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Abstract
A combination of methods originating from non-stationary time-series analysis is applied
to two datasets of near-surface turbulence in order to gain insights on the non-stationary
enhancement mechanism of intermittent turbulence in the stable atmospheric boundary layer
(SBL). We identify regimes of SBL turbulence for which the range of time scales of turbu-
lence and submeso motions, and hence their scale separation (or lack of separation), differs.
Ubiquitous flow structures, or events, are extracted from the turbulence data in each flow
regime. We relate flow regimes characterized by very stable stratification, but differing in
the dynamical interactions and in the transport properties of different scales of motion, to a
signature of flow structures thought to be submeso motions.

Keywords Boundary-layer regimes · Clustering · Detection of events · Scale interactions ·
Submeso-scale motions

1 Introduction

The representation of the stable boundary layer (SBL) presents ongoing challenges, and
modelling challenges increase with increasing stability (Sandu et al. 2013). Among the more
unknown situations is the small wind-speed scenario in which the turbulence is weak and
does not show significant dependence on the stratification. In such weak-wind situations,
turbulence typically is non-stationary and a spectrum of motions on the so-called submeso
scales is found to bridge the scale gap between the largest turbulent scales and the mesoscale
(Anfossi et al. 2005; Belušić and Güttler 2010; Mahrt 2014). Weak turbulence is found to be
enhanced by these submeso motions (Sun et al. 2015; Mahrt and Thomas 2016; Cava et al.
2016). Better understanding of the non-stationary enhancement mechanism is a necessary
step towards improved SBL turbulence parametrization.

Recent approaches focus on distinguishing flow regimes in which turbulence behaves
differently. Based on observations, Sun et al. (2012) identified a height dependent wind-

B Nikki Vercauteren
vercauteren@math.fu-berlin.de

1 FB Mathematik und Informatik, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany

2 Swedish Meteorological and Hydrological Institute (SMHI), 60176 Norrköping, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10546-019-00464-1&domain=pdf
http://orcid.org/0000-0003-2893-9186


144 N. Vercauteren et al.

speed threshold that separates a regime in which the turbulence intensity increases slowly
with increasing wind speed from a regime where the turbulence intensity increases rapidly
with the wind speed. The weak turbulence, strongly stable regime is found to include cases
where local shear-generated eddies are too small to interact with the ground and turbulence
is no longer related to the bulk shear. Theoretical results also predict the appearance of two
regimes based on the hypothesis that continuous turbulence requires the turbulence heat flux
to balance the surface energy demand resulting from radiative cooling (van de Wiel et al.
2012a, b, 2017). A radiative heat loss that is greater than the maximum turbulent heat flux
that can be supported by the flowwith a givenwind profile leads to the cessation of turbulence
(van de Wiel et al. 2012a). This concept is used by van Hooijdonk et al. (2015) to show that
the shear over a given layer thickness can predict SBL regimes when ensemble averaging of
field observations is considered.

The very stable regime is, however, more likely to be dominated by apparently random,
submeso-scale flow accelerations that generate local turbulence and lead to highly non-
stationary flows (Acevedo et al. 2015). Such local flow accelerations have been revealed
by released fog elements and by fine-scale spatially-distributed temperature measurements
using fibre-optic distributed temperature sensing (Zeeman et al. 2014). The spatial observa-
tions highlighted transient temperature structures on the scales of metres for which the flow
direction and velocity could be quantified. Numerical studies have shown that finite pertur-
bations imposed on the flow after the cessation of turbulence suffice to act as a regenerating
mechanism for turbulence (Donda et al. 2015). Donda et al. (2015) further found a strong
sensitivity of the turbulence recovery to the timing and amplitude of added perturbations,
thereby motivating the need for better characterization of submeso-scale motions and their
effect on turbulence. Statistical analyses of the hydrodynamical equilibrium properties of the
SBL flow revealed that the very stable regime is prone to long-term memory effects in the
turbulence dynamics, suggesting a dynamically unstable flow (Nevo et al. 2017). The long-
term memory effects can be related to submeso-scale motions that can propagate for some
time in very stable flow regimes due to weak turbulent mixing. Such memory properties in
the observed turbulent variables suggest that very stable flow regimes need to be represented
by high-order closure models or stochastic processes (Nevo et al. 2017). A statistical charac-
terization of submeso-scale flow structures and their transport properties would greatly help
in defining such a stochastic process.

Despite numerous case studies highlighting the local shear generation of turbulence due
to flow accelerations connected to submeso motions (Sun et al. 2004; Román Cascón et al.
2015; Mortarini et al. 2017), the general understanding of non-turbulent motions on submeso
scales remains limited. Analyses of the propagation direction of submeso motions reveal no
tendency to follow the mean wind direction (Lang et al. 2018) and highlight the difficulty
of understanding the origin of such features of the flow. To extend case studies to more
general observations, Kang et al. (2014) developed a method of extracting non-stationary
motions from turbulent time series, regardless of the physical origin of the flowmotions. Non-
stationary flow structures deduced from SBL data were subsequently categorized into three
classes with similar characteristics (Kang et al. 2015). The smoothest, wave-like structures
were typically associated with higher wind speeds, active turbulence, and weak stability.
The two other classes associated with higher stratification were found to have predominantly
sharp structures with one including step-like structures that were attributed to microfronts.

To further investigate the local shear generation of eddies, Vercauteren and Klein (2015)
followed a data-driven approach to identify regimes based on the relationship between turbu-
lence and local wind variations on the submeso scales. The regime identificationwas based on
the finite element, bounded variation, vector autoregressive factor models (FEM-BV-VARX)
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Table 1 Site characteristics

Site σw [m s−1] σw/V V [m s−1] V̂ [m s−1] V̂ /V > 1 [%] σ 2
vM

SnoHATS 0.18 0.09 2.68 0.70 4.6 0.72

FLOSSII 0.31 0.06 5.26 0.74 10.18 0.35

Averaged values of the 30-min records for: the standard deviation of the vertical velocity fluctuations σw ,
the wind speed V , the submeso-scale wind speed V̂ (defined formally in Sect. 3.1), the percentage of the
time where the submeso-scale wind speed is greater than the speed of the 30-min averaged wind vector, and
the submeso cross-stream velocity variance σ 2

vM (defined formally in Vickers and Mahrt 2007, Eq. 1). The
average include all instruments at the site

clustering procedure (Horenko 2010; O’Kane et al. 2016), which allows to explicitly con-
sider external factors influencing the dynamics of the variable of interest in the classification
scheme. The automatic procedure was developed to isolate periods in which turbulence is
related to local flow accelerations due to propagating non-turbulent motions on the submeso
scales. Further analysis of one dataset revealed that one of two identified types of submeso-
influenced regimes gathered cases in which a scale gap separated the smallest submeso scales
from the largest turbulence scale. In the second such regime, submeso scales and turbulent
scales seemed to overlap (Vercauteren et al. 2016). Based on the classification of submeso-
influenced flow regimes, the present study attempts to characterize the statistics of submeso
motions that occur in flow regimes characterized by different dynamical activities of sub-
meso and turbulent scales of motion. The extraction of submeso motions is based on the
turbulent event detection (TED) method proposed by Kang et al. (2015). The questions that
are addressed are the following: is there a preferred type of submeso motion that interacts
with turbulence? And does the frequency and type of submeso motions change depending
on the regimes of SBL turbulence?

