, 
− 1.99 and −2.02, respectively (Table 1), again close to a −2 slope. It is worth noting 
that the standard deviation of the momentum cospectra is generally larger than that of 

Fig. 3  The median of normalized cospectra of (a) heat flux (denoted by EwT∕
(
u∗T∗

)
 or E ) multiplied by f 2 , 

(b) heat flux (denoted by EwT∕
(
u∗T∗

)
 or E ) multiplied by f 7∕3 , (c) momentum flux (denoted by Ewu∕u

2

∗
 or 

E ) multiplied by or f 2 , and (d) momentum flux (denoted by Ewu∕u
2

∗
 or E ) multiplied by or f 7∕3 across 70 

representative 30-min periods at Dome C. Empty circles (blue for f 7∕3E and red for f 2E ) denote the 25th 
and 75th percentiles of cospectrum at each frequency; p is an exponent equal to 7/3 or 2, f  is the sampling 
frequency in Hz, and the other variables have the same meaning as those in Fig. 1
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heat cospectra (Table  1), which is consistent with the larger ratio of the 25th to 75th 
percentiles of cospectrum in momentum flux (Fig. 2b, e) due to the more variable nature 
of momentum compared to scalars.

Fig. 4  The median of normalized cospectra of (a) heat flux (denoted by EwT∕
(
u∗T∗

)
 or E ) multiplied by f 2 , 

(b) heat flux (denoted by EwT∕
(
u∗T∗

)
 or E ) multiplied by f 7∕3 , (c) momentum flux (denoted by Ewu∕u

2

∗
 or 

E ) multiplied by f 2 , and (d) momentum flux (denoted by Ewu∕u
2

∗
 or E ) multiplied by f 7∕3 across 10 repre-

sentative averaged 13.65-min periods from the SHEBA experiment. Empty circles (blue for f 7∕3E and red 
for f 2E ) denote the 25th and 75th percentiles of cospectrum at each frequency; p is an exponent equal to 
7/3 or 2, f  is sampling frequency in Hz and the other variables have the same meaning as those in Fig. 1

Fig. 5  The median of normalized cospectra of momentum flux (denoted by Ewu∕u
2

∗
 or E ) multiplied by f 7∕3 

(blue lines) or f 2 (red lines) across six periods from the MATERHORN experiment; p is an exponent equal 
to 7/3 or 2 and f  is the sampling frequency in Hz and other variables have the same meaning as those in 
Fig. 1
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A −7/3 power-law scaling would indicate that EwT ∝ �
1∕3 according to Eq. 2, while a 

−2 power-law scaling would suggest that EwT ∝ �
1∕2 according to Eq. 5. Similarly, a −7/3 

scaling would indicate that Ewu ∝ �
1∕3 according to Eq. 3, while a −2 scaling would sug-

gest that Ewu ∝ �
1∕2 according to Eq. 7. It is thus helpful to examine the power-law relation 

of EwT ( Ewu ) with � to further determine the cospectra slope. We fitted a linear relationship 
between normalized EwT and �1∕3 in a log–log plot (Fig. 6a) for the 18 periods of observa-
tions (minimizing the sum of squared errors) in the lake experiment and obtained a coef-
ficient of determination R2 = 0.55. We also fitted a linear relationship between normalized 
EwT and �1∕2 in the log-log plot (Fig. 6b) and obtained R2 = 0.73, suggesting that EwT ∝ �

1∕2 
is a better approximation—thus further confirming that the −2 scaling better captures the 
heat flux cospectrum. In addition, we fitted a linear regression between normalized Ewu and 
� in a similar way as Fig. 6a and obtained R2 = 0.56 (see Fig. 7a). We fitted a linear regres-
sion between the normalized Ewu and � in a way similar to Fig. 6b and obtained R2 = 0.74 
(see Fig.  7b). This also suggests that Ewu ∝ �

1∕2 is a better approximation, and thus −2 
scaling better captures the momentum flux cospectrum than the −7/3 scaling.

To further conclude our analysis, we examine the “structure function” of the tempera-
ture flux (Mydlarski 2003),

where Δw ≡ w(x + r) − w(x) , ΔT ≡ T(x + r) − T(x) , x is spatial coordinate and r is 
the spatial separation between two points. We also defined the higher-order functions 
Dw2T2 = ⟨(ΔwΔT)2⟩ and Dw4T4 = ⟨(ΔwΔT)4⟩ . Similarly, Dwu = ⟨ΔwΔu⟩ denotes the struc-
ture function of momentum flux, and Dw2u2 = ⟨(ΔwΔu)2⟩ and Dw4u4 = ⟨(ΔwΔu)4⟩ . Fol-
lowing Antonia and Van Atta (1978), the temporal measurements were used to represent 

