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Abstract
The turbulence-kinetic-energy dissipation rate is a fundamental property in turbulent flows, 
but its direct measurement in the atmospheric surface layer is still a challenge. Indirect 
estimates are often obtained from inertial-subrange laws using turbulence statistics of 
the longitudinal velocity component. In this study, synthetic turbulence data are used to 
investigate the impact of path-averaging effects present in sonic anemometer data on the 
inertial subrange of the second-order structure function. Path averaging reduces the energy 
levels in the second-order structure function, creating a negative bias in the estimates of 
the dissipation rate. The effect is dependent on the path-averaging transfer function, mean 
wind speed and path length. A simple correction for the bias on the basis of existing trans-
fer functions is applied and tested with data obtained from two separate sonic anemom-
eters. Compared to the spectrum, the second-order structure function after the correction 
becomes the optimum statistical measure for indirect estimation of the dissipation rate, due 
to its lower random error and insensitivity to aliasing effects.
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1  Introduction

The mean dissipation rate of turbulence kinetic energy (hereafter TKE dissipation rate or 
� ) is a fundamental property of turbulent flows, as it corresponds to the rate of energy 
transfer across the energy cascade of a stationary flow and can be used to define length 
and time scales characteristic of the structure of turbulence (Pope 2000; Davidson 2004). 
In the atmosphere, it has been used for different purposes, such as the inertial dissipation 
method for flux estimation (Fairall and Larsen 1986; Hsieh and Katul 1997; Henjes 1998), 
to evaluate anisotropy (Warhaft 2000; Chamecki and Dias 2004), for the evaluation of sca-
lar similarity (Cancelli et  al. 2012), to characterize wind-turbine wakes (Smalikho et  al. 
2013), to estimate Lagrangian dispersion of passive scalars and particles (Poggi et al. 2006; 
Wilson 2000), and for construction of a reduced TKE phase space used to characterize dis-
turbed surface-layer flows (Chamecki et al. 2018). Furthermore, recent studies have shown 
that the length scale �� = u∗∕� (where u∗ is friction velocity) is the correct scale for the 
non-dimensionalization of some statistics obtained in the atmospheric surface layer (ASL) 
(Davidson and Krogstad 2014; Pan and Chamecki 2016; Chamecki et al. 2017). However, 
the lack of direct estimates of � in the atmosphere still poses a limitation in turbulence 
studies. To overcome this issue, indirect estimates are usually obtained from the inertial-
subrange laws derived by Kolmogorov for the velocity spectrum and structure function of 
the longitudinal velocity fluctuations. This method is sensitive to measurement error, in 
addition to the error in the empirical Kolmogorov constants in the case of the spectrum and 
the second-order structure function (Chamecki and Dias 2004). Although the third-order 
structure function does have an analytical constant (4/5), second-order structure functions 
usually display a clearer inertial subrange (Albertson et al. 1997), so that they remain more 
popular in the atmospheric turbulence community.

In studies of the ASL, discrepancies in the TKE dissipation rate values obtained from 
different inertial-subrange statistics have been observed. For example, Chamecki and Dias 
(2004) obtained values estimated from second- and third-order structure functions that are, 
on average, 10 and 30% lower than estimates using the spectrum, respectively. Albertson 
et al. (1997) and Chamecki et al. (2017) obtained estimates from the third-order structure 
function that are respectively 20% and 30% lower than the estimates from their second-
order counterparts. Such systematic discrepancies are often justified by the errors in the 
empirical constants of the second-order statistics, or to deviations from the local isotropy 
hypothesis in the ASL.

When velocity fluctuations are measured with a sonic anemometer, path averaging can 
affect determination of the spectrum and the structure functions to different degrees. In the 
ASL, the range of scales in the inertial subrange captured by a sonic anemometer is not 
large enough to avoid these effects. Despite this issue being well known, its impact on the 
estimates of TKE dissipation rates usually are not taken into account.

