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Abstract
We investigate the feasibility of using large-eddy simulation (LES) for real-time forecasting
of instantaneous turbulent velocity fluctuations in the atmospheric boundary layer. Although
LES is generally considered computationally too expensive for real-time use, wall-clock time
can be significantly reduced by using very coarsemeshes.Here,we focus on forecasting errors
arising on such coarse grids, and investigate the trade-off between computational speed and
accuracy. We omit any aspects related to state estimation or model bias, but rather look at
the size and evolution of restriction errors, subgrid-scale errors, and chaotic divergence, to
obtain a first idea of the feasibility of LES as a forecasting tool. To this end, we set-up
an idealized test scenario in which the forecasting error in a neutral atmospheric boundary
layer is investigated based on a fine reference simulation, and a series of coarser LES grids.
We find that errors only slowly increase with grid coarsening, related to restriction errors
that increase. Unexpectedly, modelling errors slightly decrease with grid coarsening, as both
chaotic divergence and subgrid-scale error sources decrease. A practical example, inspired by
wind-energy applications, reveals that there is a range of forecasting horizons for which the
variance of the forecasting error is significantly reduced compared to the turbulent background
variance, while at the same time, associated LES wall times are up to 300 times smaller than
simulated time.

Keywords Large-eddy simulation · Turbulent boundary layer · Wind energy

1 Introduction

Turbulence in the atmospheric boundary layer (ABL) plays an important role in many natural
processes and engineering applications. Depending on atmospheric stability, turbulent flow
structures attain longitudinal scales up to several times the boundary-layer height, (Jiménez
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1998; Kim and Adrian 1999; Abe et al. 2004; Hutchins and Marusic 2007; Shah and Bou-
Zeid 2014; VerHulst and Meneveau 2014; Fang and Porté-Agel 2015) leading, for example,
to coherent wind gusts or unsteady loading of built structures. In recent years, lidar has
emerged as a new technology that observes turbulent wind fields over areas of several square
kilometres (see, e.g., Sathe andMann 2013;Mikkelsen 2014; Hirth et al. 2016). This provides
many new opportunities, including the use of observed wind fields for real-time turbulent
flow forecasting in the ABL, with possible prediction horizons ranging from several minutes
up to one hour. The latter can be relevant for monitoring of atmospheric dispersion (Holmes
and Morawska 2006), hazard response at chemical or nuclear plants (Katata et al. 2015),
power forecasting of wind turbines and farms for short-term trading or grid services (Jung
and Broadwater 2014), and may also include the use of such forecasting models as a control
model to reduce loads (e.g., of wind turbines), or to increase overall energy capture in wind
farms (Knudsen et al. 2015). In the present study, we investigate whether it is feasible to use
large-eddy simulation (LES) for real-time turbulent flow forecasting in the ABL, focusing
on the neutrally-stratified ABL over flat terrain. As an application example, we use power
forecasting in wind energy, but many of our results and conclusions are relevant to other
application areas as well.

An important aspect of real-time forecastingmodels is computational speed. Thesemodels
are typically integrated in state estimation and possibly optimization algorithms, so that their
wall timemust bemultiple times shorter than the simulation time if the overarching algorithm
is to be evaluated more rapidly than for real time. Therefore, models that are used today are
all based on simplified semi-heuristic formulations, and differ depending on application
area. For instance, in atmospheric dispersion modelling, examples include Gaussian plume
models and Gaussian puff models (Leelőssy et al. 2014), street-canyonmodels (Belcher et al.
2015), or Reynolds-averaged Navier–Stokes based reduced-order models (Vervecken et al.
2015). For wind-energy applications, examples include mainly turbine-wake models, e.g.
static models such as the Jensen model (Katic et al. 1986), the Ainslie model (Ainslie 1988),
or Gaussian wake models (Niayifar and Porté-Agel 2015), as well as dynamic models, such
as the dynamic wake-meandering model (Larsen et al. 2008), the FLORIS model (Gebraad
et al. 2016), or a dynamic Jensen model (Shapiro et al. 2017). In fact, most of these models
do not even include atmospheric turbulence in their predictions, but rather focus on the
prediction of mean statistics given known background meteorological conditions. To the
authors’ knowledge, the use of LES for short-term forecasting of turbulence has not been
considered to date.

Recently, LES was used in the context of wind-farm optimal control (Goit and Meyers
2015; Goit et al. 2016; Munters and Meyers 2017a, 2018). However, these studies did not
envisage the use of LES for real-time control, since LES is computationally too slow, but
instead, used the optimal control study as a means to explore improved ways for a wind farm
to interact with the ABL. However, thanks to efficient parallelization, the use of large-eddy
simulation in these studies almost achieved parity between simulation time and wall-clock
time (Munters andMeyers 2017a, b).We emphasize thatmuch depends on the physical length
and velocity scales at which the large-scale motions that are simulated in the LES occur. For
instance, with the ABL height on the order of 1 km and a friction velocity ≈ 1m s−1, large
time scales are in the order of 100 s. Scaling the same system down to a comparable high-
Reynolds-number boundary layer with a boundary-layer height of, say 0.1m, and the same
friction velocity, leads to time scales of 10μs. Although the computational cost of LES of
both systems would be roughly the same, the ratio of simulation time to wall time is quite
different. Nevertheless, for turbulent flow forecasting in the ABL, it may suffice to speed-
up current LES by one to two orders of magnitude. A simple solution is to coarsen the
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simulations, i.e. coarsening an LES by a factor of n, reduces the computational cost by n4.
Thus coarsening by a factor of four may already suffice to obtain a speed-up of a factor of
100 compared to a high-fidelity baseline resolution. This highlights the trade-off between
computational cost and model accuracy.

A further challenge to the accuracy of turbulent-flow forecasting is the chaotic nature of
turbulence. It is well understood that small perturbations lead to an exponential divergence
of trajectories in state space, at a rate of the most unstable Lyapunov exponent of the system
[see Mukherjee et al. (2016) for an extensive LES study]. However, when considering finite
size perturbations, the predictability horizon is mainly dependent on the scale of interest
(Lorenz 1969). This was later formalized by Aurell et al. (1997) for systems with finite size
Lyapunov exponents, which were later experimentally determined for the ABL by Basu et al.
(2002). Consequently, computational accuracy depends not only on the LES grid size, but
also on the envisaged prediction horizon. We remark that, in contrast to the above forecasting
of turbulence in the ABL, long term statistical averages in LES are well studied, including
the effects of grid resolution (see, e.g., Sullivan and Patton 2011).