(8)DwT = ⟨ΔwΔT⟩,

Fig. 6  Normalized cospectrum of heat flux plotted against the mean turbulent kinetic energy dissipation 
rate ( � ) in 18 representative 15-min periods collected over Lake Geneva; (a) f 7∕3EwT

(
�T

0

�z

)−1

 according to 

Eq. 2; (b) f 2EwT

(
�T

0

�z

)−3∕4

 according to Eq. 5; T
0
 is mean temperature in time, � is mean turbulent energy 

dissipation rate, R2 is the coefficient of determination, and the other variables have the same meaning as 
those in Fig. 1
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the spatial structure functions by invoking Taylor’s frozen turbulence hypothesis (Tay-
lor 1938). The −7/3 scaling of cospectrum would indicate DwT ∝ r4∕3 (Dw2T2 ∝ r8∕3 and 
Dw4T4 ∝ r16∕3 respectively) in the inertial subrange (Mydlarski 2003), while the −2 scal-
ing would indicate DwT ∝ r ( Dw2T2 ∝ r2 and Dw4T4 ∝ r4 respectively). The structure func-
tion DwT is therefore multiplied by r−4∕3 and r−1 , respectively (Fig. 8a), for the lake data. 
At scales smaller than 0.5  m, r−1DwT exhibits a plateau, while r−4∕3DwT has a steeper, 
positive, slope (Fig.  8a). For the momentum structure function, a flat region for r−1Dwu 
at 0.7  m < r < 1.5  m can be observed, while there is only a much smaller plateau for 
r−4∕3Dwu (Fig. 8b). The flat region of r−1DwT ( r−1Dwu ) corresponds to the relation DwT ∝ r 
( Dwu ∝ r ) and a −2 scaling of the cospectrum. The abrupt change of slope at r < 0.3 m for 
the compensated DwT (Fig.  8a) and at r < 0.6 m for the compensated Dwu (Fig.  8b) sug-
gests smaller amplitude of DwT and Dwu , which could be due to relatively larger instrument 
noise at small spatial separation. This noise effect is reduced for even-order functions, such 
as Dw2T2 (Fig. 8c) and Dw4T4 (Fig. 8e) since they are more stable. The normalized higher-
order functions r−2Dw2T2 , r−2Dw2u2 , and r−4Dw4T4 and r−4Dw4u4 thus approach a plateau at 
the smallest scales (Fig. 8c–f), while there is still an obvious negative slope at the smallest 
scales for r−8∕3Dw2T2 , r−8∕3Dw2u2 , r−16∕3Dw4T4 and r−16∕3Dw4u4 . These results suggest that the 
relationships Dw2T2 ∝ r2 and Dw4T4 ∝ r4 are better approximations of the structure func-
tions. Similar results are seen at the Dome C observations (Fig. 9). It is worth noting that 
the plateau occurs over broader range of scales for low-order functions r−1DwT and r−1Dwu 
than higher-order functions r−2Dw2T2 , r−2Dw2u2 , and r−4Dw4T4 , r−4Dw4u4 , which is consistent 
with the finding that higher-order structure functions (Kolmogorov 1941) have narrower 
inertial subrange (Van Atta and Chen 1970; Anselmet et al. 1984). Therefore, the structure 
functions of the fluxes suggest that the −2 scaling is a better approximation for turbulence 
cospectra than −7/3 scaling across a wide range of observed stable conditions.

Fig. 7  Normalized cospectrum of momentum flux plotted against the mean turbulent kinetic energy dissipa-
tion rate ( � ) in 18 representative 15-min periods collected over Lake Geneva; (a) f 7∕3Ewu

(
�U

�z

)−1

 according 

to Eq. 3, (b) f 2Ewu

(
�U

�z

)−1∕2

 according to Eq. 7; R2 is the coefficient of determination, and the other varia-
bles have the same meaning as those in Fig. 1
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3.3  Discussion

Our field observations (with the highest Taylor-microscale-based Reynolds number of 
R
�
 = 3236) are consistent with previous laboratory experiments (Mydlarski and Warhaft 

1998; Mydlarski 2003; Sakai et al. 2008), which reported a −2 spectral scaling for turbu-
lence cospectra at Taylor-microscale-based Reynolds number below 582. Previous numeri-
cal simulations (Bos et al. 2004; O’Gorman and Pullin 2005) also showed a −2 scaling in 
homogeneous and isotropic turbulence with a mean scalar gradient. It is worth noting that 
some studies (Kaimal et al. 1972; Saddoughi and Veeravalli 1994; Bos 2014) suggested a 
−7/3 scaling for the cospectra but did not compare their results with other scaling expo-
nents, in particular to the −2 scaling proposed here. Therefore, it is reasonable to infer that 
−7/3 scaling has not been firmly established as the proper scaling for cospectra of heat, 
momentum and scalar fluxes at moderate Reynolds numbers ( R

�
 ~ 103).

