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Abstract
We describe a new approach for modelling the interaction of solar and thermal-infrared
radiation with complex multi-layer urban canopies. It uses the discrete-ordinate method
for describing the behaviour of the radiation field in terms of a set of coupled ordinary
differential equations that are solved exactly. The rate at which radiation intercepts building
walls and is exchanged laterally between clear-air and vegetated parts of the urban canopy is
described statistically. Key features include the ability to represent realistic urban geometry
(both horizontal and vertical), atmospheric effects (absorption, emission, and scattering), and
spectral coupling to an atmospheric radiation scheme. In the simple case of a single urban
layer in a vacuum, the new scheme matches the established matrix-inversion method very
closely when eight or more streams are used, but with the four-stream configuration being of
adequate accuracy in an operational context. Explicitly representing gaseous absorption and
emission in the urban canopy is found to have a significant effect on net fluxes in the thermal
infrared. Indeed, we calculate that for the mid-latitude summer standard atmosphere at mean
sea level, 37% of thermal-infrared energy is associated with a mean free path of less than
50 m, which is the typical mean line-of-sight distance between walls in an urban area. The
interaction of solar radiation with trees has been validated by comparison to Monte Carlo
benchmark calculations for an open forest canopy over both bare soil and snow.

Keywords Discrete ordinate method · Three-dimensional radiative transfer · Urban form ·
Urban vegetation

1 Introduction

There is a growing need to represent urban areas accurately in weather and climate models,
in order to improve predictions of both the conditions experienced by city residents and
the interaction with the atmosphere above (Baklanov et al. 2018). In the case of radiative
transfer, the complexity of urban surfaces presents a significant computational challenge. The
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computationally fastest one-dimensional (1D) urban canopy radiation schemes make many
assumptions, typically assuming a single infinitely long street canyon of fixed height and
width, in vacuum (e.g. Masson 2000; Harman et al. 2004). At the other extreme are three-
dimensional (3D) models that represent an explicit urban geometry via ray tracing, with the
capability to treat urban vegetation and atmospheric effects (e.g. Gastellu-Etchegorry 2008;
Lindberg et al. 2008). Three-dimensional models can be used to evaluate 1D schemes, but
are far too slow and memory-hungry to incorporate into a weather or climate model.

Given the importance of urban vegetation for the neighbourhood energy balance (Grim-
mond et al. 2010) and the need to represent height variations within the urban canopy (Yang
and Li 2015), intermediate-complexity models have been developed that represent buildings
of different height (Schubert et al. 2012), street trees (Redon et al. 2017) or both (Krayenhoff
et al. 2014). However, it is questionable whether they have struck the right balance between
complexity and computational cost: all three models mentioned above still make the poor
assumption of an infinitely long street canyon (see Hogan 2019), while one (Krayenhoff et al.
2014) uses the computationally expensive ray-tracing approach.

In this paper we propose a new framework to represent solar (hereafter ‘shortwave’) and
thermal-infrared (hereafter ‘longwave’) radiative transfer in complex urban canopies. It is
underpinned by the 1D discrete-ordinate method (e.g. Stamnes et al. 1988), in which a set
of coupled ordinary differential equations is written for 2N streams of radiation travelling at
different zenith angles, plus one for the direct solar beam in the shortwave. The equations are
solved exactly for a multi-layer description of the urban canopy. Virtually all atmospheric
radiation schemes used in weather and climate models are based on the two-stream discrete-
ordinate method (i.e. one upwelling and one downwelling irradiance).

To represent buildings and vegetation, we use the SPARTACUS (SPeedy Algorithm for
Radiative TrAnsfer through CloUd Sides) approach, which has previously been used to
represent 3D radiative effects associated with clouds (Hogan et al. 2016) and forests (Hogan
et al. 2018). The new ‘SPARTACUS-Urban’ scheme divides each layer of the urban canopy
into a clear-air and vegetated region, and terms are added to the differential equations to
represent the rates of lateral exchange of radiation between regions, and the rate at which
radiation intercepts building walls. Previous SPARTACUS implementations used only two
streams but here we improve the accuracy by generalizing to 2N streams. Our approach has
the following advantages over previous 1D urban radiation schemes:

• Realistic urban geometry Rather than explicitly solving for a specific urban geometry,
which is only tractable for very simplistic building layouts, we take a more statistical
approach. Hogan (2019) found that the probability distribution of horizontal wall-to-wall
separations in real cities is well fitted by an exponential distribution, which leads to much
better predictions of radiative exchange than for the infinite street canyon. This result
is perfectly suited to incorporation into a discrete-ordinate model, since it predicts that
radiation travelling at a particular zenith angle is attenuated by buildings according to
the Beer–Lambert law, in the same way as radiation propagating in a turbid atmosphere.

• Complex vegetation Hogan et al. (2018) have already validated the SPARTACUS
approach for representing 3D shortwave interaction with trees, including the capability
to represent crown heterogeneity. The present scheme can be thought of as an extension
of that proposed by Hogan et al. (2018) to include buildings.

• Atmospheric absorption, emission, and scattering It is ubiquitous in current urban radia-
tionmodels to treat the space between buildings as a vacuum, but this is a poor assumption
in a significant fraction of the longwave spectrum where the mean free path of the radi-
ation can be less than the building separation. We quantify the importance of longwave

123



Flexible Treatment of Radiative Transfer in Complex Urban Canopies… 55

absorption and emission by coupling the new scheme to the gas-optics model of an
atmospheric radiation code.

• Coupling to the free atmosphere Care has been taken to formulate the scheme to enable
it to be coupled consistently with an atmospheric radiation scheme, specifically ‘ecRad’
(Hogan and Bozzo 2018). This coupling is done to ensure that exactly the same spectral
intervals are used in the urban canopy as in the atmosphere above, if required.

Sections 2 and 3 provide a detailed description of the method in the shortwave and long-
wave, respectively. In Sect. 4 various aspects of the scheme are evaluated against existing
methods for canopies with a simplistic vertical structure. In Sect. 5 the importance of long-
wave atmospheric effects in urban canopies is quantified using the newmodel. Finally, Sect. 6
discusses how the scheme could be extended in future, for example to represent pitched roofs.
Note that evaluation against fully 3D calculations for real urban scenes with complex vertical
structure will be the subject of a future paper.

2 ShortwaveMethod

This section defines numerous symbols; for convenience, those that appear in more than one
equation are listed in Appendix 1.

2.1 Definition of Regions and Streams

The treatment of radiation in vegetated urban areas takes as its starting point the SPARTACUS
approach for treating 3D structures that has previously been used for clouds and forests.
As illustrated in Fig. 1, we divide the canopy vertically into layers and horizontally into
regions. Radiation is modelled in clear-air region a and vegetated region v, while building
region b is impermeable to radiation. It is straightforward to extend this to more regions, for
example to represent vegetation of different densities (Hogan et al. 2018), or alternatively to
neglect vegetation completely. SPARTACUS then assumes that the rate of radiation exchange
between permeable regions, and the rate at which radiation intercepts building walls, is
proportional to the area of the vertical interface between these regions. As shown in Fig. 1a, all
surfaces are currently assumed to be either horizontal or vertical, but the statistical description
in SPARTACUS can accommodate different parts of the same building having different
heights, and individual tree crowns whose width varies with height.

In the shortwave part of the spectrum, the ‘direct’ (i.e. unscattered) radiation at a particular
height in the urban canopy is described by a vector containing one irradiance component for
each permeable region,

s =
(
sa

sv

)
, (1)

where these are irradiances into a plane oriented perpendicular to the sun. To convert into
a horizontal plane they should be multiplied by μ0, the cosine of the solar zenith angle θ0.
Note that irradiances here are for one particular spectral interval and multiple calculations
are required to integrate over the full spectrum to account for spectral variations in surface
and atmospheric properties.