1.1 Scope of the Study

In practice, LES models used for turbulent-flow forecasting may be initialized by online
measurements (e.g. by lidar) and integrated in a longer algorithmic chain that includes state
estimation [e.g. based on variants of Kalman filtering (Kalman 1960), three-dimensional
variational assimilation (3D-Var) (Lorenc 1981), or four-dimensional variational assimilation
(4D-Var) (Le Dimet and Talagrand 1986)]. Moreover, when used for control, it could also
include, e.g., control optimization using a receding horizon approach. In the present work, we
do not consider this full algorithmic chain. Rather, in a first step we focus on the forecasting-
error dependence of coarse-grid LES on resolution and estimation time horizon only, next to
the trade-off between computational speed and accuracy.We omit all aspects of measurement
errors, state estimation, errors introduced by model bias as well as the effects of atmospheric
stability. Although these are all important for the practical use of LES as a real-time turbulent-
flow forecasting model, the present study precedes these issues, by investigating whether the
use of LES is feasible at all, given modelling errors on coarse grids, and given the chaotic
divergence of turbulence.

To this end, we envisage a series of simulations on different grids, on a domain of 40 ×
5 × 1 km3, using periodic boundary conditions in horizontal directions. The domain and
computational set-up is chosen such that the throughflow time is roughly 4000 s, which is the
longest prediction horizon that we consider. The finest LES grid, which has approximately
0.125 × 109 grid points, is used as a baseline reference (details of the computational set-up
are further provided in Sect. 2.2). We then consider a series of coarser grids, with the coarsest
containing only 0.25 × 106 grid points, and study the evolution of the error between the
coarse and the baseline grids as a function of the prediction horizon. We simply initialize the
coarse-grid LES by filtering the fine-grid LES at the start of the prediction horizon. Thus (as
mentioned above), we presume perfect knowledge of the coarse-grid LES initial conditions,
and all difficulties related to state estimation based on real observations, and model bias are
omitted.

The paper is organised as follows: in Sect. 2, the LES methodology is introduced, and the
case set-up is discussed, and in Sect. 3 the main framework is constructed for analyzing the
errors. Finally, in Sect. 4 results are discussed.
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2 Large-Eddy Simulation Equations, Case Set-Up andMethodology

2.1 Governing LES Equations and Discretization

All simulations use SP-Wind, which is a pseudo-spectral LES code developed at KU Leuven
over the last decade (Calaf et al. 2010). The governing equations are the filtered incompress-
ible Navier–Stokes equations,

∂u
∂t

= −u · ∇u − 1

ρ
∇(p + p∞) − ∇ · τSGS, (1)

∇ · u = 0, (2)

where u = (u1, u2, u3) represents the filtered velocity field, and p is the pressure. Further-
more, in boundary-layer simulations,∇ p∞ = [ f∞, 0, 0] represents the background pressure
gradient that we presume in the x-direction. We neglect contributions of the viscous stresses
on the resolved scales, andmodel the subgrid-scale (SGS) stresses τSGS using a Smagorinsky
model (Smagorinsky 1963)

τSGS = 2l2(2S : S)1/2S, (3)

where S = (∇u + (∇u)T
)
/2 is the rate-of-strain tensor. For the Smagorinsky length scale

l, we employ Mason and Thomson’s (1992) damping function, such that l−n = (CsΔ)−n +
(κ(z + z0))−n , whereΔ = (ΔxΔyΔz)

1/3 is the local grid spacing, andCs is the Smagorinsky
constant, and κ = 0.4 is the von Kármán constant. We take Cs = 0.14, n = 1, see Meyers
(2011) for a discussion.

Periodic boundary conditions are used in all horizontal directions, and at the top of the
domain we use a symmetry condition. At the wall, impermeability is used in combination
with a wall-stress model, which is applied to the first grid point (see Moeng 1984; Bou-Zeid
et al. 2005),

τw,1 = −
(

κ

ln(z1/z0)

)2 (
ũ21 + ũ22

)
ũ1, (4a)

τw,2 = −
(

κ

ln(z1/z0)

)2 (
ũ21 + ũ22

)
ũ2, (4b)

where the parallel velocity components ũ1 and ũ2 are obtained from filtering the horizontal
velocity components u1, u2 with a 2D Gaussian filter, using filter widths 4Δx and 4Δy in
the x- and y-directions. Further z1 is the vertical coordinate of the first grid point, while z0
is the roughness length.

SP-Wind uses a pseudo-spectral discretization for the horizontal directions, in which
the non-linear terms are evaluated in real space and de-aliased using the 3/2 rule (Canuto
et al. 1988). Fourier transforms are performed using the FFTW library (Frigo and Johnson
2005), and parallelization is performed using a 2D pencil decomposition of the Fourier
transforms (Li and Laizet 2010). For the vertical direction, a fourth-order energy conservative
scheme is used (Verstappen and Veldman 2003), and for the time integration, a fourth-order
explicit Runge–Kutta scheme is employed. The timestep is, in general, chosen by applying
a Courant–Friedrichs–Lewy number of 0.4. If however a sample point is approached, the
Courant–Friedrichs–Lewy timestep is adapted (reduced), so that output data are generated at
the desired time instance.
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Table 1 Summary of the domain
specifications and ABL
parameters

Case

Domain size Lx × Ly × H 40 × 5 × 1 km3

Roughness length z0 0.1m

Pressure gradient f∞ 0.25 × 10−3 m s−2

2.2 Case Set-Up

All simulations are performed on a cuboid, with specifications as summarized in Table 1. The
domain is chosen to be sufficiently long for the effects of periodicity on turbulent structures
in the streamwise direction to be minimal (Munters et al. 2016). The roughness length z0
is taken to be 0.1m, which is a typical overland value (Wiernga 1993). The selected hori-
zontal pressure gradient leads to a friction velocity u∗ = 0.5m s−1, which gives a common
wind speed of around 10m s−1 between the 100 to 1000m heights. Given these parame-
ters, the total throughflow time of the domain is approximately 4000 s, which is also the
longest prediction horizon that is considered. We remark here that all our results can be
non-dimensionalized with friction velocity and boundary-layer height, so that results can be
scaled to different conditions. Nevertheless, we present results in real units, as this will keep
the discussion more concrete. Moreover, rescaling is not always meaningful. For instance,
changing the reference length will effectively change the physical height of reference struc-
tures of interest such as wind turbines, while changing the velocity scale will change the
Coriolis parameter and thus the latitude of the simulation (though the latter is only relevant
in LES models that include the effects of Coriolis forces—in the present study, Coriolis
forces are neglected). It is interesting to note that rescaling a simulation to higher wind
speed, effectively decreases the time scales and thus also the prediction time horizon. In
that case, length scales are conserved, and therefore also the ‘prediction distance’, simply
defined as the distance the flow will convect downstream during the time horizon, remains
invariant.