In the present study, we generate synthetic data that mimic longitudinal velocity time 
series with an imposed TKE dissipation rate, second-order statistics and random errors, 
which are used to compare errors and biases present in � estimates from the spectrum and 
the second-order structure function, before and after the introduction of path-averaging 
effects. A correction for the path-averaging bias in the second-order structure function is 
proposed and then tested with actual data from two separate sonic anemometers.

Despite its importance, the third-order structure function is not used here, as it has a 
less distinct inertial subrange than its second-order counterpart and is more affected by 
anisotropy (Chamecki and Dias 2004). In addition, synthetic models that mimic third-order 
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turbulence statistics have a large uncertainty in the dissipation rate, contaminating error 
and bias analyses such as those performed here. Therefore, we restrict our study to second-
order statistics.

2 � Theory

The one-dimensional, longitudinal velocity spectrum E11(k1) can be defined as twice the 
Fourier transform of the longitudinal correlation function R11(r1) = ⟨u1(x1)u1(x1 + r1)⟩ , 
i.e.,

where u1 is the longitudinal velocity fluctuation, x1 is the longitudinal spatial coordinate, r1 
is the longitudinal spatial separation, k1 is the longitudinal wavenumber and ⟨ ⟩ represents 
the ensemble average. In isotropic turbulence, statistics are invariant under reflections and 
rotations and R11 can then be redefined as u2f (r1) , where u2 = ⟨u2

1
⟩ = ⟨u2

2
⟩ = ⟨u2

3
⟩ (indices 2 

and 3 are used for the spanwise and vertical directions, respectively) can be used to define 
a velocity scale and f (r1) is a longitudinal dimensionless correlation function (Davidson 
2004, p. 89). Note that in this case ∫ ∞

0
E11(k1)dk1 = u2.

The nth-order, longitudinal structure function is

which for n = 2 can also be redefined as a function of f (r1) , as Δu2(r1) = 2u2[1 − f (r1)] , 
leading to a relation with the spectrum in the form (Pope 2000, p. 226)

This relation highlights the fact that the spectrum and the second-order structure function 
are two different ways of representing the underlying spatial structure of the velocity field.

For the special case of the inertial subrange, the spectrum and structure function laws 
obtained by Kolmogorov provide a suitable way to estimate � in situations where it cannot 
be measured directly. For 1∕L ≪ k1 ≪ 1∕𝜂 and 𝜂 ≪ r1 ≪ L (where L and � are the integral 
and dissipation length scales, respectively)

and

From (3), in the idealized case of an infinitely large inertial subrange, a direct relation 
between the constants � and � can be obtained. The conditions that guarantee a good 
approximation for real turbulence data were presented by Webb (1964) and Monin and 
Yaglom (1981,  p. 356): if 1∕k1,max ≪ r1,min < r1,max ≪ 1∕k1,min (where k1,min, k1,max, r1,min 
and r1,max set the boundaries of the inertial subrange) the well-known relation � ≈ 4� 
(Pope 2000, p. 232) is valid. The reduced size of the structure function’s inertial subrange 

(1)E11(k1) ≡ 2

π �
∞

0

R11(r1) cos(k1r1)dr1,

(2)Δun(r1) ≡ ⟨[u1(x1 + r1) − u1(x1)]
n⟩,

(3)Δu2(r1) = 2∫
∞

0

E11(k1)
[
1 − cos(k1r1)

]
dk1.

(4)E11(k1) = ��2∕3k
−5∕3

1
,

(5)Δu2(r1) = ��2∕3r
2∕3

1
.
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compared to the sprectum is a consequence of the “contamination” in the second-order 
structure function of the production and dissipation ranges of the spectrum, which have 
lower energy compared to the Kolmogorov law for the same wavenumber. This require-
ment for � ≈ 4� is usually met for large Reynolds-number flows, such as those in the ASL. 
However, as will be seen in Sect. 4, path averaging introduced by the sonic anemometer 
limits the practical width of the inertial subrange, affecting this relation. Instead of correct-
ing the constants to include path-averaging effects, we propose a correction to recover the 
condition in which � ≈ 4� is valid.