2 Data

Our study is based on sonic anemometer measurements from the Snow Horizontal Array
Turbulence Study (SnoHATS, Bou-Zeid et al. 2010) and from the Fluxes over Snow Surfaces
II (FLOSSII, Mahrt 2010) datasets. The SnoHATS dataset was collected over a large flat
glacier on top of a mountain range, while the FLOSSII dataset was collected over a locally
flat basin between two mountain ranges and includes several snow-covered periods. Some
indicators of turbulence and submeso-scale activity are given for both sites in Table 1.

2.1 SnoHATS

The data were collected over the Plaine Morte Glacier in the Swiss Alps from February
to April 2006, at 2750 m elevation (Bou-Zeid et al. 2010, data collected by the EFLUM
laboratory at EPFL). The large flat glacier ensures long periods of stable stratification, and
measurements were taken at a height varying between 2.82m and 0.62m, depending on snow
accumulation. The set-up, shown in Fig. 1, consists of two vertically-separated horizontal
arrays of sonic anemometers, with a total of 12 sonic anemometers (Campbell Scientific,
model CSAT3). The vertical separation between the upper and lower array is 0.77 m (0.82 m
after March 17), while the horizontal separation between the instruments is 0.80 m. The data
analysis was restricted towind directionswithin a±60◦ angle relative to the streamwise sonic
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Fig. 1 Set-up of the SnoHATS field campaign. Left: Side view with the 12 instruments. Right: View in the
direction of measurements showing the 1500 m fetch

axis (corresponding to easterly winds), ensuring that data are not affected by the structure
supporting the instruments. The resulting fetch consists of 1500mofflat snow.After removing
data with unfavourable flow angles (outside the selected ±60◦ range) or low quality (snow-
covered sonics, power outages), about 15 non-continuous days of data remained available
for analysis. The 20-Hz raw data were preprocessed and conditioned using axis rotations
to correct for the yaw and pitch misalignments of the sonics, linear detrending, and density
correction.

2.2 FLOSSII

The data were collected from 20 November 2002 to 4 April 2003 over a locally flat surface
south of Walden, Colorado, USA, in the Arapaho National Wildlife Refuge. The surface
consists of matted grass with brush upwind over a distance of about 100 m, with the grass
often covered by a thin snow layer during the field program. A tower allowed measurements
at 1, 2, 5, 10, 15, 20 and 30 m with Campbell CSAT3 sonic anemometers, and the data from
the second level (2 m) are used to identify flow regimes, extract and characterize events. The
choice of the 2-m level is made to be similar to the SnoHATS data, as well as to be high
enough above the ground to avoid dissipation of structures by small-scale turbulence near
the surface. It also ensures that the measurements remain within the boundary layer, which
can be very shallow in strongly stable conditions. Investigations of the height dependence of
flow regimes is left for future work. Here, instead, the transport characteristics of different
scales of motion are analyzed at several heights assuming that the regime affiliation is the
same for all heights. The dataset was quality controlled and segments of instrument problems
and meteorologically anomalous values were eliminated (Larry Mahrt, personal communi-
cation, 2018). We restrict the analysis to night-time data, taken between 1800 and 0700 local
time. Flow-regime identification based on the FEM-BV-VARX clustering methodology (see
Sect. 3.1) ideally requires continuous data, however the dataset consists of continuous night-
time data separated by gaps during the day. In order to maximize continuity of the night-time
dataset, periods with data gaps corresponding to more than 80 min over a single night (12
nights), as well as nights with flow through the measurement tower for periods longer than
5 min (51 nights), were removed from the analysis. The resulting 68 nights left for analysis
have data gaps shorter than 1min and are deemed uncontaminated. The short gaps are linearly
interpolated. The 60-Hz raw data are double rotated into the mean wind direction based on
30-min averages.
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3 Methods

Our analyses of flow structures in the SBL are based on two complementary methods. In
a first step, flow regimes are identified based on the intensity of turbulent velocity fluc-
tuations and their modulation by a submeso-scale wind velocity. The identification uses a
data-clustering methodology based on a finite element, bounded variation, vector autoregres-
sive factor method (FEM-BV-VARX) introduced by Horenko (Horenko 2010; O’Kane et al.
2013). We hypothesise that the turbulence is occasionally modulated by the wind variability
on submeso scales (typically in weak flow, strongly stable situations) and our goal is to auto-
matically detect periods in which the submeso-scale wind speed influences the turbulence
(Vercauteren and Klein 2015). In the second step, we apply the turbulent event detection
method introduced by Kang et al. (2014, 2015) to detect events in noisy time series. The
types of turbulent event occurring are analyzed in each of the FEM-BV-VARX identified
flow regime separately, thus giving an indication of the type of submeso motions occurring
in each of the flow regimes detected based on scale-interaction properties.

3.1 Classification of Flow Regimes

We briefly review the mathematical framework used to classify the flow regimes in terms of
their scale-interaction properties. For full details of the mathematical framework, we refer
to Horenko (2010), while further details on its application to SBL flow-regime classification
can be found in Vercauteren and Klein (2015).

The FEM-BV-VARX method relates an observed variable of interest at a discrete time
t to its past history, and to the past history of external forcing variables. The classification
of SBL flow regimes is based on the hypothesis that in some flow regimes, turbulence may
be modulated to a large extent by submeso-scale motions. Those flow regimes are expected
to correspond to weak-wind, very stable periods. Our classification goal is to separate cases
during which the time evolution of turbulence is modulated by the time evolution of the
submeso-scale wind speed from cases during which the response of turbulence to forcing by
submeso scales is different or less apparent.More specifically, we assume that the evolution in

time of the vertical velocity fluctuations σw =
√

w′w′ (where the overbar denotes an averag-
ing period of 1 min and the prime denotes deviations from the average) can be approximated
by several locally stationary statistical processes that are influenced by the submeso-scale
horizontal wind speed V̂ , defined on scales between 1 and 30 min. The submeso-scale wind
speed is defined formally as

V̂ =
√
û2 + v̂2 , (1)

where φ̂ = φ − [φ], the overbar denotes a 1-min averaging time, and the square brackets
denote a 30-min averaging time, such that these fluctuations represent the deviations of the
1-min sub-record averages from the 30-min average. The definition of submeso scales is
made because these are scales that typically correspond to non-turbulent motions in weak-
wind SBL flows (Mahrt et al. 2012a). Furthermore, the choice of the 1-min averaging time
for the vertical velocity variance is a compromise between minimizing the loss of flux by
larger-scale turbulent motions in windy conditions and minimizing the contamination of the
computed fluctuations by non-turbulent motions for weak-wind, more stable, conditions.