To describe the diffuse radiation field, previous SPARTACUS implementations used the
two-stream method in which one number (the irradiance into a horizontal plane) was used
to describe the diffuse radiation in each hemisphere. As will be shown in Sect. 4, we have
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found that two streams are insufficient to capture the exchange of diffuse radiation between
the street, walls, and sky of an urban area, so we generalize SPARTACUS to 2N streams such
that the diffuse radiation field in each hemisphere is described by radiation travelling in N
discrete directions. Thus, the upwelling diffuse radiation at a particular height in the urban
canopy is described by a vector, which for the four-stream (N = 2) case is given by u =
( ua1 ua2 uv

1 uv
2 )T,whereuik is the irradiance component in region i due to radiation travelling

in discrete direction k. The mean upwelling irradiance is obtained simply by summing the
elements of u. An analogous vector v describes downwelling diffuse radiation. The blue
arrows in Fig. 1b depict the one direct and four diffuse streams in region a in the case of
N = 2.

Following Sykes (1951) and Stamnes et al. (1988), and indeedmostmulti-stream radiation
schemes, we choose the discrete angles using ‘double-Gauss’ quadrature, in which the cosine
of the zenith angle, μ, is discretized using Gaussian quadrature separately in the ranges
−1 < μ < 0 (upwelling streams) and 0 < μ < 1 (downwelling streams). For a 2N -stream
scheme the discrete zenith angles in one hemisphere are written as θ1 to θN , and their cosines
as μ1 to μN . In the equations used herein, all μk terms are treated as positive in both the
upwelling and downwelling hemispheres. Each quadrature point is assigned a weight wk ,
dictated by the rules of Gaussian quadrature, with the weights summing to unity. In Sect. 4
we examine how the error decreases as N is increased.

2.2 Formulation of Differential Equations

SPARTACUS formulates the 1D shortwave radiative transfer problem as a set of coupled
ordinary differential equations written in matrix form (Hogan et al. 2016),

d

dz

⎛
⎝u
v
s

⎞
⎠ = �

⎛
⎝u
v
s

⎞
⎠ , (2)

where z is defined as height measured down from the top of the canopy as shown by the
vertical axis in Fig. 1b. In this convention, which matches that in most atmospheric radiation
schemes, sunlight originates from the top of the canopy (z = 0) and decreases with increasing
z. The exchange matrix � may be written in terms of five component matrices,

� =
⎛
⎝−�1 −�2 −�3

�2 �1 �4

�0

⎞
⎠ . (3)

The subscripts of the component matrices follow those of the analogous γ0–γ4 coefficients
used in conventional two-stream radiation schemes (Meador and Weaver 1980), rather than
the indices of zenith angles θk .

The �0 matrix describes the rate at which direct downwelling radiation changes along its
path and may be expressed as the sum of two component matrices (Hogan et al. 2018),

�0 =
(− f av

0 + f va
0+ f av

0 − f va
0

)
+

(
ea0

ev
0

)
. (4)

The first component matrix represents exchange of radiation between regions. The f i jk coef-
ficients express the rate at which radiation in the angle indexed k (where k = 0 indicates
direct radiation) is transferred from region i to region j , per unit vertical distance travelled,
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Fig. 1 Illustration of how the features of a real urban neighbourhood can be represented in SPARTACUS-
Urban. a Buildings and trees in a 1 km× 1 km area of London centred on 51.519◦N, 0.123◦W. The buildings
are shown with vertical walls and flat roofs, consistent with the assumptions in the current version of the
scheme. SPARTACUS-Urban approximates the horizontal building layout statistically by the exponential
model of Hogan (2019). b Illustration of how the neighbourhood could be divided into layers and regions
within SPARTACUS. Radiation is allowed to penetrate into the clear (white) and vegetated (green) regions,
but not the buildings (red). Consistent with most atmospheric radiation schemes, we use a depth coordinate
increasing down from canopy top, and likewise index the layers starting at 1 in the uppermost layer, because
it is then a little easier to ensure numerical stability with sunlight originating at canopy top (z = 0) and
decreasing exponentially with increasing z. The blue arrows indicate the discrete radiation directions used
in a four-stream shortwave scheme, while the black arrows labelled f aw and f av denote the rate at which
clear-air radiation intercepts building walls, and passes into the vegetation region, respectively. Symbols are
defined in Appendix 1
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and is given by

f i jk = Li j | tan θk |
πci

, (5)

where ci is the fractional area of the domain covered by region i , and Li j is the normalized
perimeter length, i.e. the length of the interface between regions i and j per unit area of
the horizontal domain. The modulus of the tangent is required to ensure that f i jk is positive
for upwelling streams (when θk > 90◦). The second component matrix in (4) represents
extinction of the direct beam due to scattering and absorption by the air, leaves or building
walls, and its elements are given by

eik = −σ i/μk − f iwk (1 − αw pw), (6)

where σ i is the volume extinction coefficient of region i representing scattering and absorp-
tion by the air and/or leaves, and f iwk represents the rate of radiation interception by the
building walls, which may be represented in the same form as (5) but with Liw being the
building perimeter length surrounding region i per unit area of the domain. If reflection from
the building walls has a specular component, appropriate for buildings with a glass facade,
then the specularly reflected light would retain its original zenith angle and is therefore best
treated as remaining in the same stream, i.e. not being scattered at all. Thus (6) reduces the
building interception term by a factor 1− αw pw , where αw is the albedo of the wall and pw

the fraction of that reflection that is specular.
If we neglect vegetated regions for the moment, then the near-surface value of Law may

be derived from building polygon data: if a horizontal area A of a city contains buildings
with a total perimeter length L then Law = L/A. At a particular height in the urban canopy
we consider only the perimeter of buildings of at least that height, so both L and Law

decrease with height. Other length scales have been used in the literature to characterize
building horizontal scale and separation, and can be used to estimate Law. Most common
is the typical street width, W : under the assumption that the urban canopy is composed of
infinite streets all of width W , the total length of street in a domain of horizontal area A is
Lstreet = (1 − cb)A/W , where cb is the fractional horizontal area of the domain occupied
by buildings (denoted as λp by Grimmond and Oke 1999). Since each street has two walls,
L = 2Lstreet, and hence

Law = 2(1 − cb)/W . (7)

(A small modification is needed if a certain known fraction of the vegetation perimeter is in
contact with building walls, or close enough that any radiation emerging from the vegetation
immediately strikes a wall.) Hogan (2019) showed that for the purposes of radiative transfer,
the infinite-street assumption is a poor fit to real cities; he found that the distribution of
wall-to-wall horizontal separation distances in real cities (considering all azimuth angles) is
well approximated by an exponential distribution, and described a method to estimate the
e-folding separation distance, X , from building polygon data. If the distribution is a perfect
exponential then X is also the mean wall-to-wall horizontal separation distance. Combining
his equations 23 and 25 leads to W = 2X/π, and hence

Law = π(1 − cb)/X . (8)

As shown in Sect. 4.1, the Hogan (2019) exponential model of urban geometry is fully
consistent with SPARTACUS-Urban since solutions to (2) predict the intensity of radiation
propagating in a particular direction to vary exponentially with distance.
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The �1 matrix in (3) represents the rate at which diffuse radiation changes along its path
and is given by three component matrices,

�1 =

⎛
⎜⎜⎝

− f av
1 + f va

1− f av
2 + f va

2+ f av
1 − f va

1+ f av
2 − f va

2

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
ea1

ea2
ev
1
ev
2

⎞
⎟⎟⎠ + �2. (9)

The f i jk terms again represent exchange between regions and are given by (5). The eik terms
in the second component matrix again represent loss due to scattering and absorption by the
air, leaves or building walls, and are given by (6). The third component matrix describes
the rate at which diffuse radiation is scattered, either by the air in the canopy or the walls,
into other diffuse streams. If we assume that, after accounting for specular reflection from
the walls, the scattering is isotropic, then this term is equal for radiation scattered into the
upward and downward streams, so is equal to �2 in (3) and is given by

�2 =

⎛
⎜⎜⎝
ea11 ea21
ea12 ea22

ev
11 ev

21
ev
12 ev

22

⎞
⎟⎟⎠ , (10)

where the eikl terms express the rate at which radiation in region i and stream k is scattered
into stream l in either the same or the opposite hemisphere, given by

eikl = wlσ
iωi

2μk
+ vl f iwk αw(1 − pw)