3 � Data and the Path‑Averaging Effect

3.1 � Synthetic Data

To investigate the effects of path averaging in the estimation of � from inertial-subrange laws, 
we use a synthetic model that mimics measurements of the longitudinal velocity component 
from sonic anemometers with a known value of � . Time series of a synthetic velocity us

1
 were 

generated using the spectral method developed by Shinozuka and Deodatis (1991). The veloc-
ity time series is given by

where Re{} denotes the real part of a complex number, FFT{} is the fast Fourier trans-
form, S(f) is the desired spectral density of us

1
(t) as a function of frequency f, Δf  is the 

frequency increment and �(f ) is a random variable uniformly distributed between 0 and 
2π , used to obtain independent random phase angles that create the velocity fluctuations 
in the time domain. As discussed by Shinozuka and Deodatis (1991), the distribution of 
us
1
(t) tends to Gaussian on the limit of infinite phases being summed; however this is not 

valid for spectral slopes steeper than f −1 (Jiménez 1998), which is the case in this study, as 
described below.

Equation 6 provides a time series with spectral density corresponding exactly to the cho-
sen model for S(f), except for small errors due to numeric truncation. To mimic the ran-
dom errors inherent in real sonic-anemometer data, we define S(f ) = F11(f ) + �(f )y , where 
F11(f ) = E11(k1)2π∕U is the spectrum in the frequency domain, U is the mean wind speed, 
�(f ) is the standard deviation of real spectra and y is a random variable. In addition, assuming 
a quasi-normal hypothesis, the standard deviation of the spectrum is equal to its mean value 
(Bendat and Piersol 2010; Dias 2017), which gives S(f ) = F11(f )(1 + y) with 2(y + 1) follow-
ing a chi-square distribution with two degrees of freedom (since the spectrum corresponds to 
the square of a normally-distributed random variable). Note that the expected value and vari-
ance of y are zero and one, respectively.

Because we are focused on the inertial subrange, F11(f ) is chosen to correspond to the Kol-
mogorov law (given by Eq. 4 multiplied by the factor 2π∕U ) in the entire frequency range 
simulated ( 5.56 × 10−4 ≤ f ≤ 2  kHz). This choice makes the distribution of us

1
(t) slightly 

sub-Gaussian (Jiménez 1998), with a kurtosis ≈ 2.8 . Aliasing effects present in measurements 
were introduced by resampling us

1
(t) at a frequency of 20 Hz. Path averaging was simulated by 

using

(6)us
1
(t) = Re

�
FFT

�
[S(f )Δf ]1∕2

√
2ei�(f )

��
,

(7)S(f ) = F11(f )(1 + y)Hu(fpπ∕U),
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where Hu(fpπ∕U) is a transfer function obtained from the ratio of the path-averaged to the 
true one-dimensional, longitudinal velocity spectrum (Kaimal et al. 1968; Horst and Onc-
ley 2006). For the synthetic data we test the simplest case where a single path length in the 
longitudinal direction is present, corresponding to Hu(fpπ∕U) = sinc

2(fpπ∕U) with a path 
length p = 0.15 m ( sinc(x) = sin(x)∕x).

Apart from the aforementioned random error introduced to mimic measurement errors, 
this model does not present any variability in the imposed value of � . This was the crucial 
reason in the choice of this simple model approach over other synthetic models available 
in the literature (e.g. the model proposed by Juneja et al. 1994). The final values of us

1
(t) at 

20 Hz are equivalent to a series obtained from a sonic anemometer, where both aliasing 
and path-averaging effects are present in the spectrum. The second-order structure func-
tion obtained from this series also presents path-averaging effects, as will be discussed in 
Sect. 4.