As discussed above (Sect. 1.1), we are interested in the forecast-error evolution on a series
of simulation grids. To this end, four different uniform rectangular grids are defined, with cell
sides that are coarsened each time by a factor of two. Henceforth, we denote results and sizes
of the different grids using a superscript i (i = 0, 1, 2, 3), with i = 0 referring to the finest
grid level. Thus, the velocity field on grid i is denoted by ui , and given the coarsening factor

of two, Δi = 2iΔ0, where Δ0 =
[
Δ0

x ,Δ
0
y,Δ

0
z

]
is the finest/reference grid resolution. A

detailed summary of the grid specifications is given in Table 2. Note that the grid resolutions
in the Table represent the true degrees of freedom in our simulations. De-aliasing of the
non-linear terms using Orzag’s 3/2 rule is performed on grids that are refined by a factor of
3/2 in both horizontal directions.

For the initialization of all simulations, a spin-up is first performed on the finest grid res-
olution, until the turbulence is fully developed, and the flow fields are statistically stationary.
In a second step that initializes the coarse grid simulations, the fine grid initial condition,
shown in Fig. 1a, is filtered and restricted to the coarser grids (see Sect. 3.1 for details).

The initial streamwise component of the flow fields for the different grids is shown on
the left side of Fig. 1a–d. On the right side of the figure a zoom of a rectangular box of
700m × 500m × 100m is shown, which is a representative size for the spacing between
turbines in a wind farm. The black lines represent the grid-cell boundaries of the different
grid levels.
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Table 2 Summary of the different grid specifications

Grid level i 0 1 2 3

Grid resolution x [m] Δi
x 25 50 100 200

Grid resolution y [m] Δi
y 12.5 25 50 100

Grid resolution z [m] Δi
z 5 10 20 40

Grid cells x Ni
x 1600 800 400 200

Grid cells y Ni
y 400 200 100 50

Grid cells z Ni
z 200 100 50 25

Grid cells total Ni
cells 128 × 106 16 × 106 2 × 106 0.25 × 106

Simulations are performed over a time horizon of 4000 s, and flowfields are sampled every
4 s. To ensure that the fields are sampled at the exact same times, the integration timestep is
chosen asΔi

t = min
(
Δ

i,CFL
t ,Δ

i,s
t

)
, whereΔ

i,CFL
t is the Courant–Friedrichs–Lewy timestep,

and Δ
i,s
t is the timestep to the next sample. A detailed discussion of errors and comparisons

of results is presented below.
Finally, we note that the size of the reference grid 0 is limited by current computational

feasibility, and not all physical scales up to the Kolmogorov scale of turbulence are resolved.
Thus, for a meaningful error analysis, only flow properties that are sufficiently larger than the
simulation grid should be considered. Here, we mainly focus on the prediction of turbulent
velocities averaged over areas (and heights) that correspond to the size of modern large
turbines (see properties of interest defined in Sect. 3.3 below). As shown in earlier LES
studies, the fine resolution is sufficient to properly resolve these scales (Meyers andMeneveau
2013), so that any residual errors between the fine reference and at a theoretical continuous
solution are small. However, if one were to consider physical properties at much smaller
scales, or much closer to the wall, a different approach or a finer reference mesh would be
required for proper error analysis.

2.3 Benchmarking

All simulations are performed on the ThinKing supercomputer of KU Leuven. Simulations
are repeated with two, four, eight and 16 nodes, except for the reference grid, which is not
simulated on two nodes due to a shortage of random-access memory for this mesh size.1

The ratio of wall-clock time to simulated time (twall/tsim) is shown in Fig. 2. To compare
the parallel efficiency of the different computational set-ups, Table 3 shows the billing time
(tbill) per grid point per timestep, where the billing time is defined as tbill = Nnodestwall.

Results in Fig. 2 show the rapid decrease of wall time with grid coarsening. The finest
grid is more than a factor 10 slower than wall time, while the coarsest grid is almost 100
times faster. Moreover, good strong scaling is observed, except for the coarsest grid, where
a saturation in speed-up is seen with increasing amount of nodes due to communication
overhead becoming the bottle neck. Overall, simulations on the coarsest two grid levels may
be sufficiently fast for real-time use, but much will depend on their overall accuracy. This is
further discussed in next sections.

1 A node consists of two 10-core “Ivy Bride” Xeon E5-2680v2 central processing units with 64 GB of
random-access memory, which are interconnected with a quad data-rate infiniband network.

123



On the Feasibility of Using Large-Eddy Simulations for… 219

a

b

c

d

Fig. 1 Initial streamwise velocity fluctuations ui1(x, 0) − Ui
1(z) for the different grids at z = 100 m, with

increased grid coarsening from a to d. (Left): visualization on the full domain; (right) zoom on a 700m ×
500m × 100m rectangular box. The top figure each time represents a vertical x–z cross-section, while the
bottom figures represent a horizontal x–y plane at a height of 100m

Fig. 2 Ratio ofwall-clock time (twall) and simulated time (tsim) for the different grids. Simulations are repeated
with 1 ( ), 2 ( ), 4 ( ), 8 ( ) and 16 nodes ( ). The vertical black dashed line corresponds to twall = tsim
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Table 3 Summary of the billing
time per grid point and timestep
in microseconds

Nnodes Grid level

0 1 2 3

1 5.267 4.503 4.532 3.084

2 5.529 5.418 4.893 3.523

4 6.628 6.043 5.665 4.665

8 8.318 5.958 6.671 6.233

16 7.576 5.802 6.453 12.468

It is emphasized that despite these simulations being performed on a state-of-the-art com-
puting system and simulation platform, additional speed-up may further be possible, by e.g.,
graphic processor unit based computation (see, e.g. Fuhrer et al. 2018; Lapillonne et al. 2017),
or single precision computation (Váňa et al. 2017). This is, however, not the focus here but,
if successful, would only benefit the methodology and strengthen conclusions.

3 Error Definitions and Decomposition

3.1 Restriction and Interpolation Operations

Sincewe are using and comparing LES at different resolutions, it is important to define proper
intergrid transfer operations, so that errors between different simulations can be properly
defined.