2
. (11)

The two terms mirror those in (6): the first represents isotropic scattering by the air or leaves,
where ωi is the single scattering albedo of region i , while the second represents non-specular
scattering by walls (the 1− pw term removing the specular fraction). Both terms are divided
by two since radiation is assumed to scatter equally into the two hemispheres. The second
term uses a weighting appropriate for vertical surfaces given by

vl = wl sin θl

/ N∑
j=1

w j sin θ j . (12)

This weighting assumes that non-specular scattering by the walls is Lambertian, which leads
to the sin θl dependence since the radiation emitted by a small element of a vertical plane
towards a viewer is proportional to the angle subtended by the element at the viewer, which
varies as sin θl . The summation on the denominator ensures energy conservation. The final
two matrices in (3), �3 and �4, represent scattering from the direct beam into the upward
and downward streams, respectively. In the case of isotropic scattering by air and leaves they
are equal and given by

�3 = �4 = μ0

⎛
⎜⎜⎝
ea01
ea02

ev
01
ev
02

⎞
⎟⎟⎠ , (13)

where the elements are given by (11).
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Fig. 2 The main steps in the SPARTACUS-Urban shortwave and longwave solvers in the case of a two-layer
representation of the urban canopy, where the shaded boxes indicate the main variable or variables involved,
and the numbered steps are referred to in the text

2.3 Solving the Equations for a Single Layer

Figure 2 depicts the steps in the SPARTACUS-Urban solver. The first step is to solve (2) for
each individual layer j , computing the following matrices from �:

• R j is the diffuse reflectance matrix such that if the layer is illuminated from above by
diffuse radiation v j−1/2 only, then the reflected radiation due to scattering within the
layer is u j−1/2 = R jv j−1/2. As shown in Figs. 1b and 2, half indices indicate properties
defined at the interface between layers.

• T j is the diffuse transmittance matrix such that diffuse illumination from above leads to
the transmitted radiation exiting the base of the layer being v j+1/2 = T jv j−1/2.

• E j is the direct transmittance matrix such that if the layer is illuminated from above by
direct radiation s j−1/2 only, then the direct radiation emerging from the base is s j+1/2 =
E j s j−1/2.

• S+
j and S−

j describe the scattering of the direct beam such that for the same direct-only

illumination from above, u j−1/2 = S+
j s j−1/2 is the upward diffuse radiation emerging

from the top of the layer and v j+1/2 = S−
j s j−1/2 is the downward diffuse radiation

emerging from the base.

There are generally three methods for computing these matrices. The doubling method (e.g.,
Thomas and Stamnes 1999) is conceptually straightforward and numerically stable, but com-
putationally expensive. The matrix-exponential method (e.g., Flatau and Stephens 1998;
Hogan et al. 2016) is computationally faster but becomes numerically unstable if the opti-
cal depth of the layer along any of the discrete angles is too large. We therefore prefer the
eigendecomposition method (e.g., Stamnes et al. 1988), which is both fast and numerically
stable. Appendix 2 describes how this method is used to derive the matrices above.

2.4 Computing the Albedo Profile

Here we describe steps 2–4 of Fig. 2 in which we pass up through the layers of the canopy
computing the albedo of the entire scene below each layer interface. Although this is similar
to Sect. 2.6 of Hogan et al. (2018), it is complicated by the use of more than two streams
and the variation of building and vegetation cover with height. We define matrix A j+1/2 as
the albedo to diffuse downwelling radiation (i.e. the white-sky albedo) of the scene below
interface j+1/2 (including the surface contribution), andmatrixD j+1/2 as the corresponding
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albedo to direct radiation (i.e. black-sky albedo). They are defined such that the upwelling
irradiances at this interface are equal to the sum of the reflected downwelling diffuse and
direct irradiances,

u j+1/2 = A j+1/2v j+1/2 + D j+1/2s j+1/2. (14)

At the surface (interface n + 1/2 for an n-layer description of the canopy), these matrices
have the following forms (for N = 2 and two regions; step 2 of Fig. 2),

An+1/2 =

⎛
⎜⎜⎝

αah1 αah1
αah2 αah2

αvh1 αvh1
αvh2 αvh2

⎞
⎟⎟⎠ , (15)

Dn+1/2 = μ0

⎛
⎜⎜⎝

αah1
αah2

αvh1
αvh2

⎞
⎟⎟⎠ , (16)

where αi is the surface albedo beneath region i (allowing for the possibility to represent trees
being planted over a different surface type), and is weighted by an equivalent term to (12)
but for Lambertian reflection by a horizontal surface,

hl = wlμl

/ N∑
j=1

w jμ j . (17)

The zero entries in (15) and (16) simply represent the fact that light incident on the surface
beneath clear-sky is not reflected up into the vegetated region, but note that at higher levels
in the canopy these these entries are not zero due to lateral exchange of radiation between
regions.

To compute the albedo matrices at the top of a layer (indexed j − 1/2) given the albedos
at the base (indexed j + 1/2) and the properties of the layer, we apply Eqs. 33 and 34 of
Hogan et al. (2018),

A j−1/2 = R j + T jB−1A j+1/2T j , (18)

D j−1/2 = S+
j + T jB−1

(
D j+1/2E j + A j+1/2S

−
j

)
, (19)

where B = I −A j+1/2R j . This is a form of the ‘Adding Method’ and accounts for multiple
internal reflections between layer j and the layers below (step 3, Fig. 2). If the definition
of the regions was the same in each layer, then we could repeat this process immediately
for the layers above until we reached the top of the canopy. However, both tree area and
building area tend to decrease with height (see Fig. 1b), accompanied by a corresponding
increase in clear-sky area. Therefore, we need to map from the albedo defined using the
regions just below the interface, Abelow j−1/2, to the albedo defined in the regions just above
the interface, Aabove j−1/2, and similarly for D. Following Hogan et al. (2016) for clouds,
‘directional overlap matrices’ are used. For downwelling radiation, overlap matrices V and
W are defined such that

vbelow = Vvabove, (20)

sbelow = Wsabove, (21)
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where subscripts ‘above’ and ‘below’ denote irradiances just above and below a layer inter-
face. Similarly, overlap matrix U is defined such that uabove = Uubelow. This leads to Eq.
31 of Hogan et al. (2016) mapping the diffuse albedo across layer interface j − 1/2, and an
equivalent expression for direct albedo (step 4, Fig. 2),

Aabove j−1/2 = U j−1/2Abelow j−1/2V j−1/2, (22)

Dabove j−1/2 = U j−1/2Dbelow j−1/2W j−1/2. (23)

A complication arises because we do not simulate radiative transfer inside buildings, so
the horizontal domain of the radiation simulation (the white and green regions in Fig. 1b)
varies with height. This means that some of the clear-sky region in layer j − 1 overlies a
roof, and will ‘see’ the roof albedo, αb. To represent this, we introduce a pseudo region in
the lower layer for the exposed roof area by expanding the albedo matrices as follows,

Abelow j−1/2 =
⎛
⎝A j−1/2

αbh1 αbh1
αbh2 αbh2

⎞
⎠ , (24)

Dbelow j−1/2 =
⎛
⎝D j−1/2

μ0α
bh1

μ0α
bh2

⎞
⎠ . (25)

The overlapmatrices allow for arbitrary overlapping of buildings, vegetation, and clear-air
in adjacent layers, but if we were to make the assumption that there are no overhanging trees
or buildings, and no trees on top of buildings, then the overlap matrix for direct downwelling
radiation has the form

W j−1/2 =
⎡
⎢⎣

caj /c
a
j−1

(cv
j − cv

j−1)/c
a
j−1 1

(cbj − cbj−1)/c
a
j−1

⎤
⎥⎦ , (26)

where cij is the fractional area of region i in layer j , and cbj represents the fractional area
of buildings in layer j . The three elements in the left column of (26) describe the fraction
of clear-air radiation in layer j − 1 that enters the clear-air, vegetation, and flat-roof regions
in layer j ; they sum to 1. The single non-zero element in the right column of (26) states
that all radiation in the vegetated region of layer j − 1 enters the vegetated region of layer
j . Equation 26 can represent tree crowns over a clear region near the surface by setting the
extinction coefficient of the ‘vegetated’ region to zero in the lowest layers, as illustrated in
the bottom-right of Fig. 1b. To represent trees overhanging buildings, the third element in
the right column of (26) may be set to the fraction of the vegetated region in layer j − 1 that
overlies a roof in layer j , with a corresponding reduction in the second element.