In order to test a path-averaging correction that can be applied to field data, the spec-
trum obtained from us

1
(t) is divided by Hu(fpπ∕U) (recovering the spectrum without path 

averaging), a new velocity series is obtained by performing an inverse FFT to the corrected 
spectrum, and from it a corrected second-order structure function can be estimated. Note 
that, although there are methods available to reduce the aliasing effect from the spectrum 
(e.g. Gobbi et al. 2006), they should not be applied if the goal is to correct the second-order 
structure function, since the aliased energy is real and should be present in ⟨Δu2⟩.

Despite the fact that the synthetic data do not have the super-Gaussian nature of small-
scale turbulence, this difference is not expected to affect the analysis presented herein. 
First, the relationship between the spectrum and second-order structure function (3) does 
not depend on higher-order statistics of the velocity fluctuations. Second, the Kolmogo-
rov law for the inertial subrange and, consequently, the estimation of � from the spectrum 
and second-order structure function are also independent of higher-order statistics. And 
finally, there is no assumption of Gaussianity on the transfer-function estimations and 
consequently on the correction proposed here. Therefore, for the purpose of investigating 
the path-averaging effects (and its correction) on the spectrum and second-order structure 
function, this synthetic model can be considered appropriate.

To simplify the calculations, results presented in Sect.  4 were obtained with 
U = 2πms−1 (so wavenumber and frequencies are equivalent) and an imposed dissipation 
rate equal to 1m2 s−3 . All calculations were performed for a 30–min time series. Dissipa-
tion rates were estimated by fitting the Kolmogorov law to the compensated spectrum and 
structure function in the ranges 1 ≤ f ≤ 5 Hz and 0.5 ≤ r1 ≤ 1 m, respectively. No smooth-
ing of the spectrum was performed, as it did not produce any significant change in the 
results.

3.2 � Field Data

Data collected at the Rio Verde dam in Araucária county, state of Paraná, Brazil 
( 25◦31′30′′ S, 49◦31′30′′ W) are used to test the correction proposed for the second-order 
structure function. Data were obtained simultaneously using a 81000 Ultrasonic anemom-
eter from Young (Traverse City, Michigan, USA) and an IRGASON gas analyzer and sonic 
anemometer from Campbell Scientific (Logan, Utah, USA), both at 20 Hz, from 25 Sep-
tember to 4 October 2017. Sensors were installed a few meters above the water surface, at 
the border of the dam, facing the preferential mean wind direction. Data were separated 
into 30-min blocks starting at midnight local time, and post processing and data selection 
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were performed following Zahn et al. (2016). A final number of 59 blocks for each ane-
mometer was obtained.

Estimations of TKE dissipation rate from the spectrum and second-order structure func-
tion were obtained before and after the application of path-averaging correction. As in the 
synthetic data, the correction comprised four steps: (i) estimating the energy spectrum; (ii) 
estimating a corrected spectrum by dividing it by the transfer function Hu ; (iii) perform-
ing an inverse FFT to create a time series whose spectrum corresponds to the corrected 
spectrum; and (iv) estimating a corrected second-order structure function from it. Note that 
this time series created by the inverse FFT is not a corrected time series, but rather a time 
series whose spectrum is equal to the corrected spectrum. Note also that this correction 
aims to “recover” the energy lost due to path averaging on the spectrum, and to transfer this 
information to the second-order structure function with the sole purpose of estimating the 
dissipation rate. Because no correction is applied to higher-order statistics (the third-order 
structure function, for example), other information extracted from the corrected data (such 
as skewness and kurtosis of velocity increments) may not be correct.

Based on the geometry of the sensors, the transfer functions calculated by Horst and 
Oncley (2006) for the Solent R3 and CSAT3 anemometers were used for the Young and 
Campbell anemometers, respectively. Note that there is a 30o rotation angle about the son-
ic’s vertical axis difference between the IRGASON and CSAT3 instruments, which can be 
taken into account by adding 30o to the wind direction term in the original equation. The 
same frequency and streamwise distance ranges used for the synthetic case were used to 
estimate dissipation rates from the field data by performing a fitting of the Kolmogorov law 
to the compensated spectra and second-order structure functions.