The statistical processes representing the time evolution of σw in the FEM-BV-VARX
framework are vector autoregressive models with exogenous factors (VARX) and the
submeso-scale wind speed V̂ is considered as the exogenous factor. Our analyses show
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that models that include an autoregressive part do not give any reproducible solutions to the
clustering problem. Hence we restrict our search to models including only the exogenous
part,

σw;t = μ(t) + B0(t)V̂t + · · · + Bm(t)V̂t−mτ + C(t)εt , (2)

where the process σw;t is the time evolution of the 1-min vertical velocity variance measured
at one location; the external factors V̂t are the time evolution of the horizontal wind speed
on scales between 1 and 30 min; εt : [0, T ] → R

h(h � n) is a noise process with zero
expectation, the parameters μ, B and C are time-dependent coefficients for the statistical
process, m is the memory depth of the external factor that needs to be estimated, and τ is the
discrete time increment (here 1 min). The number of statistical processes corresponds to the
number of clusters; the assumption of local stationarity of the statistical process is enforced by
setting a persistencyparameterCp ,whichdefines themaximumallowednumber of transitions
between K different statistical processes (corresponding to K different values of the model
coefficients in Eq. 2). The cluster states are indicated by a cluster affiliation function, which is
calculated from the procedure. The assumption of local stationarity of the statistical process is
equivalent to assuming that the dynamics consists of several persistent flow regimes. In other
words, the characteristic fluctuation time scale of the data is assumed to be fast compared to
the time scale at which switches between flow regimes occur. In each flow regime, an optimal
process of the form given in Eq. 2 provides a representation of the statistical modulation of
the dynamics of the vertical velocity variance by the submeso-scale wind speed. The reader
is referred to Horenko (2010) for information regarding the minimization procedure used
to solve the clustering problem, while more detailed explanations on the application of the
classification scheme to SBL turbulence are given in Vercauteren and Klein (2015). User
defined parameters and their choice are discussed in Sect. 4.1.

3.2 Turbulent Events Detection

The time-series analysis methodology for turbulent-event detection derived by Kang et al.
(2014) aims at identifying non-stationary events or flow patterns in noisy time series. Instead
of detecting signatures of known flow patterns in time series, the TED method detects flow
structures as events that are significantly different from noise. In the context of time series
resulting from turbulent quantities, the noise is taken as white and red noise. Indeed, statisti-
cal descriptions of turbulence as first suggested by Kolmogorov (1941) and Obukhov (1941)
lead to the formulation of stochastic models for the turbulent observed variables such that, in
the inertial subrange, Lagrangian velocities can be modelled using a Langevin equation (or
Ornstein-Uhlenbeck process) with suitable drift and noise terms (Thomson 1987). In the par-
ticular case of stationary and isotropic turbulence, all components of the fluid particle velocity
are statistically identical and theLangevin equation takes the following one-dimensional form
(Pope 2000),

du = − u

T
dt + √

C0ε dW , (3)

where u is the statistical representation of one component of the fluid particle velocity (or
that of a scalar turbulent variable), T is the Lagrangian decorrelation time scale, C0 is a
universal constant and ε is the the mean dissipation; dW are increments of a Wiener process.
As shown in Faranda et al. (2014), this model, when discretized, is in fact equivalent to an
autoregressive process of order one (AR(1)) process (also known as red noise),
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ut = φ ut−1 + ψt , (4)

where t is a discrete time label, φ = 1 − Δt/T , and ψt represents independent variables,
normally distributed.

In the SBL, gravity waves, transient drainage flows, and other flow structures on the
submeso scale will typically superimpose on the turbulence or affect its intensity, thereby
inducing non-stationarity and hence departures from the idealized inertial subrange Langevin
model (3) or AR(1) process (4). The deviations of turbulent time series fromAR(1) processes
were in fact studied in Nevo et al. (2017) to investigate the hydrodynamical equilibrium
properties of turbulence in different SBL flow regimes, showing that intermittent or strongly
stable regimes exhibit long memory effects in the turbulence dynamics. The core idea of the
TED method is also to analyze deviations from AR(1) processes: in a first step, sequential
subsequences of the time series x(t) of turbulent observed variables are analyzed using a
sliding window of predefined length scale l. The q-th subsequence is thus

xq(t) = {
x(tq), . . . x(tq+l−1)

}
, (5)

where 1 ≤ q ≤ (n − l + 1) and n is the length of the time series x(t). Events are defined
as subsequences that are significantly different from white noise or from an AR(1) process.
In practice, an AR(1) process is fitted to each detrended subsequence xq(t) and a test is
performed on the model residuals to see whether they are uncorrelated. If this is not the
case (i.e. if the residuals are not white noise), then xq(t) is defined as a potential event.
Additionally, non-stationary subsequences that exhibit a structural break are considered as
potential events. Note that the noise process is not removed from the subsequence, meaning
that the potential event consists of the raw subsequence.

The TED approach assumes that the typical duration of an event is known, but its form
is unknown. In the context of detecting submeso motions, this is appropriate since submeso
motions can take many different forms that are poorly known, but the typical duration of
events is on the scale of minutes to an hour. A complementary approach to the detection of
events in noisy time series is to assume that the form of events is known, while the duration
is unknown. This approach is proposed in Lilly (2017) where wavelet elements embedded
in noise detect isolated events of a known form. The reader is referred to Kang et al. (2014,
2015) for full details on the TED method. Time-scale considerations are discussed next.

3.3 Averaging TimeWithin the Turbulent Event Detection Approach

In the TED method, the length of the time window l has to be predefined. On the fastest
scales, the signal is most likely purely turbulent, and block averaging on small-enough scales
accelerates calculations without losing information on the submeso scales. The choice of
scale for the block averages of the turbulent observed variables defines the time increments
of the AR(1) process in Eq. 4. Hence the averaging scale should be chosen such that the
increments fall within the range of scales of inertial turbulence. As shown by the extended
multiresolution decomposition (MRD) analyses in Vercauteren et al. (2016), scales faster
than approximately 5–10 s exhibit fluctuations characteristic of isotropic turbulence and
block averaging within this time range represents an appropriate choice.