The overlap matrices for diffuse radiation have more elements since we have N streams
in the upward and downward hemispheres for each region, but radiation remains in the same
stream as it passes through an interface so the matrices are sparse. Thus, the matrix for
downwelling diffuse radiation is the same as for direct, but with each element replicated for
each stream,

V j−1/2 =
⎡
⎢⎣

Icaj /c
a
j−1

I(cv
j − cv

j−1)/c
a
j−1 I

I(cbj − cbj−1)/c
a
j−1

⎤
⎥⎦ , (27)
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where I is the N × N identity matrix. Similarly, the matrix for upwelling diffuse radiation is
given by

U j−1/2 =
[
I I

(
1 − cv

j−1/c
v
j

)
I

Icv
j−1/c

v
j

]
. (28)

The middle column distributes upwelling radiation in the vegetated region of layer j into the
clear-air and vegetated regions of layer j − 1 according to the vegetation cover in each layer.
The other two columns indicate that all upwelling radiation from the clear-air and flat-roof
regions in layer j − 1 ends up in the clear-air region of layer j .

2.5 Computing the Irradiance Profile

We now have a profile of albedo matrices just above and just below each layer interface. If
SPARTACUS-Urban is to be coupled to an atmospheric radiation scheme then at this point
the scalar direct and diffuse albedos at canopy top (interface 1/2) need to be computed (step 5,
Fig. 2). Applying (22) and (23) provides the albedo matrices just above interface 1/2, where
the overlap matrices (Eqs. 26–28) are defined assuming a pseudo-layer 0 representing the
free atmosphere above the urban canopy; here there are no buildings or trees so cv

0 = cb0 = 0
and ca0 = 1. The scalar albedo of the scene to direct radiation, αdir,scene is then simply the
top-left element of Dabove 1/2. The scalar albedo to diffuse radiation, αdiff,scene, is computed
assuming that the downwelling diffuse radiation at the top of the urban canopy is isotropic
so the streams are weighted according to (17).

As illustrated in Fig. 1 of Hogan and Bozzo (2018), an atmospheric radiation scheme
takes the direct and diffuse albedos as a boundary condition and computes the full profile of
irradiances through the atmosphere. The direct and diffuse downwelling irradiances at the
base of the lowest atmospheric layer, i.e. at the top of the urban canopy, are passed back into
SPARTACUS-Urban. The urban radiation calculations can be performed either at the same
spectral resolution as the atmosphere above, or using a coarser spectral resolution according
to the availability of data on the spectral dependence of material properties within the urban
canopy.

The downwelling irradiances from the atmospheric radiation scheme are inserted into the
clear-sky region of the irradiance vectors just above canopy top, sabove 1/2 and vabove 1/2 (step
6, Fig. 2), with the diffuse irradiance again being distributed isotropically into the streams
using the weighting in (17). These are translated into the irradiances just below the canopy
top using (20) and (21); step 7 in Fig. 2. Note that the final elements of sbelow 1/2 and vbelow 1/2

contain the irradiances incident on the flat roofs of the buildings in layer 1. Knowing the roof
albedo we can therefore compute the net irradiance into this surface and pass it to an energy
balance model for the roof. The roof irradiances are removed from these vectors and then
Eqs. 39, 40, and 42 of Hogan et al. (2018), the downward part of the Adding Method, are
applied to obtain the irradiances just above the base of the layer (step 8, Fig. 2). This process
is repeated down to the surface to obtain the full irradiance profile.

In an atmospheric radiation scheme, the heating rate of each layer is proportional to the
convergence of net irradiance across the layer,which is easy to compute from the irradiances at
layer interfaces. In an urban canopywewish to compute the net radiation absorbed separately
by each facet and region (step 9, Fig. 2). The treatment of flat roofs is described above. For
the other terms we define vector n j = ( naj nv

j nw
j )T as the net power absorbed by the air,
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vegetation, and walls in layer j , per unit area of the entire domain. It is computed from

n j = Ndiff
j

(
û j + v̂ j

) + Ndir
j ŝ j , (29)

where û j , v̂ j , and ŝ j are the irradiance components vertically integrated across the layer (in
W m−1), expressions for which are given in Appendix 2. The N matrices represent the rate
(in m−1) at which radiation in each diffuse and direct stream is absorbed by each facet,

Ndiff =
⎛
⎝ Na

1 Na
2

N v
1 N v

2
Wa

1 Wa
2 W v

1 W v
2

⎞
⎠ , (30)

Ndir =
⎛
⎝ Na

0
N v
0

Wa
0 W v

0

⎞
⎠ . (31)

The rate at which radiation in stream k is absorbed in region i is Ni
k = σ i (1−ωi )/μk , which

is like the first term on the right-hand side of (6) except that rather than representing loss by
extinction, it represents gain by absorption. Similarly, the rate at which radiation in region i
in stream k is absorbed by walls is Wi

k = f iwk (1− αw), which is the absorption analogue of
the second term on the right-hand side of (6). Some urban energy balance models treat the
sunlit and shadowed parts of the walls separately (e.g. Oleson et al. 2008), which could be
accommodated by computing the direct solar heating of walls (associated with theWi

0 terms
in Eq. 31) separately.

3 LongwaveMethod

The longwave implementation of SPARTACUS-Urban follows the general structure
described by Hogan et al. (2016), which is similar to the shortwave but with the direct
solar beam removed and thermal emission added. Hogan et al. (2016) allowed for a variation
in temperature with height within model layers, but to simplify the problem we assume that
although the temperatures of walls, vegetation, and clear-air are different from each other,
they are each constantwith height in individual layers. Thus the coupled differential equations
may be written in matrix form as

d

dz

(
u
v

)
= �

(
u
v

)
+

(−b
b

)
, (32)

where � is as in (3) but without the bottom row and right column of sub-matrices, and b
represents the rate of thermal emission into each stream with height. The negative sign on
the first b entry is because this is for upwelling radiation and z increases in a downward
direction. The elements of the �1 and �2 sub-matrices of � are as defined in (9) and (10)
except using optical properties in the longwave part of the spectrum. For N = 2 we have
b = ( ba1 ba2 bv

1 bv
2 )T, where the rate of emission into stream k of region i is

bik = hkciσ i (1 − ωi )B(T i )

μk
+ vk Liw(1 − αw)B(Tw)

2
. (33)

The first term on the right-hand side of (33) represents emission by the air or vegetation,
where T i is the temperature of the emitters in region i , and B is the Planck function inte-
grated across the spectral interval being simulated. In Sect. 5, multiple quasi-monochromatic
SPARTACUS-Urban computations are combined to obtain irradiance profiles for the full
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longwave spectrum. The second term on the right-hand side represents emission by the walls
at temperature Tw . Since the emission is by a vertical surface, we use the vk weighting of
streams given by (12), but divide by two since the radiation is split between the two hemi-
spheres. The emission rate is proportional to Liw, the normalized perimeter length of wall
in contact with region i . In real cities, the temperature Tw of the various walls at a given
height can vary substantially depending on whether a wall is sunlit or in shadow, and indeed
this affects the longwave radiation field (Krayenhoff and Voogt 2016; Morrison et al. 2018).
To interface SPARTACUS-Urban with urban energy-balance models that simulate more than
one wall temperature, B(Tw) in (33) should be the Planck function averaged over all the
walls in a given layer.

The eigendecomposition method in the longwave case is described in Appendix 3, but
note that computation of the diffuse reflectance and transmittance matrices for each layer,
R j and T j , from �1 and �2 is exactly as in the shortwave case. Appendix 3 also describes
the computation of the layer-wise emission vector p j containing the upwelling irradiance at
layer top due entirely to emission within the layer. Since temperature is assumed constant
through the depth of the layer, this is equal to the irradiance emitted downwards at the base
of the layer. Hogan et al. (2016) described how to treat a vertical variation in temperature
within the layer, which leads to different layer-wise emission vectors at the top and base of
the layer.