In terms of theoretical analyses, O’Gorman and Pullin (2003) proposed that both a 
− 5/3 scaling leading term and a next-order −7/3 scaling term contribute to the cospec-
trum of velocity and scalar based on a stretched-spiral vortex model. Bos et al. (2005) 
showed using eddy-damped quasi-normal Markovian (EDQNM) (Orszag 1970) closure 
that the −7/3 scaling for velocity-scalar cospectrum could only be observed at very high 
Taylor-microscale Reynolds number ( R

�
 = 107) while a smaller cospectral scaling expo-

nent could be observed at lower Reynolds numbers. Li and Katul (2017) showed that 
deviations from −7/3 are related to the flux transfer and pressure decorrelation terms for 
momentum flux budget, while the exact value of the scaling cannot be determined from 

Fig. 8  The median of normalized structure function of (a) DwT , (b) Dwu , (c) Dw2T2 , (d) Dw2u2 , (e) Dw4T4 , and 
(f) Dw4T4 across 18 representative 15-min periods over Lake Geneva; r is the spatial separation
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this model. In other words, these theoretical models imply the possibility of −2 scaling 
at moderate Reynolds numbers ( R

�
 ~ 103) such as in the stable ABL (Bradley et al. 1981; 

Gulitski et  al. 2007). Recent studies (Stiperski and Calaf 2018; Stiperski et  al. 2019) 
suggested that the anisotropy of the Reynolds stress tensor is linked to the turbulence 
similarity scaling. Although our observations do not demonstrate how the anisotropy 
of the Reynolds stress tensor directly influences the cospectral scaling, it might still be 
of interest to explore the effects of the anisotropy in future studies with high-resolution 
numerical simulations free from measurement errors.

As for the application of the cospectral scaling in spectral corrections of EC obser-
vations in the ABL, equation (33) in Kaimal et al. (1972) suggested a −2.1 power-law 
scaling for the cospectra of heat and momentum fluxes at high wavenumbers, while they 
suggested −7/3 slope as the asymptotic cospectral scaling. The −2.1 slope was then 
adopted in the spectral correction method by Moore (1986). Yet, Horst (1997) assumed 
a −2 scaling for scalar cospectrum as it better approximated his observations, as well 
as considering the ease of analytical computations. Similarly, Massman (2000) and 
Massman and Lee (2002) applied a −2 scaling for cospectral correction of EC meas-
urements. Massman (2000) further suggested that the corrections for EC measurements 
are sensitive to the exact shape of turbulence cospectra in stable conditions. As such, 
the −2 scaling has already been applied in some earlier spectral correction methods of 
EC measurements, yet without justification. We have provided further evidence from 
multiple observational field campaigns that the cospectra might follow the −2 spectral 

Fig. 9  The median of the normalized structure function of (a) DwT , (b) Dwu , (c) Dw2T2 , (d) Dw2u2 , (e) Dw4T4 , 
and (f) Dw4T4 across 70 representative 30-min periods at Dome C
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scaling in the stable ABL rather than a −7/3 scaling typically assumed. We thus recom-
mend processing eddy-covariance data with a −2 cospectrum.

However, there remain open questions. The asymptotic cospectral scaling at infinite 
Reynolds number is still unknown. The cospectral scaling at R

�
 ~ 103 in the stable ABL 

may not be directly extendable to higher Reynolds numbers, for example R
�
 ~ 107 (Bos 

et al. 2005). While such larger Reynolds numbers are of theoretical interest, our study cov-
ers typical Reynolds numbers of natural stable ABLs and is hence of immediate utility.

4  Conclusion

Our field observations in the stable ABL suggest that the −7/3 law may not accurately 
describe the cospectral scaling when the compensated cospectrum, the relation between 
cospectrum and turbulence kinetic energy dissipation rate and the structure function 
of fluxes are carefully examined. The observations are consistent with moderate Reyn-
olds number ( R

�
 ≤ 103) results of laboratory experiments (Mydlarski and Warhaft 1998; 

Mydlarski 2003; Sakai et  al. 2008), DNS (O’Gorman and Pullin 2005; Watanabe and 
Gotoh 2007) and LES (Bos et al. 2004) studies, which compared the −2 power-law scaling 
with the −7/3 power-law scaling. Although whether asymptotic cospectral scaling exists 
at infinite Reynolds numbers is yet unknown, our observations suggest that −2 might be 
a better approximation for cospectral scaling for stably stratified ABL at field Reynolds 
numbers. Therefore, the −2 power-law scaling is recommended for spectral corrections of 
eddy-covariance measurements in the stable ABL.
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