4 � Results

4.1 � Synthetic Turbulence

Figure 1a shows an example of a spectrum generated by the synthetic model. The random 
error of the model, reflected in the level of scatter around the Kolmogorov law (imposed 
as the mean value), is similar to the error obtained in real turbulence data (see Fig. 4 for an 
example). The aliasing effect when the data frequency is reduced from 2 kHz to 20 Hz is 
clearly observed in the mean spectrum (also shown in Fig. 1a). As expected, at this stage 
the corresponding second-order structure function has a well-defined inertial subrange 
(Fig. 1b).

The path-averaging effect introduced in the model is shown in Fig. 1c, which counter-
balances most of the aliasing in the 20-Hz spectrum, significantly reducing the region 
where the spectrum differs from the Kolmogorov law. The second-order structure func-
tion, on the other hand, is seriously affected by path averaging; a consistent reduction in its 
value can be observed in the region corresponding to the inertial subrange, being larger for 
lower values of r1 (see Fig. 1d). Note that the impact is still significant for values of r1 much 
larger than the path length, due to the integral nature of the structure function (3). This 
situation is equivalent to the estimation of the TKE dissipation rate in the ASL from sonic 
anemometer data. Note that, at this stage, there is an over/underestimation of the levels of 
the spectrum/structure function in the inertial subrange, which directly impacts the estima-
tion of �.
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The correction of the path-averaging effect in the 20-Hz data is effective in recovering 
the original result in both the spectrum and the second-order structure function (Fig. 1e, f 
respectively). Since aliasing affects the inertial subrange of the spectrum, this result indi-
cates that the best approximation to Kolmogorov’s prediction is the structure function after 
the path-averaging correction. In this case the range of r1 values at which the dissipation 
range can be estimated is increased, reducing both the bias and the error of the estimate.

Figure 2 summarizes the distribution of values of � obtained from each type of estima-
tion, using 1000 runs of synthetic turbulence (exact values of mean and standard deviation 
are presented in Table  1). Without path averaging (dotted lines), the estimates from the 
spectrum have a positive bias of 30% due to aliasing, whereas estimates from the second-
order structure function have a negative bias of less than 1%. With path averaging (dashed 
lines), the negative bias of the structure function estimates reaches 22%, whereas the 

(a) (b)

(c) (d)

(e) (f)

Fig. 1   Synthetic compensated spectra (left panels) and second-order structure functions (right panels) with-
out path averaging (a–b), with path averaging (c–d) and with path averaging and correction (e–f). Full data 
(up to 2 kHz) in light-grey, resampled at 20 Hz in dark-grey, average of 1000 tests in black (a, c, e); path-
averaging equation in blue (c); average of 1000 tests in black, average ± standard deviation in grey (b, d, 
f). In all plots, red line corresponds to the Kolmogorov inertial subrange law and vertical lines delimit the 
range used to estimate �
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positive bias of the spectrum is greatly reduced. Note that in reality the balancing effect 
between aliasing and path averaging in the spectrum will vary from run to run (among 
other factors, Hu is a function of U, for example), which can generate different biases for 
the spectrum estimate depending on the data. This is another reason that makes the struc-
ture-function estimation more reliable. After correction (solid lines), estimates from the 
structure function have a small positive bias of less than 1%, whereas spectral estimates 
return to their original values. This result, combined with its smaller standard deviation, 
makes the corrected structure function the best approach for estimating �.