The solution to the longwave problem follows exactly the same sequence as shown in
Fig. 2, but with some different calculations being performed at each step. In the upward pass
through the layers, the matrix A is propagated using the same equations as in the shortwave.
In addition, we propagate a vector g containing the upwelling irradiances in each region and
stream at a particular interface associatedwith radiation that originates from thermal emission
below that interface (possibly involving scattering in its journey up to that interface). At the
surface its elements are gabove n+1/2 = ( ga1 ga2 gv

1 gv
2 )T, where gik = hk(1 − αi )ci B(T i

s ).
Here T i

s is the surface temperature below region i allowing for different temperatures beneath
vegetation and clear air, and (1− αi ) is the surface emissivity beneath region i . The Adding
Method for layer j consists of applying Eq. 28 of Hogan et al. (2016) to obtain the emission
just below the interface at j − 1/2,

g j−1/2 = p j + T jB
(
gabove j+1/2 + Aabove j+1/2p j

)
, (34)

where as before B = I − Aabove j+1/2R j . We then have the complication of adding the
emission from the area of flat roofs at interface j − 1/2, which by analogy with (24) is dealt
with by adding extra terms to the vector,

gbelow j−1/2 =
⎛
⎝ g j−1/2

h1(1 − αb)(cbj − cbj−1)B(T b)

h2(1 − αb)(cbj − cbj−1)B(T b)

⎞
⎠ , (35)

where T b is the roof temperature, (1 − αb) is the roof emissivity, and (cbj − cbj−1) is the
fractional area of the domain containing roof at interface j − 1/2. This is translated to the
regions of the layer above by applying the upward overlap matrix,

gabove j−1/2 = U j−1/2gbelow j−1/2, (36)

and the procedure is repeated to the top of the urban canopy. As with walls, if information
is available on the horizontal variation in roof temperature (e.g. Lindberg et al. 2015) then
B(T b) in (35) should be the Planck function averaged over all the roof area at interface
j − 1/2.
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At the top of the canopy, the scalar upward longwave emission is computed (simply the
sum of the elements of g) and, along with the scalar albedo, is presented to the longwave
part of an atmospheric radiation scheme (step 6, Fig. 2). As in the shortwave, the radiation
scheme then provides the downwelling diffuse radiation at canopy top, which is propagated
down through the canopy. Overlap rules are implemented as in the shortwave, with the final
entries of the vbelow 1/2 vector again containing the downwelling irradiances into the roof
at interface j − 1/2. From these, and the roof emission rates in (35), we compute the net
irradiance into the roof and can pass it into an energy-balance model for the roof. The roof
irradiances are removed from vbelow 1/2 and then Eqs. 32 and 34 of Hogan et al. (2016), the
downward part of the Adding Method in the longwave, are applied to obtain irradiances just
above the base of the layer. This process is repeated down to the surface.

We then compute the net radiation into each facet of the urban surface analogously to (29),
but without the direct solar term and with a new term that subtracts the thermal emission by
each facet,

n j = Ndiff
j

(
û j + v̂ j

) −
⎛
⎝ qa

qv

qw

⎞
⎠ �z j , (37)

where the vertically-integrated irradiances û j and v̂ j are computed as in Appendix 3, and
the emission rates by region i and by the walls are the terms on the right-hand side of (33)
but summed over each stream of the two hemispheres,

qi = 2ciσ i (1 − ωi )B(T i )
∑N

k=1 hk/μk, (38)

qw = (1 − αw)(Law + Lvw)B(Tw)
∑N

k=1 vk . (39)

4 Evaluation

In this section we evaluate SPARTACUS-Urban and its underlying assumptions in simplified
scenarios for which existing models are available.We consider only one or two canopy layers
and assume the air in the canopy to be completely transparent to radiation. This paves the way
for consideration of atmospheric effects in Sect. 5 and more detailed evaluation in complex
multi-layer scenes in future research.

4.1 Radiative Exchange Factors

Here we evaluate the discrete-ordinate method underpinning SPARTACUS-Urban subject to
the assumption that the ‘exponential model’ of urban geometry proposed by Hogan (2019)
is correct. Consider an urban canopy in which all walls are vertical and all buildings are of
height H . The air in the canopy is transparent to radiation and vegetation is not included. In
such a scenario, radiative exchange is determined by just three independent variables: F0g

is the fraction of direct solar radiation just below canopy top that penetrates down to the
ground, Fgs is the fraction of diffuse radiation emanating isotropically from the ground that
penetrates to the sky, and Fww is the fraction of diffuse radiation emanating isotropically
from a wall that strikes another wall.

Hogan (2019) derived analytic formulae for these factors for an exponential distribution
of wall-to-wall separation distances with e-folding distance X . The simplest was for direct
solar radiation,
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Fig. 3 a The fraction of diffuse radiation emanating isotropically from the ground of a single-layer urban
canopy in vacuum that penetrates to the sky, and b the fraction of diffuse radiation emanating isotropically
from the wall of the same canopy that strikes another wall. The thick grey lines show the analytic results for
an urban canopy that obeys the ‘exponential model’ of Hogan (2019), and the black lines show the predictions
by the discrete-ordinate method using increasing numbers of streams. All lines are plotted with respect to the
ratio of wall-to-ground area, equal to πH/X , where H is the canopy depth and X is the e-folding wall-to-wall
separation distance

F0g = exp(−t0), (40)

where t0 is the ratio of the horizontal distance travelled by direct radiation penetrating the
canopy to the e-folding separation.More generally for radiation travelling with a zenith angle
θk it is given by tk = | tan(θk)|H/X . SPARTACUS-Urban satisfies (40) exactly since it is
simply a form of the Beer–Lambert law.

The analytic formulae provided byHogan (2019) for Fgs and Fww aremuchmore compli-
cated, involving sine and cosine integrals. They are plotted as a function of thewall-to-ground
area ratio by the thick grey lines in Fig. 3. In a 2N -stream discrete-ordinate approximation,
we perform a weighted sum over each of the N streams in one hemisphere, using (12) or
(17) to weight each stream according to whether the diffuse radiation is emanating from a
horizontal or vertical surface,

Fgs =
N∑

k=1

hke
−tk , (41)

Fww = 1 −
N∑

k=1

vk
e−tk

tk
. (42)

Thus it can be seen that (41) is just like averaging (40) over N discrete zenith angles. The
slightly more complex form for Fww arises due to an integration over all possible emission
heights up the walls of the canopy. The grey lines in Fig. 3 show how the discrete-ordinate
method approaches the exact solution with increasing numbers of streams. Hogan (2019)
analyzed four real and contrasting urban scenes with wall–ground area ratios in the range
0.26–1.4; over this range of values it would appear that four or eight streams is adequate
to represent diffuse radiative transfer. Two streams would appear to be insufficient, but this
needs to be tested in real scenarios, particularly in the shortwave where direct radiative
transfer is often dominant. In practice the choice of the number of streams is a trade-off
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Fig. 4 The net outward longwave flux from the ground and wall facets of an idealized single-layer urban
canopy containing air transparent to radiation, as a function of the depth of the canopy. Results are shown for
the matrix-inversion technique of Harman et al. (2004), and the 2-, 4-, and 8-stream versions of SPARTACUS-
Urban. The wall and ground facets are assumed to have a skin temperature of 31.1 ◦C and an emissivity of
0.95, the sky facet has an effective emission temperature of 10.3 ◦C and the e-folding building separation is
X = 50 m. Net flux here is the radiative power per unit area of the ground facet, which excludes buildings

between accuracy and computational cost; the cost of an N -stream scheme is approximately
proportional to N 3.

4.2 Comparison to theMatrix-InversionMethod

To investigate the consequences of thefindings inSect. 4.1 on longwave radiation,we compare
SPARTACUS-Urban to the matrix-inversion technique of Harman et al. (2004) for the same
idealized single-layer canopy. Their method computes the radiative power into the ground
and wall facets, vg and vw , by solving the following 2 × 2 matrix problem.