We consider a sequence of grids with spacing Δi =
[
Δi

x ,Δ
i
y,Δ

i
z

]
, with the finest grid

having index i = 0, and where Δi = f
(
i,Δ0), where f is a monotonically increasing

function of i . Herein, we simply use Δi = Δ02i . Solutions on grid i are denoted using ui =
[ui1, ui2, ui3]. In practice, SP-Wind uses a pseudo-spectral method in horizontal directions,
with collocation points that are uniformly distributed in real space on a Cartesian mesh.
Thus, xik = kΔi

x ∀k ∈ 0 . . . Ni
x − 1, yil = lΔi

1 ∀l ∈ 0 . . . Ni
y − 1. In the z-direction a

fourth-order finite-volume discretization is used on a staggered mesh. Velocity components
ui1, u

i
2, and pressure p are defined at locations zim+1/2 = (m + 1/2)Δi

z ∀m ∈ 0 . . . Ni
z − 1,

while ui3 is defined at z
i
m = mΔi

z ∀m ∈ 1 . . . Ni
z − 1.

Given a coarse grid j and a fine grid i (i < j), we now introduce interpolation and
restriction operations such that

ui = Ii
ju

j , (5)

u j = R j
i u

i . (6)

Both Ii
j , and R j

i are linear operators (matrices). In practice, we implement them using sub-

sequent interpolations and restrictions in the x , y, and z directions, so that Ii
j = I ij,z I

i
j,y I

i
j,x ,

andR j
i = R j

i,z R
j
i,y R

j
i,x . In horizontal directions (x and y), we employ spectral interpolation

and spectral projection respectively for interpolation and restriction. In the z direction we
employ fourth-order interpolation and box filtering; see Appendix A for details.

Finally, we note that for the error analysis, we use grid 0 as a reference, so that in practice,
we only need the operators I0

j andR
j
0.We further note that the current selection of grid levels

yields straightforward and convenient interpolation and restriction operators. However, also
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if the reference grid is not so well structured (e.g. with data coming from experiments) or if
the reference is given by a continuous function, similar operators can be defined.

3.2 Full-Field Error Definition and Decomposition

In order to define errors, we always interpolate properties back to the reference grid 0. Thus,
the field error εitot of a grid i with respect to the reference is introduced as

εitot � I0
i u

i − u0

= I0
i

(
ui − Ri

0u
0
)

︸ ︷︷ ︸
εimodel

+ I0
i Ri

0u
0 − u0

︸ ︷︷ ︸
εirestr

, (7)

where we further split the error into a part due to model mismatch εimodel , and a part due
to the restriction on a coarse grid εirestr . As observed in Eq. 7, the restriction error is not
related to the simulation error on the coarse grid, but only relates to the potential inability to
represent the fine details of the reference solution on the coarse grid.

The evolution of the modelling error can be further derived from the Navier–Stokes equa-
tions, and we find

∂εimodel

∂t
= I0

i

(
∂ui

∂t
− Ri

0
∂u0

∂t

)

= I0
i

(
f i

(
ui

)
− Ri

0 f
0 (

u0
))

= I0
i

(
f i

(
ui

)
− f i

(
Ri

0u
0
))

︸ ︷︷ ︸
Sidiv

+ I0
i

(
f i

(
Ri

0u
0
)

− Ri
0 f

0 (
u0

))

︸ ︷︷ ︸
Sisgs

, (8)

where f i
(
ui

)
represents the spatial terms in Eqs. 1 and 2, discretized on grid i , and evaluated

using ui . We find that the evolution of the modelling error is forced by two source terms,
which are further discussed below.

The second source term Sisgs can be elaborated by using Eq. 1, leading to

Sisgs = I0
i ∇ ·

⎛

⎜⎜
⎝

(
Ri

0u
0
) (

Ri
0u

0
)

− Ri
0

(
u0u0

)

︸ ︷︷ ︸
L

+Ri
0τ

0 (
u0

)

︸ ︷︷ ︸
τ

− τ i
(
Ri

0u
0
)

︸ ︷︷ ︸
T

⎞

⎟⎟
⎠ , (9)

which corresponds to a discrete variant of Germano’s identity (Germano 1992), where L are
the Leonard stresses, and τ , T the SGS stresses on respectively the reference and the coarser
grids. Thus, this source term corresponds to the SGS-modelling error. Note that this source
term does not depend on ui , but only on the inability of the coarse grid to correctly represent
the dynamics when evaluated using the reference solution.

The first source term Sidiv represents the divergence of the solutions u
i andRi

0u
0. It is well

known that nearby solutions diverge due to the chaotic behaviour of turbulence (even if the
SGS-modelling error were zero). Initially, at time t = 0, the source Sidiv(x, 0) = 0 as a result
of the particular ‘exact’ coarse-grid initialization that we use (ui (x, 0) = Ri

0u
0(x, 0)), so

that Sisgs is dominant. However, as we will further show below, Sidiv becomes dominant very
fast.
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To get additional insight in the different terms, they are also discussed for a standard
identical-twin simulation with a perturbation [see e.g. Mukherjee et al. (2016)], as often used
to study divergence of trajectories in chaotic systems. Since, identical twin simulations are
performed on an identical grid, the restriction error ε0restr = 0, because R0

0, and I0
0 are both

identity matrices, such that the only term contributing will be the modelling error ε0model.
Further analyzing the source terms of the modelling error S0

div and S0
SGS, it is trivially found

that the latter is zero, such that only the term S0
div determines the error growth. This term is

very close to zero initially due to the small initial perturbation, but then, as is well known,
causes an exponential growth of errors, characterized by the leading Lyapunov exponent of
the system. Simulation experiments in the present work differ from a classical identical-twin
set-up, as they include non-zero SGS error-source terms, aswell as non-zero restriction errors.

3.3 Wind-Turbine Error Definitions

We look at the field errors εitot, and in particular into the evolution of their norm ‖εitot‖ as
a function of time. However, from a practical perspective, these errors are usually not very
relevant, and errors on derived properties (that depend on the application) are more useful.
Therefore, we also investigate errors that are relevant in a wind-energy context.

To this end, we consider virtual wind turbines in the lower part of our simulation domain,
and investigate prediction errors on the turbine wind speed. The turbine wind speed on grid
i is determined using

uiwt(t) = G(xwt) ◦ I0
i u

i
1(x, t), (10)

where G is a spatial filter centered around the turbine-hub location xwt and ui1(x, t) is the
streamwise velocity component. We use a simple box filter of size D, so that uiwt represents
an appropriate spatially averaged velocity in the mean flow direction (values of D = 100m,
as well as a hub height of 100m are employed).