In order to have results comparable to the analyses of Kang et al. (2015), we thus consider
their choice of block averages of 6 s and awindow length of 120 points (12min). As discussed
in Kang et al. (2014), events can be detected on multiple overlapping windows, such that
the maximal event length is not limited to one window length. The extended MRD results in
Vercauteren et al. (2016) highlight non-turbulent fluctuations in the range of 50 s to 20–30
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min, depending on the flow regime. The window length of 12min, with possibilities of longer
events through overlapping windows, is hence deemed appropriate.

For the analysis of multiple scales, according to Kang et al. (2014), keeping l constant
and block averaging the time series to a desired scale leads to improved results. This is due
to the fact that the test statistic applied for the white noise test depends on l, and keeping
l constant returns consistent results for all scales. Tests varying the size of block averages
between 1 and 15 s (while keeping l = 120 points for consistency) showed a large sensitivity
of the event detection to the choice of scales, highlighting the difficulty of using automatic
methods for analyses of submeso motions (Kaiser 2016). Block averaging on scales shorter
than 3 s returned many short and insignificant events, while averaging on blocks longer than
9 s returned very few events. The range of scales between 4 and 8 s returned qualitatively
consistent results. Acknowledging the sensitivity to the exact choice of an averaging time,
we present our results using the aforementioned time scales—deemed physically appropriate
by the MRD analyses—in the following section. Note that this averaging time scale is used
only for the TED procedure, the FEM-BV-VARX clustering being based on 1-min averages
as explained earlier.

4 Results

4.1 Parameters Selection for Flow Regime Classification

The FEM-BV-VARX framework is used to classify flow regimes in the SnoHATS and in
the FLOSSII datasets. The turbulence data under consideration in Eq. 2 relates to the time
evolution of the 1-min vertical velocity variancemeasured at one location, σw(t) ; the external
factor is the time evolution of the streamwise velocity component on scales between 1min
and 30min at that location, V̂ (t). For the SnoHATS dataset, this location corresponds to one
of the 12 sonic anemometers (results showed little sensitivity to the choice of instrument).
For the FLOSSII dataset, the location is chosen as the second level (2 m), corresponding to
a height similar to that in the SnoHATS data.

User-defined parameters include the maximum memory depth m for the forcing variable,
the number of clusters K and the persistency parameter Cp , which limits the number of
transitions between the clusters. The maximum memory lag that we use in this model is
determined by a priori calculation of the partial autocorrelation function for the variables σw

and V̂ (Brockwell and Davis 2002). The correlation between the time series decreases on
average after a few minutes, and was set tom = 3 for the SnoHATS dataset andm = 6 in the
FLOSSII dataset (based on the average obtained over 68 nights). To determine the optimum
numbers for K and Cp , multiple models are fitted for varied values of the parameters K
and Cp . The Akaike information criterion (AIC, see Brockwell and Davis 2002) was used in
Vercauteren and Klein (2015) to select the optimal number of cluster states K = 4 and the
persistency parameter Cp = 20 for the SnoHATS data.

For the FLOSSII dataset, however, the AIC exhibits asymptotic behaviour towards zero
for all models in the investigated parameter space (K = 2, 3, 4, 5, 7 and Cp = [2, 302]) and
cannot be used as a selection criterion. Instead, the optimal model parameters are selected
as those that minimize the correlation between the signal σw and the model residuals εt ,
while maximizing the amount of variance of the signal explained by the model. Increasing
the parameters beyond K = 3 and Cp = 150 does not reduce the correlation in the residuals
and does not increase the modelled variance. Thus the choice of K = 3 and Cp = 150 is
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considered as an optimal model. The amount of variance of σw(t) explained by the VARX
model in the three clusters is 0.8%, 3% and 9.5%.

Analysis of the model residuals in the three clusters, however, showed that the error
distribution in the cluster corresponding to the largest explained variance of 9.5% was not
Gaussian. This cluster gathers the smallest values of σw and has the most interaction between
submeso scales and vertical velocity fluctuations and we wish to classify the dynamical
interactions more accurately. Therefore, we select the time series in this specific cluster
and classify it with the FEM-BV-VARX methodology further into two distinct clusters.
This strategy leads to error distributions that are closer to normally distributed in the two
subsequent clusters. Selecting only those periods of larger dynamical interactions between
σw and V̂ enables a second level clustering that differentiates the dynamical interactions
between σw and V̂ and not just the average intensity of the turbulent fluctuations.

The different performance of the AIC as a selection criterion can be explained by the
different characteristics of both datasets in relation to the statistical model assumption. The
VARX models to be fitted consist by assumption of an average value of σw (μ(t) in Eq. 2)
and of the past history of V̂ . If the past history of V̂ is unrelated to the dynamics of σw,
as could be expected from weakly stable periods, the clustering of data will result mainly
from classification of the mean value of σw. In this case of classification based on the mean
value of σw, choosing the optimum based on standard information criteria resulted in an
overfitted solution. The SnoHATS dataset includes a large number of strongly stable periods
during which the modulation of σw by V̂ is significant (see Table 2 and next paragraph),
thus the statistical modelling assumption is appropriate, and selecting the optimal clustering
result based on standard information criteria is sufficient. During FLOSSII, strongly stable
periods were observed but strongly outnumbered by periods of stronger flow or cloud cover.
In those weakly stable periods, the dynamics of σw is barely related to that of V̂ . The two-step
procedure followed here enables the isolation of periods of lowmean values of σw , and then to
classify those periods according to the dynamicalmodulation of the signal by V̂ . The decision
of classifying theFLOSSII data exhibitingmodulation by V̂ into two clusters (and notmore) is
arguably subjective, but the decision of a second level classification is based on analysis of the
noise and thus on anobjective criterion.Wedecidednot to extend the second level of clustering
to more flow regimes, partly for simplicity. Further analyses will highlight differences in the
obtained flow regimes and the classification is deemed informative. Note that each dataset
is thus classified in four distinct regimes, which do not necessarily correspond to the same
flow types at the SnoHATS and FLOSSII sites. Hereafter, the flow regimes obtained at the
SnoHATS site are denoted by S1–S4, and at the FLOSSII site by F1–F4. The regimes are
numbered following increasing median stability of the flow.