(
1 −Fwgαw

−Fgwαg 1 − Fwwαw

) (
vg

vw

)
=

(
Fsgvs + Fwg Ew

Fswvs + FwwEw + FgwEg

)
, (43)

where αg and αw are the albedos of the ground and wall facets, vs is the downwelling
longwave power from the ‘sky’ facet at canopy top, and Ei = Ai (1−αi )σT 4

i is the broadband
emitted radiation from facet i as a function of its total area Ai , emissivity 1 − αi , and
temperature Ti . The symmetry of the urban geometry leads to the following relationships
between radiative exchange factors (e.g. Hogan 2019): Fgw = 1− Fgs , Fsg = Fgs , Fsw =
Fgw, and Fwg = Fws = (1 − Fww)/2.

Figure 4 compares the net outward fluxes from the ground andwall facets (i.e. Eg−vg and
Ew −vw) between SPARTACUS-Urban and the matrix-inversion method, both assuming the
exponential model of urban geometry with an e-folding building separation of X = 50 m,
a representative value from the real scenes analyzed by Hogan (2019). The other properties
of the scene are described in the caption of Fig. 4, and match those in Sect. 5. We see that
as in Fig. 3, the two-stream configuration is not very accurate, while four and eight streams
are much closer to the matrix-inversion method. This gives us confidence that SPARTACUS-
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Fig. 5 Comparison of normalized irradiances versus solar zenith angle for the ‘open forest canopy’ scenario
of Widlowski et al. (2011) with a tree cover of 0.5 and optical properties appropriate for visible radiation,
over surfaces with an albedo of a 0.122, and b 0.964. The Monte Carlo calculations are fromWidlowski et al.
(2011) at solar zenith angles of 27◦, 60◦ and 83◦. Absorptance is the fraction of the incoming solar radiation
absorbed by the vegetation while transmittance is the ratio of the downward solar radiation at the surface to
the incoming radiation at the top of the canopy

Urban represents horizontal building geometry accurately, enabling atmospheric effects to
be investigated in Sect. 5, something not possible using the matrix-inversion technique.

4.3 Comparison to Monte-Carlo Simulations in Forests

Hogan et al. (2018) developed ‘SPARTACUS-Vegetation’, a two-stream radiation scheme
targeted at forests, and evaluated it against Monte Carlo calculations in the visible and near-
infrared. While it was shown to be a significant improvement over existing schemes, some
errors were present when simulating scenes with snow on the ground. Since SPARTACUS-
Urban without buildings can be thought of as the same scheme but extended to 2N streams,
it is interesting to investigate the accuracy gained by the use of additional streams.

The circles in Fig. 5 show the Monte Carlo calculations of Widlowski et al. (2011) for
their ‘open forest canopy’ scenario, in which tree crowns are treated as homogeneous spheres
of diameter 10 m, 4 m above the ground, with an areal coverage of 0.5, a domain-average
leaf-area index of 2.5 and a single-scattering albedo of ωv = 0.13. Following Hogan et al.
(2018), these have been represented in SPARTACUS-Urban using two layers with the upper
layer containing cylinders of vegetation similar to those shown in Fig. 1, but with a central
core of higher optical depth to approximate the distribution of zenith optical depth of spheres.
Regions a and v in the lower layer have the same area as in the upper layer, but are both
transparent to radiation (also illustrated in layer 8 of Fig. 1b).

The dot–dashed lines in Fig. 5 show the two-stream simulations by SPARTACUS-Urban,
which agreewell withMonte Carlo calculations over a dark surface, but tend to underestimate
reflectance and overestimate absorptance over a light surface illuminated by high sun. Vir-
tually identical behaviour can be seen for SPARTACUS-Vegetation in Fig. 2 of Hogan et al.
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Fig. 6 Cumulative probability
distribution of atmospheric mean
free path in the longwave part of
the spectrum for the near-surface
conditions of three standard
atmospheres indicated in the
legend. The calculations use the
RRTM-G gas optics model,
which employs 140 spectral
intervals
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(2018). One slight difference between the two schemes is that SPARTACUS-Urban treats
leaves as isotropic scatterers whereas SPARTACUS-Vegetation can represent anisotropic
scattering, but in practice this has a barely perceptible impact on fluxes.

Physically, the problem with the two-stream scheme is that direct solar radiation incident
on the snow-covered surface is reflected up at a fixed zenith angle of 60◦ (since the double-
Gauss quadrature scheme represents the distribution of μ by a single value μ1 = 0.5), too
much of which intercepts a tree crown before escaping the canopy. This is also evident in
Fig. 3a, which shows that the two-stream scheme underestimates the diffuse ground-to-sky
factor. The dashed and solid lines in Fig. 5b show that the additional angles used by the
four- and eight-stream configurations largely remove the reflectance and absorptance bias.
This gives us confidence in the underlying ability of SPARTACUS-Urban to represent the
radiative effects of trees, although an important part of a future study will be to validate the
model for scenes containing both buildings and trees.

5 Importance of Longwave Atmospheric Absorption

One key advantage of SPARTACUS-Urban in the longwave is its ability to represent the
absorption and emission by gases in the canopy, neglected in almost all previous urban
radiation schemes. The need to account for atmospheric effects in thermal imaging cameras
is recognized (Meier et al. 2011), yet these cameras operate in the infrared atmospheric
window part of the spectrum where atmospheric effects are weakest; significant parts of the
longwave spectrum have a much larger absorption.

Before performing longwave urban simulations with SPARTACUS-Urban, we examine
the range of absorption coefficients predicted by the RRTM-G gas-optics model of Mlawer
et al. (1997), which underpins the radiation schemes of many weather and climate models.
Figure 6 shows the cumulative probability of the absorption mean free path (the reciprocal
of the volume absorption coefficient) for the near-surface conditions of three of the standard
atmospheres from McClatchey et al. (1972). The contributions from water vapour, carbon
dioxide, ozone, methane, nitrous oxide, CFC-11, and CFC-12 have been included. Each of
the 140 spectral intervals in RRTM-G has been weighted according to its contribution to
the black-body spectrum at the near-surface temperature of the standard atmosphere. Hogan
(2019) reported e-folding wall-to-wall distances in the range X ≈ 38–57 m for real cities.
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Fig. 7 The net outward flux from the ground and wall facets of a single-layer urban canopy, along with the
net emission by the air within the canopy, computed using the eight-stream version of SPARTACUS-Urban
coupled to the RRTM-G gas-optics model. The urban canopy is placed beneath the mid-latitude summer
standard atmosphere, the air temperature 20 m above the urban canopy is Tabove = 21.1 ◦C, and the wall and
ground facets have a skin temperature of 31.1 ◦C. These conditions match those in Fig. 4, but with the addition
of atmospheric absorption and emission. The panels show results for air temperature in the urban canopy, Tair ,
of a 21.1 ◦C, and b 26.1 ◦C. In the 20 m above the urban canopy, air temperature is assumed to vary linearly
between Tair and Tabove. This leads to a slight difference in downwelling fluxes at the canopy top, and hence
a difference in the net flux at the ground for a zero building height between a and b. The dashed lines show
the results where gas absorption and emission within the canopy have been neglected

Figure 6 shows that in the case of the MLS standard atmosphere, 37% of longwave emission
at the surface is associated with an atmospheric mean free path of less than 50m, highlighting
that simulations neglecting atmospheric effects in the longwave are unlikely to be accurate.
In the MLS standard atmosphere, if we consider the parts of the spectrum with a mean free
path of less than 50 m, then 77.94% of this energy is associated with wavelengths longer than
12.2μm, 22.01% with wavelengths shorter than 8.5μm, and only 0.05% with wavelengths
in the infrared atmospheric window between.