It is important to point out that the exact values of bias are a function of the f and r1 
intervals used to estimate � from each function: in the present exercise, we chose typical 
values used in the literature. Also, errors in spectrum estimates can be reduced by aver-
aging over a longer inertial subrange interval; we used a range that is similar to what is 
available in experimental data. The error in the estimation using the second-order structure 
function is less dependent on the size of the r1 interval used, but it is lower for smaller r1 
values (see standard deviation in Fig. 1). Note that because the random errors introduced 
in the synthetic model are similar to the ones present in real spectrum, these values of 
standard deviation are probably a good estimate of the random errors present in real � esti-
mates from sonic anemometer data. Finally, the effects of path averaging on � estimates are 
smaller the lower the path length of the sensor, as expected (for example, the second-order 
structure bias without correction is reduced to −11% for p = 0.05 m; not shown). Despite 
these variations in exact values of errors and biases, the overall conclusion that the smaller 
error and bias is obtained from the corrected second-order structure function remains solid.

4.2 � Field Data

Now we test the effect of the path-averaging correction on real turbulence data from two 
separate sonic anemometers. Because there is no measurement of the real dissipation rate, 

Fig. 2   Probability density func-
tions obtained from 1000 realiza-
tions of synthetic turbulence 
resampled at 20 Hz, without path 
averaging (dotted lines), with 
path averaging (dashed lines) and 
with path averaging and correc-
tion (solid lines)

Table 1   Values of mean ± 
standard deviation of �∕�imposed 
estimated from synthetic data

Spectrum 2nd-order 
structure 
function

Without path averaging 1.30 ± 0.024 0.99 ± 0.014

With path averaging 1.05 ± 0.019 0.78 ± 0.011

Corrected path averaging 1.32 ± 0.023 1.01 ± 0.013
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there is no way to know exactly how much error and bias are present in each estimate of � . 
However, based on the results obtained from the synthetic data, we expect that the estimate 
from the corrected second-order structure function is the most reliable one.

Figure 3 presents examples of transfer functions calculated by Horst and Oncley (2006) 
for each anemometer. Note that, while the measurement frequency is fixed (it goes from 
5.56 × 10−4 to 20  Hz), the transfer function is affected by the mean longitudinal veloc-
ity component. Therefore, each 30-min run will have a different path-averaging effect. For 
values of wind speed ≳ 10m s−1 and measurement frequency of 20 Hz, the path-averaging 
effect becomes increasingly smaller. The final impact of the correction on the dissipation 
rate, however, must be assessed for each specific case (sonic anemometer geometry and 
measurement frequency, for example).

Figure 4 presents an example of measured spectrum and second-order structure func-
tion, for the run obtained on 25 September 2017 at 2230 LT (local time = UTC −3 h) by 
each anemometer, before and after the path-averaging correction. Note that, as found with 
the synthetic data, the correction increases the overestimation of spectral densities due to 
aliasing, and it fixes the inertial subrange of the second-order structure function. For the 
Young anemometer, the final result is very close to the Kolmogorov law; for the Campbell 
anemometer, there is some underestimation left, possibly due to other sensor effects (see 
the average of all runs in Fig. 5).

Dissipation rates estimated from spectrum and second-order structure function before 
and after correction for all runs are presented in Fig. 6. On average, dissipation increased 
by 31 and 26% for spectrum and structure estimates, respectively, for the Young data, and 
by 19% in both estimates for the Campbell data. Considering, from the synthetic data, that 
the corrected second-order structure function provides the best estimate, the uncorrected 
spectrum has an overestimation of ≈ 20% and the corrected spectrum has an overestimation 
of ≈ 50%, on average.