The model coefficients fitted in each cluster give a quantitative indication of the scale
interactions at both sites in each flow regime. The VARX model in Eq. 2 contains a total of
six parameters for SnoHATS, and nine parameters for FLOSSII, where the difference is due
to the different maximal memory depth m set from the analysis of the partial autocorrelation
function: μ corresponds to the mean value of σw , while B0 to B3 (for SnoHATS) or B0 to
B6 (for FLOSSII) are the weights associated with the past history of the external factor V̂
and C is the weight associated with the noise part of the model. In order to compare the
relative weight of the mean versus the external factor in each statistical model, we normalize
each parameter by the mean value μ of the corresponding model. We then compute the norm
||BSi/μSi || (resp. ||BFi/μFi || for FLOSSII) of the vector

(
BSi
0 /μSi , . . . , BSi

3 /μSi
)
(resp.(

BFi
0 /μFi , . . . , BFi

6 /μFi
)
for FLOSSII), where μSi and BSi are associated with the model

coefficients in cluster Si to estimate the relative weight of the external forcing compared to
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Table 2 Statistical causality
between the signal σw and the
external factor V̂ as quantified by
the relative weights of the model
coefficients in Eq. 2, in each
cluster

Site Flow regime ||BSi /μSi || or ||BFi /μFi ||
SnoHATS S1 0.11

SnoHATS S2 0.22

SnoHATS S3 0.92

SnoHATS S4 2.20

FLOSSII F1 0.04

FLOSSII F2 0.04

FLOSSII F3 0.11

FLOSSII F4 0.29

The norm of the vector of weights associated to the submeso-scale wind
velocity (B0, . . . Bm ) is normalized by the weight of the mean part in
the model, μ, for each individual model or cluster

the mean in each statistical model. Note that, with this normalization, the weight of the mean
is always 1. The values obtained for each flow regime at both sites are listed in Table 2. The
increasing values for increasing stability denote that the more stable cases show a greater
statistical causality between submeso scales of motion and turbulence. The method thus
captures subtle differences in scale interactions between different regimes. The results also
highlight that the FLOSSII data are characterized by less modulation of the turbulence by
the submeso-scale wind speed than the SnoHATS data, reflecting the difficulty in obtaining
an optimal number of clusters at FLOSSII based on our scale-interaction hypothesis.

Flow characteristics are given for each cluster in Table 3, with the gradient Richardson
number

Ri = (g/Θ0)
∂θ̄/∂z

(
∂V̄/∂z

)2 , (6)

used for indicative assessment of the stability properties in each regime. In (6), g is the
acceleration due to gravity, θ is the potential temperature (Θ0 being the averaged one over
the record), V is the wind vector, and the overline denotes a time average of 1 min. The
vertical gradients are calculated using the averages of the upper and lower sensors for the
SnoHATS data, and using the 1-m and 10-m levels for the FLOSSII data. The median and
quartiles of Ri in each cluster (Table 3) show that weakly stable periods are separated from
strongly stable periods by the FEM-BV-VARXprocedure with, however, large overlaps in the
distributions of Ri in the different clusters. Since the classification is based on themodulation
of the turbulence by the submeso-scale wind speed, this separation (along with the statistical
causality results in Table 2) strengthens the hypothesis that modulation of the turbulence
by submeso motions differs between the weakly and very stable regimes. The overlap of
distributions of Ri and their significant spread highlights the difficulty of defining a threshold
based on Ri for distinguishing flow regimes. Especially in the most stable flow regimes, Ri
values might be highly variable in time and may not be the right indicator of the turbulence
level. Indeed, in the context of strong modulation by a constantly changing submeso-scale
wind speed, the turbulence will likely not be in statistical equilibrium with the wind forcing,
and thus Ri does not alone suffice to characterize the turbulence. Analyses of the anisotropy
characteristics of turbulence in the FLOSSII dataset give further indication of a lack of
statistical equilibrium of the turbulence in flow regimes F3 and F4 (Vercauteren et al. 2019).
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Table 3 Flow characteristics in each flow regime

Site Flow regime Ri V (m s−1) V̂ (m s−1) V̂
V > 1 (%)

SnoHATS S1 0.02 (0.01, 0.05) 5.6 (3.9, 7.1) 1.6 (1.0, 2.4) 7.8

SnoHATS S2 0.12 (0.06, 0.23) 4.2 (3.2, 5.2) 0.8 (0.5, 1.2) 4.8

SnoHATS S3 0.29 (0.10, 0.80) 2.1 (1.3, 3.0) 0.8 (0.5, 1.3) 12.8

SnoHATS S4 0.67 (0.28, 1.76) 1.9 (1.1, 2.7) 0.4 (0.3, 0.7) 6.5

FLOSSII F1 0.03 (0.02, 0.04) 9.0 (7.8, 10.3) 0.6 (0.3, 1.1) 0.2

FLOSSII F2 0.07 (0.05, 0.10) 5.7 (4.8, 6.7) 0.4 (0.2, 0.8) 0.3

FLOSSII F3 0.14 (0.10, 0.24) 3.6 (2.7, 4.4) 0.5 (0.2, 0.9) 5.5

FLOSSII F4 0.58 (0.26, 1.55) 1.3 (0.7, 2.1) 0.4 (0.2, 0.8) 16.6

Richardson number, wind speed, submeso-scale wind speed (Median (first and third quartiles) given for each
value), and the percentage of times where the submeso wind speed exceeds the wind speed. All values are
based on 1-min averaged data
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Fig. 2 MRDcospectra of the SnoHATSdataset. Top panels:momentum cospectra, bottom panels: heat cospec-
tra. From left to right: regime S1–S4. Themajor dashed vertical lines in every panel mark the 1-min scale. Each
panel contains box plots representing the distribution of the MRD flux on a corresponding scale. The boxes
represent the 25th and 75th percentiles, and the whiskers across the scales are connected with a solid line. The
horizontal line in each box shows the median. The statistics are calculated based on all 30-min periods within
a flow regime. From S1 to S4, there are respectively 111, 148, 111 and 343 individual periods

4.2 Scale Interaction Properties

In each identified regime of near-surface SBL turbulence, the transport properties of different
scales of motion are assessed using a multiresolution flux decomposition (MRD) (Vickers
and Mahrt 2003). The scale-dependent transport properties are shown in Figs. 2, 3 and 4,
based on MRD analyses of the heat and momentum fluxes. In each figure, boxplots show
the median and quartiles of MRD fluxes calculated based on all sampled 30-min windows
in each flow regime. The MRD cospectra of the SnoHATS data are shown in Fig. 2 for the
flow regimes S1 to S4, and the MRD cospectra of the FLOSSII data are shown for heights
of 2 m, 15 m and 30 m in Fig. 3 (for the sensible heat flux) and Fig. 4 (for the momentum
flux) for the four classified flow regimes F1–F4 (from left to right). The dashed vertical
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Fig. 4 MRD momentum cospectra of the FLOSSII dataset. The top, middle and bottom rows correspond
respectively to the measurement heights of 30 m, 15 m and 2 m. From left to right: regime F1 to F4, classified
based on the 2-m height measurements. The major dashed vertical lines in every panel mark the 1-min scale.
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line shows the 1-min average scale as a reference. In all flow regimes, the median MRD
shows an increased negative contribution with increasing scales until a maximum, followed
by a decrease and finally crossing the zero flux line. This is the signature expected from the
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turbulent contribution, and the scale at which theMRD heat flux first reaches zero is typically
used to estimate the averaging scale required to sample the turbulent flux.