We also define a time-filtered turbine wind speed over a time interval τ as

uiwt,τ (t) = 1

τ

∫ t

t−τ

uiwt
(
t ′
)
dt ′. (11)

Such a time-averaged turbine wind speed is relevant for many application areas, e.g., for
the power-grid, energy and ancillary service markets typically operate among others using
1-min, 5-min or 15-min averages (see e.g., Rebours et al. 2007;Wang et al. 2015; Brijs 2017).

In order to speed-up the convergence of error statistics, we sample turbine wind speeds at
every horizontal grid collocation point, for a total of Ni

x N
i
y different positions. We assemble

these different measurements in the vector uiwt,τ (t), and define the prediction error

εiwt,τ (t) =
(
E

[(
uiwt,τ (t) − u0wt,τ (t)

)2])1/2

, (12)

with E[·] the expected value or sample mean.
A useful reference for LES predictions is the use of the time-averaged turbine wind

speed. This type of prediction does not take into account short-term turbulent fluctuations,
but simply uses the expected mean (given constant meteorological conditions). Denoting the
mean turbine wind speed obtained from the finest grid with U 0

wt (formally, U 0
wt = u0wt,∞),

we can define the error that results from using the mean flow as a prediction, as

ε0U ,τ (t) =
(
E

[(
u0wt,∞(t) − u0wt,τ (t)

)2])1/2
. (13)
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Using this, we further introduce a scaled norm εiwt,τ = εiwt,τ /ε
0
U ,τ . Thus, if εiwt,τ > 1, it

is more appropriate to use a simple prediction of the mean flow instead of trying to predict
turbulent-flow effects with a more complex LES model.

The error εiwt,τ can be further decomposed, viz.

(
εiwt,τ

)2 = Var
[
uiwt,τ − u0wt,τ

]
+ Bias

[
uiwt,τ ,u

0
wt,τ

]2

= Var
[
uiwt,τ

]
+ Var

[
u0wt,τ

] − 2Cov
[
uiwt,τ ,u

0
wt,τ

]

+ Bias
[
uiwt,τ ,u

0
wt,τ

]2
, (14)

and where Bias[uiwt,τ ,u0wt,τ ] = E[uiwt,τ ] − E[u0wt,τ ]. For the error of a prediction based on
the mean flow, we simply have (ε0U ,τ )

2 = Var[u0wt,τ ], leading to an expression for the scaled
norm εiwt,τ

(
εiwt,τ

)2 = Var
[
uiwt,τ − u0wt,τ

]

Var
[
u0wt,τ

] + Bias
[
uiwt,τ ,u

0
wt,τ

]2

Var
[
u0wt,τ

] . (15)

For our idealized set-up, the bias is close to zero (see also Appendix B), such that the expres-

sion simplifies to
(
εiwt,τ

)2 ≈ Var
[
uiwt,τ − u0wt,τ

]
/Var

[
u0wt,τ

]
, the ratio of the prediction error

variance to the background variance.
For long prediction time horizons, the LES prediction becomes totally decorrelated from

the reference solution because of chaotic divergence of trajectories and accumulation of
modelling errors, simplifying to

lim
t→∞

(
εiwt,τ

)2 = 1 + Var
[
uiwt,τ

]

Var
[
u0wt,τ

] + Bias
[
uiwt,τ ,u

0
wt,τ

]2

Var
[
u0wt,τ

] .

The variance of the turbine wind speed is approximately equal for the different grids
Var[uiwt,τ ] = Var[u0wt,τ ], so that for long prediction time horizons εiwt,τ ≈ √

2. Thus over-
all, LES predictions are expected to improve on a simple mean-flow estimate only when
time horizons are not too long for the covariance between the LES prediction and the real
turbulent-flow realization to have disappeared. This is further discussed in Sect. 3.3.

4 Results

As discussed in Sect. 1.1, we only evaluate part of the modelling chain, i.e. we omit all
errors related to state estimation based on measurements, and presume that our coarse-grid
simulations start with an exact initial condition.We further note that the type of error analysis
that is performed here is quite different from classical validation or verification of LES, in
which the focus is on comparing time-averaged mean fields such as velocity and Reynolds
stresses in a statistical sense. This type of error analysis is performed by averaging simulation
results over much longer time horizons than considered here, during which instantaneous
velocity fields are usually fully decorrelated. For completeness, we have added a comparison
of time-averaged results for the different grid levels in Appendix B.
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a b

c d

e f

Fig. 3 Evolution of model, restriction, and total error as a function of time on different simulation grids. (Left)
logarithmic scaling; (right) linear scaling. The symbols ( ), ( ), ( ) respectively represent grid levels 1 to
3. The horizontal black lines represent the error of a prediction using the time-averaged flow profile

4.1 Evolution of Full-Field Errors

We first look at full field errors, and in particular focus on the evolution of the error εi1 of the
streamwise velocity field. To this end, we introduce a scaled norm of εi1 as follows

εi (t) = ‖εi1(x, t)‖
‖u01(x, t)‖ , (16)

representing the classical two-norm of the error (over the full field) normalized by the two-
norm of the velocity field, yielding a measure for the overall relative error. The evolution of
relative error εi (t) is shown in Fig. 3 for the different grids (1 to 3). From top to bottom, the
figure shows the restriction εrestr , modelling εmodel, and total error εtot; left and right, results
are plotted in logarithmic and linear scaling respectively.

We first look at the restriction error in Fig. 3a, b, while appreciating that this error is nearly
constant in time, and is largest for the coarsest grid. The former is related to the fact that the
fine-grid solution is in statistical equilibrium, so that the distribution of energy over different
scales does not change over time. In terms of size, we observe that the full-field restriction
error remains below 6%. This is an acceptable level that will, however, much depend on
the selected quantity of interest. As long as it is related to large scales in the flow (such as
the velocity field or derived properties such as wind-turbine power extraction), we expect
that restriction will not remove a lot of the essential information. Other properties, such as
vorticity or velocity fluctuations very close to the ground, are not well predicted by LES, and
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Fig. 4 The evolution of the source terms Si
sgs ( ) and Si

div ( ) and ∂εimodel/∂t ( ) as a function of time.
The lines ( ), ( ), ( ) respectively represent the grid levels 1 to 3

typically have large restriction errors (since these are essentially small-scale properties with
dominant length scale around the Kolmogorov scale or the roughness length respectively).