For the Young anemometer and the values of wind speed measured at the Rio Verde 
dam, there is a tendency of decreasing dissipation rate error due to path averaging with 
increase of wind speed (Fig.  7a), as expected from the transfer function behaviour (see 
Fig. 3). In the case of the Campbell anemometer, on the other hand, the error is approxi-
mately constant for wind speeds between 1 and 6m s−1 (Fig.  7a), likely due to the pro-
nounced secondary peak in the transfer function at k1p ≈ 9 . Although at high wind speeds 

(a) (b)

Fig. 3   Transfer functions ( Hu ) for a Young and b Campbell sonic anemometers. Black solid lines with dots 
correspond to the values estimated by Horst and Oncley (2006), as a function of the wavenumber normal-
ized by the path length ( k

1
p ). Dashed lines correspond to Hu as a function of the frequency (f), for different 

values of mean wind speed (U). Vertical line corresponds to the Nyquist frequency of the measurements 
presented here
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it is likely that the correction becomes increasingly less important, for all values observed 
in the Rio Verde experiment the correction increased the value of the estimated dissipation 
rate.

(a)

(b)

(d)

(c)

Fig. 4   Compensated longitudinal spectrum (left panels) and second-order structure function (right panels) 
measured by the Young anemometer (upper panels) and Campbell anemometers (lower panels). Light-grey 
is the original spectrum, black and blue lines are the smoothed spectra (moving average with a 100-point 
window). For both statistics, the blue line is before the path-averaging correction, and the black line is after. 
The orange line is the transfer function used. The red line is the slope of the Kolmogorov law. Vertical lines 
delimit the interval used for � estimation. Measurements were made on 25 September 2017 at 2230 LT

(a) (b)

Fig. 5   Mean values (solid lines) ± one standard deviation (shaded area) of the normalized compensated 
second-order structure function before (blue) and after (red) path-averaging correction, for the Young (a) 
and Campbell (b) anemometers. Horizontal line is a fit for the mean inertial subrange of the Young ane-
mometer. Values normalized by the dissipation length scale �� = u3

∗
∕� and the friction velocity u∗ (values of 

� estimated after correction were used)
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When the inertial subrange has a −5∕3 slope, the relationship between atmospheric sta-
bility and the correction should not be relevant, as stability impacts the spectrum mostly in 
the production range (Kaimal et al. 1972). As expected, the correction will not be valid for 
cases when the Kolmogorov law fail to represent the inertial subrange, as observed in very 
stable cases, for example (Lumley 1964). For the Rio Verde data, the dissipation rate error 

(a) (b)

Fig. 6   a Comparison between dissipation rates estimated from spectrum (blue) and second-order struc-
ture function (red) before and after correction, using Young (dots) and Campbell (squares) anemometers. 
On average, spectrum estimates increased by 31% (Young) and 19% (Campbell) after correction, whereas 
second-order structure function estimates increased 26% (Young) and 19% (Campbell). b Dissipation rates 
estimated from uncorrected (red) and corrected (blue) spectrum, compared with corrected second-order 
structure function estimates, using Young (dots) and Campbell (squares) anemometers. On average, spec-
trum estimates are overestimated by 20% (Young) and 24% (Campbell) when uncorrected, and by 58% 
(Young) and 48% (Campbell) when corrected

(c)

(b)(a)

Fig. 7   Ratio between the dissipation rates estimated from the second-order structure function after and 
before correction as a function of, a mean wind speed, and b atmospheric stability, using Young (dots) and 
Campbell (squares) anemometers. c Sensible heat flux as a function of local time
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vary with atmospheric stability with the same tendency observed for wind speed (Fig. 7b), 
i.e., increase of error for increasing instability in the case of Young anemometer (unstable 
cases tend to be related to lower wind speeds) and a constant error with stability for the 
case of Campbell anemometer. Here the atmospheric stability is represented by the stabil-
ity parameter z / L, where z ≈ 4 m is the distance from the water surface and L is the Obuk-
hov length. Note that all data presented here display a positive heat flux (and consequently 
neutral and unstable conditions) in spite of the measurement local time (Fig. 7c). There are 
two measurements of very small negative heat flux by the Campbell anemometer, but their 
stability could not be defined because the momentum flux for these data is positive, evi-
dencing rather exceptional conditions; for this reason they are not presented in Fig. 7b (the 
differences between the anemometers are out of the scope of the present study).