Themultiresolution decompositions of the heat fluxes show that,while the averaged impact
of a multitude of submeso-scale contributions to the heat fluxes is very small, individual
submeso-scale contributions can be more important to the overall heat flux during a selected
30-min time period than the turbulent contributions. This is apparent from the variability of
the submeso-scale range of the MRD, visualized by the interquartile region of the figures at
the submeso scales. As the stability increases going from regime S1 to S4 (Fig. 2) or F1 to F4
(Figs. 3, 4), themagnitude of the transport by the turbulent scales reduces,while the variability
of the transport by submeso scales (i.e. the interquartile range at those scales) increases. As
such, the dynamics becomes more influenced by the submeso scales as stability increases.
As the turbulence is collapsing, a state is reached where the magnitude of the heat flux due to
sustained turbulent scales is overpassed by the local activity of individual submeso motions
(regime S4 and regime F4). In themost stable regimes the local activity of individual submeso
motion can be greater than that of the turbulent scales. In individual windows, submeso scales
thereby can represent the dominant contribution to the heat transport, although those scales
do not systematically contribute to the mean fluxes.

Deeper analyses of the activity and transport properties of different scales of motions in
the SnoHATS flow regimes were presented in Vercauteren et al. (2016). ExtendedMRD anal-
yses suggested a likely direct transfer of energy from the submeso-scale horizontal velocity
fluctuations to turbulent vertical velocity fluctuations in regime S3 and S4. Moreover, the
analyses suggest that a scale gap separates submeso-scale motions from turbulence in S4,
whereas flux variability was found to be more continuous in scale in S3 without a scale gap.

With flow regimes classified according to the interactions between submeso activity and
turbulent vertical velocity fluctuations in both datasets, the next section presents the char-
acteristics of submeso motions identified by the TED method in each of the classified flow
regimes.

4.3 Characteristics of Events in Different Flow Regimes

Using the window size l = 120 points and 6-s averaged data, the first step of the TED
method yields 1793 events in the SnoHATS temperature time series obtained by all 12 sonic
anemometers, and 702 events in the FLOSSII 2-m temperature time series.A detailed analysis
of the events extracted from the 2-m temperature time series of the FLOSSII data is given
in Kang et al. (2015), presenting an event clustering approach based on event features that
is not repeated here. The physical characteristics of turbulent events are presented here for
each of the FEM-BV-VARX flow regimes S1–S4 and F1–F4.

The time series within each regime are discontinuous and the TEDmethod is applied to all
continuous portions of the time series individually. Based on a Ri classification, Kang et al.
(2015) found that events occurred with similar frequencies for different stability ranges in the
FLOSSII dataset. When comparing the frequency of occurrence of events in the flow regimes
classified according to their scale-interaction properties, however, differences appear both
in the SnoHATS data and in the FLOSSII data (Table 4). In the SnoHATS data, the events
account for less than 10% of the total time in the two regimes identified as weakly influenced
by submeso motions and weakly stable (regime S1: 8% and regime S1: 9%), whereas events
account for 14% of the total time in regime S3 and 20% of the total time in regime S4.
These two regimes are characterized by a median value of Ri > 0.25 (see Table 3). Note that
despite the high percentage of events in S4, the percentage of cases where the submeso-scale
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Table 4 Frequency of occurrence
of the events for the regimes
S1–S4 of SnoHATS and F1–F4
of FLOSSII

SnoHATS/FLOSSII

S1/F1 S2/F2 S3/F3 S4/F4

Events [%] 7.5/13.7 9.2/35 14.2/43.4 20.4/38.2

The numbers denote the percentage of the time detected as event within
the total time of the corresponding regime
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Fig. 5 Boxplots of the events duration shown for each FEM-BV-VARX regime separately and for each site

wind speed is higher than the wind speed is smaller in S4 than in S3 (Table 3). Similarly
in FLOSSII, the most turbulent regime F1 exhibits the lowest frequency of events (14%),
while themost stable regimes (regime F3 and F4) have the highest frequency of events (above
38%). A significant difference is, however, found in regime F2 (also weakly stable), in which
the frequency of events is large (35%). It could be that submeso motions are well represented
in this regime, but that the mean shear is strong enough for the turbulence to be unaffected
by the submeso-scale velocity fluctuations. In fact Vickers and Mahrt (2007) showed that the
cross-wind velocity variance due to submeso-scale motions systematically increased with
increasing wind speed at the FLOSSII site. This was speculatively attributed to enhanced
generation of topographically-induced motions by a nearby ridge, and could partly explain
the higher percentage of events for the higher wind-speed regime F3, when compared to the
more flat terrain features of the SnoHATS site. Figure 5 further shows the event duration
in the four flow regimes found in the SnoHATS and FLOSSII datasets. The event duration
increases with increasing regime affiliation number (i.e. with increasing stability and scale
interactions) for SnoHATS data, and is not very variable for FLOSSII data except for shorter
events in the most turbulent regime F1.

The main physical characteristics of the events found in the different flow regimes are
shown in Fig. 6. The statistics of all events occurring in each flow regime are shown for the
event-averaged Ri values, for the event-averaged wind speed, for σw (where the variance
is calculated based on 6-s intervals during the event), and for the event-averaged ratio of
submeso-scale wind speed to wind speed. Note that the statistics differ from those given for
the flow regimes inTable 3, as they correspond only toTEDevent periodswithin a flow regime
in Fig. 6. Also shown is the standard deviation of the wind direction during events (based on
6-s intervals to compute thewind direction), and the largest change in temperature and inwind
direction during the event (defined as the difference between the maximum and minimum
values during the event), so as to detect the signature of microfronts or sharp changes in wind
direction. As expected since Regime S1, S2, F1 and F2 correspond to weakly stable periods
with little influence of submeso scales on the turbulence, the values of Ri during events are
small, the wind speed is relatively high and the vertical velocity fluctuations are large in
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Fig. 6 Boxplots of the TED events physical properties in each flow regime for SnoHATS (S1–S4) and FLOSSII
(F1–F4) datasets. The line in each box represents the median over all events in the corresponding flow regime,
while the bottom and top of the box are the 25th and 75th percentiles. a Richardson number, b vertical velocity
variance, c largest wind-direction change during the event, d largest temperature change during the event, e
mean wind speed, f standard deviation of the wind direction, g submeso-scale to mean-wind ratio, h largest
signed temperature change during the event. In panels a, b, e, f, g, the values for individual TED events are
calculated as the mean over the duration of the event, and a 6-s averaging interval is used for variance and
standard deviation calculations. In panels c, d, h, the largest change refers to the maximum difference between
two consecutive 6-s intervals during the event