Looking at the model error in Fig. 3c, d, we observe features that are quite different, and
it is unexpected to see that the model error is lowest for the coarsest grid. This is related to
two aspects: first of all, on the coarser grid less scales are represented, so that the initial SGS
error is smaller (see also Fig. 4, and further discussion below). Second, chaotic divergence
of turbulence is a process that starts at the small scales with an inverse cascade, increasing
rapidly into the large scales over time (Lorenz 1969). Thus effects of chaos are felt earlier
on finer grids, in which smaller scales are present. Further looking at the modelling error in
Fig. 3, three zones are observed, in which the error grows proportional to t , t1/2, and saturates
to a constant value, respectively. The last zone is best understood, and is simply related to
the fact that the LES prediction is fully decorrelated from the reference, so that the square of
the error roughly saturates at twice the variance of the signal (cf. discussion in Sect. 3.3).

The first zone (∼ t) is explained by looking at the source terms Sisgs and Sidiv in Fig. 4.

By definition, at t = 0, Sidiv(x, 0) = 0, so that the evolution of εmodel is dominated by Sisgs.

We further observe that ‖Sisgs‖ is roughly constant, which is explained by the fact that the
turbulent boundary layer is in statistical equilibrium. Thus, for t small, we find

∂εimodel

∂t
≈ Sisgs, (17)

1

2

∂‖εimodel‖2
∂t

≈
(
εimodel, S

i
sgs

)
,

=
∫ t

0

(
Sisgs

(
x, t ′

)
, Sisgs(x, t)

)
dt ′, (18)

with (·, ·) the classical Euclidean inner product between vector fields. As long as the time t

remains small, Sisgs(x, t ′) and Sisgs(x, t) remain correlated, so that
(
Sisgs(x, t ′), Sisgs(x, t)

)
≈

‖Sisgs‖2 ≈ C, where C is a constant. Combining all this into Eq. 18 leads to ‖εimodel‖ ∼ t , a
behaviour that is different from the standard chaotic exponentional growth. This is attributed
to the source term Sisgs, which initially dominates the error growth in contrast to a standard
perturbation experiment (Mukherjee et al. 2016) where this term is absent, and the growth is
determined by Sidiv.
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Fig. 5 The evolution of the SGS error source Si
sgs as a function of grid level i , where Δi /Δ0 = 2i . Symbols

( ), ( ) and ( ) respectively represent the case with no restriction in vertical direction, restriction based on
a Gaussian filter, and based on a box filter

A similar scaled norm is introduced for the source terms as for the errors in Eq. 16, i.e.,

S i (t) = ‖Si1(x, t)‖
‖ f 01 (x, t)‖ . (19)

Further looking at the evolution of the source terms in Fig. 4, it is observed that after an initial
transient, the total source is dominated by Sidiv. At this point the second zone in the error
growth in Fig. 3 starts (∼ t1/2). This zone is well understood, and relates to the rate of chaotic
divergence of turbulent flows. Although chaotic trajectories initially diverge exponentially in
the linear regime, this changes when non-linear effects play a role. In the non-linear regime,
the 1/2 scaling simply results from the inverse cascade, given a classical Kolmogorov inertial
range [see Aurell et al. (1997) for details].

As mentioned above, the SGS-error source Ssgs in Fig. 4 is roughly constant in time.
However, it is unexpected to see that the SGS-error source is larger for finer grids than for
coarser grids. This error-source level initially forces the LES and reference trajectories apart,
and this may be a second explanation for faster chaotic divergence of predictions on finer
meshes. However, from a grid-refinement perspective, fine grids are expected to yield lower
SGS errors. To further investigate this, we evaluated the SGS-error source for a series of
grids that are much more gradually refined between level 3 and level 0 (instead of just using
factors of two). Results are presented in Fig. 5. In horizontal directions, for which we use a
restriction operator in spectral space, it is straightforward to gradually coarsen the grid with
non-integer ratios. However, in the vertical direction, the box-filter formulation that we use
only works for coarsening with a factor of two. Therefore, we present two results in Fig. 5,
one without any restriction in the vertical direction, and one where we restrict in the vertical
direction with the use of a Gaussian filter. The results in Fig. 5 indicate that the SGS-error
source does approach zero when the grid approaches the reference grid. However, the source
increases very rapidly when the grid is coarsened, and reaches a maximum around a grid
coarsening with a factor n ≈ 1.5 for the current case. At higher coarsening factors, the source
starts to decrease again, explaining the unexpected trends observed above in Fig. 4.

Finally, looking at the total error in Fig. 3e, f, it is observed that overall, coarser grids lead
to larger errors than finer grids. This is a result of the restriction errors, that are largest for the
coarsest grids. However, this is partly offset by the unexpected behaviour of modelling errors
discussed above, and the effect of SGS errors and chaotic divergence of trajectories. As a
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a

b

c

d

e

Fig. 6 Comparison of turbine wind speed on grid level 2, u2wt,τ ( ), and reference grid, u0wt,τ ( ),

normalized with the mean turbine wind speed on the reference grid u0wt,∞ for different time filters. Top to
bottom the unfiltered signal, time-averaging windows τ of 1min, 5min, 15min and 30min respectively. The
grey coloured lines are the results using a Taylor frozen turbulence model, which almost collapse for the
different grids

result, error levels remain remarkably close overall, indicating that coarse-grid LES may be
very well suited for forecasting of turbulent boundary layers. In Fig. 3e, f, we also added
the error that would result from a prediction that simply uses the time-averaged velocity
profile (i.e. a logarithmic wind speed profile). Obviously, a LES prediction only makes sense
if it outperforms this prediction. For longer time horizons, this is no longer the case. At this
point, the LES error saturates and the coarse-grid prediction is fully decorrelated from the
reference. In fact over long times, turbulence behaves as a random process, such that the best
possible prediction simply corresponds to the expected value, i.e. the time-averaged profile.
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Fig. 7 Comparison of the turbine wind-speed error εiwt,τ as a function of time for different time filter widths

and grid levels. The unfiltered, 5min and 30min averaged signals are respectively represented by ( ), ( ) and
( ). The line styles ( ), ( ), ( ) respectively represent the grid levels 1 to 3. The grey coloured
lines are the results from a Taylor frozen-turbulence model, which almost collapse for the different grids

4.2 Turbine Hub-HeightWind-Speed Predictions

We now turn towards the error prediction of more practically oriented quantities of interest,
and focus on wind-energy applications. We consider predictions of average incoming turbine
wind speed using definitions introduced in Sect. 3.3. Moreover, since energy markets usually
use local time-averaged signals (e.g., using 1-min, 5-min, 15-min, or 1-h averages, depending
on themarket),we also consider the prediction of time-filtered signalswith different averaging
windows.