To estimate the impact of atmospheric absorption on net irradiances, SPARTACUS-Urban
calculations have been performed for the 140 spectral intervals of RRTM-G using the urban
scenario considered in Sect. 4.2 and Fig. 4, but with the clear-sky MLS standard atmosphere
above. The atmospheric optical properties are different in each spectral interval, and by
summing the narrow-band irradiances in each interval we obtain broadband irradiances. The
near-surface air temperature is 21.1 ◦C for this standard atmosphere, and to represent typical
daytime conditions we assume the skin temperature of the ground and walls to be 10 ◦C
higher than this. Atmospheric radiation calculations using the ecRad radiation scheme of
Hogan and Bozzo (2018) provide downwelling longwave irradiance at the top of the canopy
in each spectral interval. The dashed lines in Fig. 7a depict eight-stream calculations at this
spectral resolution but neglecting absorption and emission in the urban canopy itself. These
results match Fig. 4 closely, which used a single band for the whole longwave spectrum.

The solid lines in Fig. 7a show the corresponding results when atmospheric absorption in
the canopy is included, using the RRTM-G scheme to compute atmospheric extinction coeffi-
cients in each spectral interval using gas concentrations from the MLS standard atmosphere.
Here we have assumed the air temperature in the canopy, Tair, to be equal to the air tempera-
ture above the canopy, Tabove. The presence of atmospheric absorption significantly modifies
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the energy balance of the urban canopy, and its impact increases with building height. Since
the air is 10 ◦C cooler than the surrounding ground and walls, it absorbs more radiation than
it emits, the net absorption rising to 75W m−2 for 50-m high buildings. This is accompa-
nied by an increase in net emission by the ground and walls compared to when atmospheric
effects are neglected. These results highlight the need to incorporate atmospheric effects into
longwave radiation calculations in urban canopies.

In reality the temperature of the air in the canopy is determined by both turbulent and
radiative exchanges with the urban surface and the air above the canopy, and so in principle
could be higher than the air temperature above the canopy. Figure 7b depicts the results for
calculations in which Tair is 5 K greater than Tabove, so half way between the temperature
of the air above and the skin temperature of the ground and walls. This changes the net
irradiances significantly.

6 Discussion and Conclusions

Aflexible and efficient urban radiation scheme ‘SPARTACUS-Urban’ has been described that
can represent realistic building layouts, variations in building height, the specular component
of reflection from building walls, urban vegetation, atmospheric effects between buildings,
and spectral coupling to the atmosphere above. The level of complexity is configurable,
specifically the number of layers, streams, regions, and spectral intervals. This makes it
suitable both for simulating detailed scenes in which an accurate vertical profile is required,
and for use in large-scale weather and climate models where computational speed is more
important and the number ofmorphological variables describing anurban areamaybe limited.

To evaluate the scheme, simple one- and two-layer scenes for which existing schemes or
3DMonte Carlo calculations are available have been used.While a two-stream representation
of the diffuse radiation field is adequate for representing trees over dark surfaces (Hogan et al.
2018), we find that four or eight streams are needed to represent radiative exchange between
the horizontal and vertical surfaces of an urban area, and for representing trees over snow-
covered surfaces. Work is in progress to test the scheme against explicit 3D calculations in
more complex multi-layered scenes from real cities, and will be reported in a future paper.

The new scheme has been coupled to a comprehensive gas-optics model and used to
demonstrate the importance of longwave absorption and emission by air between buildings,
something that has been ignored by almost all previous schemes. The net absorption by the
air is strongly dependent on its temperature, which is determined by turbulent as well as
radiative heat fluxes. It would therefore be necessary to couple SPARTACUS-Urban to an
urban energy balance scheme to fully evaluate the importance of atmospheric radiative effects
in urban canopies.

There are several interesting possibilities for the future development of SPARTACUS-
Urban. As with most urban radiation schemes, it currently represents only perfectly vertical
or perfectly horizontal surfaces, with isotropic emission or scattering by these surfaces being
represented by the weightings of the different streams given by (12) or (17). Emission or scat-
tering by inclined surfaces could, in principle, be represented by using a different weighting
between streams according to the angle of the inclination, which should improve the accuracy
of simulations in urban areas with a large area of pitched roofs. However, this would need to
be weighed against the increase in complexity and computational cost: the � matrix in (3)
would no longer have repeated elements, breaking the symmetry exploited in the eigende-
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composition (Appendix 2) and leading to the reflectance and transmittance matrices being
different for upwelling and downwelling radiation.

One particularly challenging aspect in modelling real cities is that neighbourhoods of
quite different character can lie adjacent to one another and therefore interact radiatively;
for example, clusters of tall buildings are often separated by low-rise areas and small parks.
With just one clear-air and one vegetated region we must either perform separate radiation
calculations for each neighbourhood, thereby neglecting radiative interactions, or homoge-
nize the building and vegetation statistics into a single calculation, thereby neglecting the
differences between neighbourhoods. However, SPATACUS-Urban is quite flexible in how
the regions are specified; we just need to know their fractional area and the length of the inter-
face with all other regions. Therefore, a third option would be to introduce separate clear-air
and vegetated regions for each type of neighbourhood, with radiative exchange permitted
between the clear-air regions of different neighbourhoods. Such an approach would allow
buildings of different albedo and temperature to be used in the different neighbourhoods,
while still interacting radiatively. This could facilitate forecasts of the variation in intensity
of the urban-heat-island effect across the different neighbourhoods of a city.
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Appendix 1: List of Symbols

The following list includes symbols used in more than one equation in Sect. 2.

Aabove j−1/2 Albedo to diffuse downwelling radiation of an entire scene below interface
j − 1/2, with matrix elements configured for regions in the layer above the
interface (layer j − 1)

cij Fraction of layer j occupied by region i , which may be clear-air (a), vegetation
(v) or building (b)

Dabove j−1/2 As Aabove j−1/2 but for direct radiation
eik Rate at which radiation in region i and stream k is extinguished by scattering

or absorption, per unit vertical distance travelled (m−1)
eikl Rate at which radiation in region i and stream k is scattered into stream l of the

same or the opposite hemisphere (m−1)
E j Transmission matrix for direct radiation in layer j

f i jk Rate at which radiation in the angle indexed k passes from region i to j per
unit vertical distance travelled (m−1); if j is ‘w’ then interception by the wall
is indicated

hk Weighting of stream k as the contribution to an irradiance into a horizontal
surface

Li j Length of interface between regions i and j normalized by the area of the
domain (m−1); if j is ‘w’ then the normalized length of the building walls is
indicated

pw Fraction of the reflection from the walls that is specular
R j Diffuse reflectance matrix of layer j
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si Element of vector s: the direct irradiance in region i (W m−2)
s Vector of downwelling direct irradiances in each region at a particular height,
where subscript j−1/2 indicates irradiances at interface j−1/2, and subscripts
‘above’ or ‘below’ indicate irradiances in the regions just above or below an
interface (W m−2)

S+
j Matrix describing the fraction of direct solar radiation entering each region at

the top of layer j that is scattered back up out of each region
S−
j Matrix describing the fraction of direct solar radiation entering each region at

the top of layer j that is scattered out of each region at the base of that layer
T j Diffuse transmittance matrix of layer j
uik Element of vector u: the irradiance in region i and stream k (W m−2)
u Vector of upwelling irradiances in each region and stream at a particular height

(W m−2; subscripts as for s)
U j−1/2 Upward overlap matrix expressing how upwelling irradiances in regions just

below interface j − 1/2 are transported into regions just above
vk Weighting of stream k as the contribution to an irradiance into a vertical surface
vik Element of vector v: the irradiance in region i and stream k (W m−2)
v Vector of downwelling diffuse irradiances in each region and stream at a par-

ticular height (W m−2; subscripts as for s)
Vi−1/2 Downward overlap matrix expressing how downwelling diffuse irradiances in

regions just above interface j − 1/2 are transported into regions just below
wk Weighting of stream k according to Gaussian quadrature

W j−1/2 As V j−1/2 but for downwelling direct irradiances
X e-Folding separation distance in an exponential fit to the distribution of wall-

to-wall separation distances (m); see Hogan (2019)
z Depth into the canopy measured from the top of the tallest building (m)

αi Albedo of facet i , which may be wall (w), roof (b), ground beneath clear-air (a)
or ground beneath vegetation (v)

� Matrix expressing the rates of radiation exchange between irradiance compo-
nents in each stream and each region (m−1)

�0 · · · �4 Sub-matrices of � representing specific interactions (m−1)
θk Zenith angle of stream k, where k = 0 indicates the solar zenith angle
μk Cosine of θk
σ i Extinction coefficient of region i (m−1)
ωi Single scattering albedo of region i

Appendix 2: The EigendecompositionMethod in the Shortwave

This appendix describes how the matrices listed in Sect. 2.3 are derived from the m × m
matrix � in (3) for a layer of thickness �z. The first step is to decompose � into eigenvalues
λk and corresponding eigenvectors gk (for k from 1 to m), such that solutions to (2) have the
form

⎛
⎝u
v
s

⎞
⎠
z

=
m∑

k=1

ckgk exp
[
λk(z − z j−1/2)

]
, (44)

123



Flexible Treatment of Radiative Transfer in Complex Urban Canopies… 75

where the c j coefficients are determined by the boundary conditions. The nature of the
matrices in radiative transfer problems is such that the eigenvalues and eigenvectors are
always real, making this decomposition more efficient (Stamnes et al. 1988).