those regimes. The vertical velocity fluctuations decrease with increasing regime affiliation
number, corresponding to increasing stability and modulation by the submeso-scale wind
speed. Events in regimes S4 and F4 are associated with small turbulent vertical velocity
fluctuations only.
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The largest differences appear in the behaviour of the wind direction, of the temperature
and of the submeso-scale to mean wind-speed ratio during events, in the most stable regimes.
Events in regime S3 have a very large wind-direction variability in SnoHATS data and a
slightly larger variability in F3 when compared to F1 and F2 for FLOSSII data. In regimes
S4 and F4, both characterized by a median Ri > 0.6, the datasets differ markedly. The events
of FLOSSII data have a very large directional variability and large directional shifts. Such
directional shifts were in fact shown to be common in the SBL for low wind speeds byMahrt
(2010), based on the FLOSSII data. In the latter study, the strongest wind-direction shifts
were shown to occur often with a sharp decrease of temperature (a cold microfront). This
was also found by Lang et al. (2018) over a flat site in Australia. Moreover, Mahrt et al.
(2012b) attributed an observed increase of wind-directional shear at the FLOSSII site for
increasing stratification during the advection of cold air due to a cold pool forming upwind
of the site. This is consistent with the events statistics for regime F4, where the events are
characterized by the largest wind-directional shifts as well as the largest temperature changes,
which are mostly negative (panels c, d and h). They are also characterized by the largest V̂ /V
ratios, which together with the wind-directional variability are a sign of wave-like activity.
The events in the SnoHATS dataset, however, behave differently. Events in regime S3 show
signs of wave-like or advection activity similar to those seen in F4, with correspondingly
larger V̂ /V . The temperature changes are larger in regime S4 than in regime S3, however
regime S4 has the least wind-direction variability. In fact, analysis of the wind-direction
distribution during events in regime S4 point to a preferred direction pointing straight towards
the instruments. This direction corresponds to an opening at the end of the glacier, forming
a funnel that probably induces a wind direction constrained by the topography (Fig. 1). The
statistics in Fig. 6h highlight a majority of temperature changes related to cold microfronts.
The cold-microfront events correspond to small vertical velocity variance, and to rather
small V̂ /V . This could indicate a regime where decreasing turbulence, surface cooling and
increasing stratification evolve together. The flow is near-calm and wave-like activity is no
longer present. A similar regime is not detected in the FLOSSII dataset.

Regime S4 is thus characterized by submesomotions on scales significantly larger than the
turbulent scales (as is better highlighted by analyses in Vercauteren et al. 2016), which take a
slowmicrofront signature with little wind-direction variability. We hypothesise that advected
airmasses or density currents that tend to take a microfront structure, while enhancing shear
locally, may trigger only minimal turbulence on small scales. Regime F4 has a similar scale
signature and microfronts structures, but the site features are such that the microfronts also
correspond to large shifts in the wind direction. Nevertheless, these events also trigger only
minor turbulent mixing. On the contrary, the wind-direction variability characteristics of
events in regime S3, with its scale overlap that was identified in Vercauteren et al. (2016),
lead us to hypothesise that this regime encompasses wave-like phenomena that may break
down to turbulence through a cascade of scales. The submeso-scale wind speed in this regime
is often larger than the mean wind speed.

4.4 Example of Events and Flow Structures

The events were detected by the TED method based solely on the temperature time series,
without considering information on the wind direction. In this section we explore the flow
structures corresponding to selected events, taken as examples in each identified flow regime.
One example of such an event is shown for each flow regime for SnoHATS data in Fig. 7,
and for each flow regime for FLOSSII data in Fig. 8. Examples are chosen that approxi-
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Fig. 7 Visualization of turbulent events for the SnoHATS dataset. One event is shown as an example for each
regime. The time series on the left show the temperature T (blue), the wind speed U (green) and the vertical
velocity componentw (black), all shown for 6-s averaged data. The scatterplots show the temperature in colour,
in the phase space of the horizontal velocity components. The black line is a spline smoothing of the time
evolution of the wind vector
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Fig. 8 Visualization of turbulent events for the FLOSSII dataset. One event extracted from the 2-m measure-
ment height is shown as an example for each regime. The time series on the left show the temperature T (blue),
the wind speed U (green) and the vertical velocity component w (black), all shown for 6-s averaged data. The
scatterplots show the temperature in colour, in the phase space of the horizontal velocity components. The
black line is a spline smoothing of the time evolution of the wind vector
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mately match the median characteristics illustrated in Fig. 6. The selection was done after
visual analysis of all events, based on what appeared to be the most frequent or typical exam-
ples (additionally to matching the median characteristics approximately). In the examples
selected from S1 and S2, the time series of temperature T and wind speedU show an oscillat-
ing behaviour that is not followed by σw (Fig. 7a, c), as was observed by the FEM-BV-VARX
clustering results (see Table 2). The corresponding evolution of the horizontal velocity com-
ponents during the events is shown in Fig. 7b, d, where the corresponding evolution of the
temperature is represented by the colours in the scatterplot. The black line in the scatterplots
is a smoothing of the time evolution of the wind vector, so as to smooth out the turbulence
variability. This visualization of the event highlights rather a mixing process, with no clear
pattern in the temperature distribution (Fig. 7b, d). The time series of temperature T , wind
speed U and σw for the events in F1 (Fig. 8a) and F2 (Fig. 8c) show that T and U tend to
evolve in phase with a wavy pattern, but that σw does not follow the dynamics of T and U .
This is in agreement with what was observed from the FEM-BV-VARX clustering analysis,
where no relationship was found between σw and the time evolution of the submeso-scale
wind speed (see Table 2). In Fig. 8b, d, the wind vector evolves in a compact structure,
and the temperature changes smoothly following the wind vector. In these weakly stable
regimes, events are present but σw remains rather stationary during the events. The events
for FLOSSII are more structured in phase space than for SnoHATS, which could be related
to the differences in terrain complexity as discussed above.