In order to give an impression of the effect of time filtering, Fig. 6 shows a comparison
of the time-filtered turbine wind speed on the reference grid and grid number 2 for the
unfiltered signal, and for filter windows of respectively 1min, 5min, 15min and 30min. It
is appreciated that the variance of the signal reduces significantly for longer time filters, thus
also reducing the errors on the predictions. However, at the same time, also a prediction with
the mean value of the turbine wind speed (i.e. the expected value) will improve, and thus it
is important to properly scale errors. Therefore, the scaling introduced in Sect. 3.3 is used.

In Fig. 7 the evolution of the turbine wind-speed error as a function of time is shown for
the different grid levels, for the unfiltered signal, and for 5-min and 5-min filtered signals.
It is clearly seen that the longer time filters give better results, and is explained by the fact
that small scales have shorter turnover times and therefore tend to chaotically diverge more
rapidly. Further, the total error increases with increased grid coarsening. The dependency,
however, is not very strong, similar to observations above.

Further looking at Fig. 7, we see that 5-min and 30-min averaged LES predictions
significantly outperform the mean-flow estimate for time horizons up to 2000 and 4000 s
respectively. For the instantaneous field prediction, only time horizons below 1000 s appear
to work. Thus depending on the case and the application requirements (e.g. short-term con-
trol versus market predictions), quite different results can be found with respect to what
prediction horizons are feasible.
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a b

c d

Fig. 8 The error εiwt,τ as a function of the ratio of wall time and simulated time twall/tsim, for the different
computational grids. Figures a–d respectively represent the unfiltered signal and filter lengths 1min, 5min
and 30min. The different colours represent different prediction horizons [0min ( ), 5min ( ), 15min ( ),
30min ( ) and 60min ( )]. The horizontal and vertical line respectively represent the normalized mean flow
prediction error and twall = tsim

Additionally the results are compared to a simple Taylor frozen-turbulence model, where
the flow field is advected downstream with the mean hub-height velocity Ui (zh) (see e.g.
Schlipf et al. 2010, 2013). It is found that the Taylor frozen-turbulence model results are
almost completely independent of the grid, except for some small differences in the unfiltered
signals. Overall, it is observed that coarse-grid LES significantly outperforms the Taylor
frozen-turbulence model.

Finally, we emphasize that the numerical values discussed here very much depend on the
selected simulation case. As discussed in Sect. 2.2, results can be rescaled based on friction
velocity and boundary-layer height. For instance, rescaling the friction velocity to 0.25m s−1,
would double all time scales. In general, the time scales are inversely proportional to the
velocity scale, and overall, conclusions will depend on atmospheric conditions. Nevertheless,
the current case set-up corresponds to realistic atmospheric conditions, and clearly shows
that course-grid LES can be sufficiently accurate to be considered for real-time forecasting.

4.3 Accuracy Versus Speed-Up

In Fig. 8 accuracy versus speed-up is assessed for the current simulation set-up based on the
prediction of turbinewind speeds. All speed-ups are calculated using the 16-node benchmark,
which is shown in Fig. 2. Figure 8 contains four parts a–d that respectively represent results for
the prediction of instantaneous turbine wind speed, and 5-min, 15-min, and 30-min averaged
wind speeds.Moreover, in the different subplots, results are presented for different prediction
horizons.Overall, we see that errors do not increase rapidlywith grid coarsening (as discussed
above), so that meaningful predictions may be possible with simulation times that are more
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than 200 times faster than real time. The level of the errors is highly dependent on the
specific prediction horizon and the time-average window width, but as seen in the figure,
various combinations exist for which the coarse-grid LES is more than twice as accurate than
an estimation based on the mean flow (thus effectively reducing the variance of the prediction
error by a factor of four compared to simply considering turbulence as a random process and
using the expected value as predictor).

Finally, we recall that the current results are obtained for an idealized set-up that excludes
additional errors arising from experiments, state estimation, and possible model bias if LES
were to be integrated in a real prediction chain. We note that different stability regimes have
also to be tested; the convective and neutral regimes are expected to perform in line with
our case study, the stable regime is known to have turbulent structures that are much finer
grained (see, e.g., van Stratum and Stevens 2015; de Roode et al. 2017), such that with coarse
resolutions the resolved part of the turbulent fluctuations is significantly smaller compared
to the other regimes. This is known to give rise to problems sustaining resolved turbulence
(Beare et al. 2006). In this case predictions with a simple logarithmic profile may be better
suited, or, for sufficiently small time horizons, the Taylor frozen-turbulence model could be
considered. These are topics for further research. Nevertheless, the current results give a first
clear indication that coarse-grid LES may be sufficiently rapid and reliable to consider its
integration for short-term forecasting of turbulence in the ABL in future studies.

5 Conclusions

We performed a first feasibility study on the use of LES as a real-time prediction tool for
atmospheric boundary-layer turbulence. The focus was on the growth of prediction errors for
a coarse-grid LES due to SGS modelling errors and chaotic divergence of trajectories, and
the resulting trade-off between accuracy and computational cost. To this end, we set up an
idealized testing environment consisting of a fine reference LES, and a series of coarsened
simulations, in which we omit errors caused by state estimation based on observations or
simulation bias. The reference grid contains 128 × 106 grid points, with a wall time that is
approximately ten times shorter than the simulated time when executed on 16 nodes of our
supercomputing system.A series of coarser grids is constructed by repeatedly coarseningwith
a factor of 2 in each direction. The coarsest grid contains only 2.5 ×105 grid cells, and results
in a simulation wall time that is approximately 250 times smaller than the simulated time.

Errors are split into restriction and modelling errors. Moreover, with respect to the mod-
elling errors, two different source terms are identified, related to the subgrid model error and
the chaotic divergence of trajectories. Restriction errors are largest on the coarsest meshes,
but this is partly compensated by modelling errors that are decreasing with mesh coarsening.
This is quite unexpected, and explained by the fact that instantaneous SGS errors behave
strongly non-linearly as a function of resolution, initially increasing with grid coarsening,
but later again decreasing. A second reason is the chaotic divergence of solution trajectories,
which is stronger when smaller scales are present in the solution. Overall errors increase
relatively slowly when coarsening the mesh. While wall time decreases by a factor of 2000
for the coarsest mesh (compared to the finest), errors increase only slowly with factors that
remain mostly below 2. This picture is very interesting when considering coarse-grid LES
for short-term turbulent-flow prediction in the atmospheric boundary layer.