Due to the zero elements and block structure of �, the eigenvalues and eigenvectors can
be computed efficiently by building them up from eigendecompositions of the smaller sub-
matrices. If matrix G is defined such that its kth column contains eigenvector gk then it has
the following form

G =
⎛
⎝G1 G2 G3

G2 G1 G4

G0

⎞
⎠ . (45)

The sub-matrixG0, and its corresponding eigenvalues, are computed by performing an eigen-
decomposition of just the �0 sub-matrix of (3). The direct transmission matrix E is simply
the matrix exponential of �0 (Hogan et al. 2016), which can be computed directly from the
eigendecomposition.

Stamnes et al. (1988) showed that G1 and G2 could be computed by manipulating the
result of an eigendecomposition of (�1 −�2)(�1 +�2). If �1 andG1 are of size n× n, then
the first n eigenvalues ofG are positive, and the second n are negative with λk+n = −λk . This
latter property is exploited in the computation of the diffuse reflectance and transmittance
matrices, R and T. These can be considered to be the irradiances exiting each side of the
layer in response to each element of the downwelling irradiance at the top, v j−1/2, being set
to unity in turn, while all elements of the upwelling irradiance at the base, u j+1/2, are set
to zero. The direct irradiance is also zero, so we may simplify the problem by excluding the
eigenvectors corresponding to direct radiation held in the right column of sub-matrices in
(45). Thus we seek n sets of ck coefficients from (44), one set for each element of v j−1/2.
Packing these coefficients into a 2n × n matrix C leads to the following(

G1D−1 G2D
G2 G1

)
C =

(
0
I

)
, (46)

where D is a diagonal matrix with exp(−λk�z) on the kth diagonal, and hence D−1 is
likewise but with exp(+λk�z) on the kth diagonal. Each row of (46) expresses (44) for one
of the boundary conditions. The top half (i.e. the top n rows) expresses the condition that the
upwelling irradiances at the base of the layer are all zero, while the bottom half expresses
that the downwelling irradiances at the top are set to one in turn.

The problem with solving (46) computationally is that for very optically thick layers,
exp(+λ j�z) can overflow, even in double precision. Therefore, we follow the stabilization
procedure of Stamnes et al. (1988) and solve instead for a scaled set of coefficientsC′ defined
as

C′ = C
(
D−1

I

)
. (47)

Thus (46) becomes (
G1 G2D
G2D G1

)
C′ =

(
0
I

)
. (48)

This can be solved efficiently by exploiting the block-symmetric structure of the matrix on
the left-hand side, which enables its inverse to be written in terms of the Schur complement.
The presence of zeros on the right-hand side then means that not all parts of the inverted
matrix need to be computed.
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Once we have C′, we evaluate the upwelling part of (44) at the top of the layer and the
downwelling part at the base of the layer, which are equal to the diffuse reflectance and
transmittance matrices,(

R
T

)
=

(
G1 G2

G2D−1 G1D

)
C =

(
G1D G2

G2 G1D

)
C′. (49)

The absence of D−1 in (48) and (49) shows that, via the use of the scaled set of coefficients
C′, we can compute R and T without computing any positive exponentials. The matrices S+
and S−, which describe the fraction of incoming direct radiation scattered into the upwelling
and downwelling diffuse streams, may be computed using a similar procedure toR andT but
instead deriving a set of coefficients consistent with the each element of the direct irradiance
at the top of the layer being set to one in turn.

Section 2.5 computes the net radiation absorbed at each facet in layer j from the vertically-
integrated irradiances across the layer. Here we describe how to compute the vertically-
integrated shortwave irradiances, f̂ j , in terms of the irradiances at a given height, f(z). These
vectors are simply the concatenation of the individual irradiance vectors,

f̂ j =
⎡
⎣ û j

v̂ j

ŝ j

⎤
⎦ and f(z) =

⎡
⎣u(z)
v(z)
s(z)

⎤
⎦ . (50)

The vertical integral of f(z) is

f̂ j =
∫ z j+1/2

z j−1/2

f(z)dz, (51)

which may be evaluated by writing the solution to (2) in terms of a matrix exponential

f(z) = exp
[
� × (z − z j−1/2)

]
f j−1/2, (52)

where f j−1/2 is the irradiance vector at the top of the layer, which has already been computed.
Substituting into (51) and integrating yields

f̂ j = �−1 [
exp(��z j ) − I

]
f j−1/2 (53)

where�z j = z j+1/2 − z j−1/2 is the thickness of the layer. Substituting in (52) at z = z j+1/2

yields

f̂ j = �−1 (
f j+1/2 − f j−1/2

)
. (54)

Thus we may compute the vertically-integrated irradiances across a layer from � and the
known irradiances at the top and base of the layer.

Appendix 3: The EigendecompositionMethod in the Longwave

In the longwave, solutions to (32) have the form
(
u
v

)
z
=

m∑
k=1

ckgk exp
[
λk(z − z j−1/2)

] − �−1
(−b

b

)
, (55)

where the first term on the right-hand side is the homogeneous part of the solution and is
expressed in terms of eigenvalues and eigenvectors just as in the shortwave solution (Eq. 44).
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The reflectance and transmittance matrices are computed exactly as in the shortwave case
described in Appendix 2. We also require p, the irradiance upwelling from the top or down-
welling from the base of the layer due only to emission within the layer, which may be found
by setting boundary conditions that the downwelling radiation at the top and the upwelling
radiation at the base of the layer are zero. As in Appendix 2, we need to solve a system of
equations to obtain the corresponding scaled set of coefficients,(

G1 G2D
G2D G1

)
c′
b = �−1

(−b
b

)
, (56)

where nowweonly need one set of coefficients contained in vector c′
b, and the inhomogeneous

term from (55) now appears on the right-hand side. Once the coefficients have been computed,
the upwelling irradiance at the top of the layer is equal to p, given by the top half of (55) in
matrix form

p = (
G1D G2

)
c′
b + �−1b, (57)

where as in Appendix 2 we account for the fact that the coefficients in c′
b are scaled.

Finallywe compute the layer-integrated longwave irradiances needed in (37).We integrate
(55) with height across the layer of thickness �z to obtain

(
û
v̂

)
j
=

m∑
k=1

ckgk
exp (λk�z) − 1

λk
− �−1

(−b
b

)
�z

= G
(
Z
Z

)
c′ − �−1

(−b
b

)
�z, (58)

where the first term on the second line has been written in terms of a vector of scaled coeffi-
cients c′, and Z is a diagonal matrix whose kth diagonal element is [1 − exp(−λk�z)]/λk .
The coefficients c′ are the sum of the contribution from radiation emitted within the layer,
c′
b, radiation entering from above, C′v j−1/2, and radiation entering from below, C′u j+1/2

(the latter being prefixed by a term to swap the elements of C′ since the coefficients in this
matrix were derived for radiation entering from above),(

û
v̂

)
j
= G

(
Z
Z

)[
C′v j−1/2 +

(
I

I

)
C′u j+1/2 + c′

b

]
− �−1

(−b
b

)
�z. (59)
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