In Sect. 4.3 we pointed out that sharp temperature changes in time occur in the most stable
flow regimes S3-S4 and F4 (see Fig. 6d), being geatest in S4 and F4, while wind-direction
changes have a more site-specific signature (see Fig. 6c). The wind-direction variability
during events is largest in S3, F3 and F4 and is visible in the examples from F3 and F4,
both highlighting a dispatched structure in the time evolution of the wind vector (Fig. 8f).
The example of F4 has a sharp change of wind direction that is simultaneous with the sharp
change of temperature (8h). This is the typical signature of a microfront that is commonly
found with weak winds and a thin stable boundary layer (Mahrt 2010; Lang et al. 2018). For
both examples, the dynamical evolution of σw is highly non-stationary, partly affected by the
evolution of T and U (Fig. 8e, g). In the example from S3, the time evolution of the wind
direction seen in the phase-space figure has a clear structure, but denotes less sharp transitions
in wind direction than in the FLOSSII examples (Fig 7f). The drop in temperature occurs
sharply, with only a slight change in wind direction (visible in phase space as the transition
from the homogeneous temperature part of the scatterplot on the right side to the left side
of the scatterplot). Increases in σw occur simultaneously with decreases in the temperature
(Fig. 7e), and the evolution of T and U is approximately in phase. In the example of S4,
however, σw seems rather stationary again, and the decrease in temperature and wind speed
does not correspond to a marked increase of σw (Fig. 7g), the wind direction is oscillating
(Fig. 7h). This example may correspond to the radiative regime suggested in van deWiel and
Moene (2003), with flow meandering but a collapsed state of turbulence.

These examples are just a few of many events for which no clear dominant patterns
are apparent. Regularity of event signatures was searched for using the clustering method
suggested in Kang et al. (2015), which highlighted recurring event signatures in the FLOSSII
dataset. For the SnoHATS dataset, however, similar regularity was notmade apparent through
that clustering approach, and did not appear after visual inspection either. The classes of
submeso-scale and turbulence interaction analyzed herein identify different regimes which
may have a preference for the existence or absence of temperaturemicrofronts, sharp changes
in wind direction or wind oscillations. However, the specific types of submeso motions
occurring may be more dependent on the local terrain features and less on the flow type. We
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expect flow regimes with active turbulence to quickly dissipate submeso motions, whereas
quieter regimes allow such flow structures to be transported for a longer time and thereby
to affect the turbulence to some extent. This picture is consistent with the hypothesis of a
dynamically unstable flow in a transition zone near a critical wind speed separating two
distinct metastable flow equilibria (one with active turbulence and the other with collapsed
turbulence), suggested by the conceptual model of van de Wiel et al. (2017). Indeed, in the
transition zone near the critical wind speed, the response time of the flow to perturbations
becomes large, such that random perturbations of the flow by submeso motions are long-
lived. This is in agreement with the statistical analyses presented in Nevo et al. (2017), who
suggested that themore stable regimes are dynamically unstable, based on analyzingmemory
effects in time series of turbulent observed variables in the different flow regimes.

5 Conclusion

Flow regimes were classified in terms of interactions between submeso and turbulent scales
of motion. In each flow regime, turbulent events were extracted using the turbulent event
detection method, and the statistical properties of those events were characterized. Regimes
experiencing little scale interactions (S1, S2, F1, F2) are characterized by the shortest events,
higher wind speeds, weak stability and fewer events.

Regimes experiencing greater scale interactions correspond to higher stability, more
numerous and longer events. In the most stable regimes that occur with weak winds, with a
scale separation between turbulent and submeso scales, the signature of events was found to
take a site specific signature, probably related to local topographical characteristics. Events
in these very weak wind conditions tend to exhibit strong temperature changes, with wind-
direction variability characteristics that depend on the site, probably through the terrain
specificities. The site differences exemplified here in two datasets render the derivation of
parametrizations difficult. These flow regimes could be related to radiative cooling, advected
airmasses, density currents, and events thus tend to take a microfront structure with sharp
temperature changes. Local shear enhancement due to the advected airmasses results in tur-
bulent mixing as identified by the FEM-BV-VARX method but the turbulent mixing occurs
on very local, small scales. There may be a direct energy transfer between submeso scales
and turbulent scales through the local shear generation of small-scale eddies, as was analyzed
in Vercauteren et al. (2016).

In regimes where the submeso-scale wind speed is often larger than the wind speed (S3,
F3), or where the submeso and turbulent scales tend to overlap (S3), events are characterized
by a large variability in the wind direction during the selected event. Temperature changes
are, however, less sharp than in the most stable regimes S4 or F4 in which turbulence is nearly
collapsed. Events are associated with stronger vertical-velocity fluctuations than in the very
weak-wind, strongly stable regimes S4 and F4. This could potentially be more related to
wave-like phenomena that break down to turbulence through a cascade of scales.

The multiresolution flux-decompostion analyses point to the randomness of submeso-
scale contributions. The averaged contribution of the submeso scales to the heat flux is
negligible, however individual contributions become larger than turbulent contributions in
strongly stable, weak-wind regimes. The phenomena leading to the submeso-scale motions
and associated fluxes are not resolved nor taken into account in numerical models, except
through artificial enhanced mixing. The combination of flow regime detection to extract peri-
ods where submeso motions tend to dominate over turbulent transport and characterization
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of events in each regime provides a means of defining a stochastic process based on the sta-
tistical analyses. More extensive analyses based on machine-learning methods, for example
using neural network methods to identify patterns using all the observables corresponding to
events, may help shed light on the regularity of submeso motions.
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Belušić D, Güttler I (2010) Can mesoscale models reproduce meandering motions? Q J R Meteorol Soc
136(648):553–565

Bou-Zeid E, Higgins CW, Huwald H, Meneveau C, Parlange M (2010) Field study of the dynamics and
modelling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier. J Fluid Mech
665:480–515

Brockwell PJ, Davis RA (2002) Introduction to time series and forecasting, 2nd edn. Springer, Berlin
Cava D, Mortarini L, Giostra U, Richiardone R, Anfossi D (2016) A wavelet analysis of low-wind-speed

submeso motions in a nocturnal boundary layer. Q J R Meteorol Soc 143(703):661–669
Donda JMM, van Hooijdonk IGS, Moene AF, Jonker HJJ, van Heijst GJF, Clercx HJH, van de Wiel BJH

(2015) Collapse of turbulence in stably stratified channel flow: a transient phenomenon. Q J R Meteorol
Soc 141(691):2137–2147

Faranda D, Pons FME, Dubrulle B, Daviaud F, Saint-Michel B, Herbert É, Cortet PP (2014) Modelling and
analysis of turbulent datasets using ARMA processes. Phys Fluids (1994-present) 10:101–105

Horenko I (2010) On the identification of nonstationary factor models and their application to atmospheric
data analysis. J Atmos Sci 67(5):1559–1574

Kaiser A (2016) Stably stratified atmospheric boundary layers: event detection and classification for turbulent
time series. Bachelor thesis, Freie Universität Berlin
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