We further elaborated a case that relates to the prediction of turbine hub-height wind
speeds for wind-energy applications, and looked into the prediction of instantaneous, 5-min,
15-min and 30-min averages for different prediction horizons (up to 4000 s). Overall we
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find that errors are lowest for long time averages and low prediction horizons, but there is a
significant number of combinations for which the variance of the prediction error is more than
four times smaller than the variance of the turbine wind speed. This suggests that the use of
coarse-grid LES for short-term turbulent-flow predictions in real time may well be feasible.
Future work will focus on further investigating aspects of state estimation, observation errors,
and modelling bias, as well as the effect of different stability regimes. Next to this, the choice
of the specific aspect ratio of the grid cells Δi

y/Δ
i
x , Δi

z/Δ
i
x is currently chosen following

typical ABL simulation studies. Optimizing these ratios might significantly improve results.
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A Restriction and Interpolation

We provide further details on the interpolation and restriction operators introduced in
Sect. 3.1. First of all, formally, we define ui = [ui1, ui2, ui3] ∈ R

Ni
, with Ni = 3Ni

x N
i
y N

i
z −

Ni
x N

i
y (cf. staggered arrangement of variables discussed in Sect. 3.1). Similarly, u j ∈ R

N j
,

further using the convention that i < j (so that j is the coarser grid). Consequently, for
the interpolation and restriction operators in Eqs. 5 and 6, we have Ii

j ∈ R
Ni×N j

, and

R j
i ∈ R

N j×Ni
.

Since we use a Cartesian mesh, we split the interpolation and restriction operators in three
consecutive one-dimensional operators, so that Ii

j = I ij,z I
i
j,y I

i
j,x , and R j

i = R j
i,z R

j
i,y R

j
i,x .

The matrix I ij,z has dimensions Ni × Nii j with Nii j = 3Ni
x N

i
y N

j
z − Ni

x N
i
y . The dimensions

of I ij,y are Nii j × Ni j j , with Ni j j = 3Ni
x N

j
y N

j
z − Ni

x N
j
y , and the dimensions of I ij,x

correspond to Ni j j × N j . Similar dimensions follow straightforwardly for R j
i,x , R

j
i,y , and

R j
i,z .

The rows of I ij,x , I
i
j,y , I

i
j,z contain one-dimensional interpolation stencils (and similar for

the restriction matrices). Therefore, below, we provide the stencils that we use based on a
simple scalar function φi and φ j along one-dimensional grids ri and r j . The allocation of
the different coefficients in these stencils to elements in the different rows of I ij,x , I

i
j,y , etc.,

is straightforward, and not further detailed for sake of brevity.
For the interpolation in the x- and y-directions, spectral interpolation is used, simply

leading to

φi
k = 1

N j

N j−1∑

m=0

N j−1∑

l=0

exp

(

−2π im
ril − r j

k

L

)

φ
j
l . (20)

whereφi
k andφ

j
l correspond tofine- and coarse-grid values on locations r

i
k and r

j
l respectively.

In practice, we do not implement the interpolation in real space, but instead perform the
operation in Fourier space.

For the interpolation in the z-direction, we use a polynomial interpolation of order p,
where we take p = 4, in analogy with our vertical discretization scheme. First to simplify
notation, we define the operator minc(a, b), which returns a set of the c ∈ N closest points
in set b ∈ R

N to a scalar a ∈ R. This simply gives for the interpolation operator

123



232 P. Bauweraerts, J. Meyers

φi
k =

∑

l∈P

⎛

⎜
⎜
⎝

∏

m∈P
m �=l

r ik − r j
m

r j
l − r j

m

⎞

⎟
⎟
⎠ φ

j
l , with P = min p

(
r ik, r

j
)

, (21)

In analogy, the rows of R j
i,x , R

j
i,y , R

j
i,z , contain the one-dimensional restriction stencils.

For the restriction in x- and y-directions, a spectral cut-off filter is used in combination with
simple injection to the coarse grid, leading to

φ
j
l = 1

N j

N j−1∑

m=0

Ni−1∑

k=0

exp

(

−2π im
r j
k − r il
L

)

φi
k . (22)

For the restriction in the z-direction, we use a combination of a box filter and an injection.
For the box filter we use a width of Δ

j
z , which comes down to s = Δ

j
z /Δ

i
z cells on the fine

grid. It is easily shown that the following relation holds to filter a field φi , which is assumed
to have been filtered with a width Δi

z , to a field φ j with a width Δ
j
z

φ̃i
l = 1

s

s/2−1∑

k=−s/2

φi
l+k+1/2, (23)

where the interpolation of φi
l+k+1/2 happens with the same fourth-order interpolation as is

described above.
For the refinement experiment we use a Gaussian filter where the standard deviation is

chosen as σ 2 = (s2 − 1)/12, and where the factor 1/12 is determined such that the second
moments of the Gaussian and box filter are equal [see Leonard (1975) for a derivation], and
the factor−1 appears due to the successive filtering [see e.g. Pope (2000)], such that choosing
s = 1 leaves the field unaltered. This leads to the following relation

φ̃i
l =

∑∞
k=−∞ exp

(
− 1

2

( k
σ

)2)
φi
l+k

∑∞
k=−∞ exp

(
− 1

2

( k
σ

)2) . (24)

In a further step the field is restricted to the coarser grid. Due to mismatching cell locations
for the u and v velocity components an additional interpolation is needed. For this we again
use the fourth-order polynomial interpolation, which leads to the following expression

φ
j
l =

∑

k∈P

⎛

⎜⎜
⎝

∏

m∈P
m �=k

r j
l − r im
r ik − r im

⎞

⎟⎟
⎠ φ̃i

k, with P = minp

(
r j
l , ri

)
. (25)

B Comparison of Time-AveragedMean Fields

For the sake of completeness, we provide a comparison of time-averaged velocity and tur-
bulent kinetic energy fields obtained on the different grids, which is the standard basis for
comparing LES results (using different grids, models, or codes). In contrast to the error anal-
ysis in the main text, we present long time averages that omit the initial transient that occurs
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a b

Fig. 9 Time-averaged equilibrium streamwise velocity component, Ui
1 (left) and turbulent kinetic energy, E

i

(right) for the different grids. Grid numbers: 0 ( ), 1 ( ), 2 ( ) and 3 ( )

when initializing with a turbulent field that is not in statistical equilibrium on the simula-
tion grid. To this end the simulations on the different grids are spun up until a statistical
steady state is reached. Afterwards, averaging is performed over a period of 8000 s, ensuring
sufficient statistical convergence.

Results are shown in Fig. 9, and overall, it is appreciated that profiles of the mean flow
match closely. Profiles of turbulent kinetic energy show a more pronounced grid dependency
close to the wall. This is quite standard, as the integral length scale decreases proportional
with the distance to the wall, so that less large-scale motions are resolved in this region on
coarser grids.
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