5 � A Note on the CSAT3 Sonic Anemometer Manufactured by Campbell 
Scientific

In the field experiment described in Sect. 3.2, data from a CSAT3 sonic anemometer by 
Campbell Scientific were also collected; therefore, a similar correction as performed in the 
IRGASON data could also be tested. However, the second-order structure function from 
CSAT3 sonics presents a distinct feature that cannot be explained by the path-averaging 
effect, or any other effect known to the authors. In the lowest values of the time lag � , 
within the inertial subrange, there is an increase in values of ⟨Δu2⟩ compared to the Kol-
mogorov law, instead of the decrease observed due to path averaging (Fig. 8). This feature 
seems to be characteristic of the CSAT3 model (and not of a specific sensor), as a similar 
behaviour can be observed in data measured by different sensors in different field experi-
ments (see for example data from the AHATS (Salesky and Chamecki 2012) and the GoA-
mazon (Fuentes et  al. 2016) experiments). This feature also does not seem to be related 
to atmospheric stability (these examples were arbitrarily chosen from each dataset). None 
of the known sonic anemometer effects discussed in the literature (e.g. flow distortion by 
transducer shadowing, (Horst et al. 2015)) is the cause of this behaviour; an investigation is 
left for future studies.

(a) (b)

Fig. 8   Compensated longitudinal a spectrum and b second-order structure function measured by CSAT3 
sonic anemometer from Rio Verde dam experiment (26 September 2017 1730 LT, black), AHATS experi-
ment (26 June 2008 0330 LT measured at 1.51 m above the ground, orange) and GoAmazon experiment (30 
March 2014 1230 LT measured at z∕h = 1.38 , where h = 35 m is canopy height, blue). The corresponding 
IRGASON data from Rio Verde dam experiment are presented in grey. Dashed red lines correspond to the 
slope of the Kolmogorov law. No correction to the data is applied
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6 � Conclusion

Turbulence data obtained from sonic anemometers present a discrepancy between the 
structure function and spectrum estimates of TKE dissipation rate using the Kolmogo-
rov theory for the inertial subrange. While aliasing creates a positive bias in estimates 
from the spectrum depending on how close to the Nyquist frequency the estimation 
is made, it does not affect structure-function estimates. Path-averaging effects, on the 
other hand, counter-balance part of the aliasing in spectrum estimates, while creating a 
negative bias in the value of � estimated from the second-order structure function. The 
ubiquitous presence of both effects in typical atmospheric turbulence data explains the 
difference in those estimates observed in the literature.

Path-averaging effects, quantified here using synthetic data, can be observed in real 
turbulence data obtained from two separate sonic anemometers. Using transfer functions 
for the spectrum based on the anemometer geometry, it is possible to remove the path-
averaging effect from the data, and reconstruct the inertial subrange in the second-order 
structure function. This correction increases the estimate of � , and it was successful 
in recovering the inertial subrange from the 81000 Ultrasonic anemometer by Young, 
whereas the recovery of data from the IRGASON gas analyzer and sonic anemometer 
by Campbell Scientific was partial. Although a similar correction could be applied to 
data from the CSAT3 sonic anemometer by Campbell Scientific, in this case the second-
order structure function presented an inertial subrange behaviour that does not corre-
spond to path averaging, and for this reason the correction could not be tested.

Finally, the use of the corrected second-order structure function to estimate TKE dis-
sipation rate is likely the best approach, as it is unbiased and presents smaller random 
error. This is valid for different types of sonic anemometers, as long as a transfer func-
tion derived from its geometry is available. Although the uncorrected spectrum may 
seem visually better due to the compensating effects of path averaging and aliasing, the 
level of compensation between them is not fixed, which may lead to under/overestima-
tion of dissipation rates. In addition, the length of the inertial subrange in the structure 
function does not have to be as large as for spectrum, due to the fact that the structure 
function is an integral of the spectrum, reducing its random error.
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