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Abstract A spectral-tensor model of non-neutral, atmospheric-boundary-layer turbulence
is evaluated using Eulerian statistics from single-point measurements of the wind speed and
temperature at heights up to 100 m, assuming constant vertical gradients of mean wind
speed and temperature. The model has been previously described in terms of the dissipation
rate ε, the length scale of energy-containing eddies L, a turbulence anisotropy parame-
ter Γ , the Richardson number Ri , and the normalized rate of destruction of temperature
variance ηθ ≡ εθ/ε. Here, the latter two parameters are collapsed into a single atmospheric
stability parameter z/L using Monin–Obukhov similarity theory, where z is the height above
the Earth’s surface, and L is the Obukhov length corresponding to {Ri, ηθ }. Model outputs
of the one-dimensional velocity spectra, as well as cospectra of the streamwise and/or ver-
tical velocity components, and/or temperature, and cross-spectra for the spatial separation
of all three velocity components and temperature, are compared with measurements. As a
function of the four model parameters, spectra and cospectra are reproduced quite well, but
horizontal temperature fluxes are slightly underestimated in stable conditions. In moderately
unstable stratification, our model reproduces spectra only up to a scale ∼ 1 km. The model
also overestimates coherences for vertical separations, but is less severe in unstable than in
stable cases.

Keywords Atmospheric stability · Atmospheric turbulence · Boundary layer · Spectra ·
Spectral tensor

1 Introduction

Atmospheric turbulence causes fluctuating loads on structures, and has dynamic effects on
flexible structures such as wind turbines, whose proper design, life assessment, and pitch
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and yaw control strategies require accurate predictions of the loads due to the turbulence.
Therefore, an adequate description of the structure of atmospheric turbulence is important
for the calculation of dynamic loads on wind turbines. The spectrum of the force at a point on
a wind turbine due to turbulence depends on the spectrum of the fluctuating velocity, i.e. the
turbulence. In addition, the spectrum of the fluctuating force on different components of the
wind turbine also depends on the cospectrum and cross-spectrum of the velocity components.
The dynamic displacements of the wind turbine are functions of the force spectrum, which
in turn depend on the spectrum and cross-spectrum of the turbulence (Dyrbye and Hansen
1996).

Turbulence spectra and cospectra refer to the one-point autospectra of, for example, a
velocity component, and the spectra of two time series at one point of any two velocity
components, respectively. Turbulence cross-spectra are spectra between two points of time
series of any two velocity components. Furthermore, two-point, cross-spectral properties are
often expressed in terms of the coherence and cross-spectral phases, which are also important
for wind engineering (Davenport 1961).

Spectral-tensor models are often used to model the spectra and cross-spectra (Kristensen
et al. 1989), and can be used to estimate the loads on wind turbines through simulation of
the incoming flow. However, these models must represent the flow structure observed in the
atmospheric boundary layer (ABL) adequately, and provide the required turbulence loading
for reproduction of a realistic dynamic response of wind turbines during load simulations.
Models developed by Kaimal et al. (1972), Veers (1988) (the Sandia method), and Mann
(1994b) are commonly used in the wind-energy community.

The International Electrotechnical Commission (IEC 2005) recommends the use of
the Mann (1994b) model for the estimation of loads on wind turbines through simulation of
the rotor inflow (Mann 1998). The three-dimensional spectral-tensor model ofMann (1994b)
incorporates rapid distortion theory (RDT; Townsend 1976; Pope 2000), with the assump-
tion of uniform mean shear, and consideration of the eddy lifetime. The model is applicable
for homogeneous, neutral, surface-layer turbulence, and requires three input parameters: the
viscous dissipation rate ε, a length scale for the energy-containing eddies L, and a non-
dimensional, eddy-lifetime parameter Γ .

An extension to the Mann model by including buoyancy effects is the model of Chougule
et al. (2017), which, in addition to ε, L, and Γ , contains two extra input parameters: the gra-
dient Richardson number (Ri) representing the local atmospheric stability, and a parameter
proportional to the rate of destruction of temperature variance ηθ . Themodel simulates veloc-
ity and temperature spectra, as well as the associated cospectra for the streamwise velocity
component and vertical temperature fluxes. The original Mann model provides only velocity
spectra and cospectra of the longitudinal and vertical velocity components. The buoyancy
model also produces two-point statistics of the coherence and phase for the temperature field.

The turbulence characteristics described above can all be derived from the spectral ten-
sor, which, since it is not directly observable, must be parametrized based on observations.
However, the atmospheric stability parameter Ri requires observations from two heights,
and the ηθ parameter cannot always be measured due the contamination of the temperature
spectra by noise. Therefore, as it is easier to represent the atmospheric stability in terms
of the Obukhov length L than the gradient Richardson number Ri , we simplify an existing
model of the spectral tensor by replacing Ri and ηθ with L . The simplified model is then
evaluated with an extensive dataset, including atmospheric observations at heights relevant
for a modern wind turbine.

Here we describe the buoyancy-dependent, spectral-tensor model, but with one less buoy-
ancy parameter based on Monin–Obukhov similarity theory (MOST; Wyngaard and Coté
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1972). The model is thus formulated in terms of a reduced set of four parameters. In Sect. 2,
we provide the basic theory of the four-parameter model, Sect. 3 describes the experiments,
the data, and the methodology used for the model validation, followed by the results and
discussion in Sect. 4.

Lack of the temperature-variance parameter ηθ results in the underestimation of the tem-
perature spectrum in the simplified model, which is, however, not important for wind-energy
applications. Moreover, as this parameter is inherently noisy, we exclude the temperature
spectrum from the modelling. However, the error is reduced in the cospectra between the
temperature and the other, less noisy variables, such as the velocity components, which
the model reproduces reasonably well. Therefore, we include the temperature fluxes in our
analysis, so that the model is applicable for general micrometeorological applications.

Our study differs from Chougule et al. (2017) in the following respects:

• Description of the spectral-tensor model for a reduced set of four parameters (from
originally five) using MOST;

• Exclusion of the temperature spectrum in the spectral fitting;
• Validation in terms of spectra and cospectra at heights up to 100 m;
• Validation of the modelled coherence and phase for larger separation distances (≈ 10

times that studied previously);
• Validation from very stable to very unstable stratification; and
• Considering the slope of the inertial subrange of cospectrum between the streamwise

velocity component u and potential temperature θ at heights up to 100 m, including the
variation with height.

2 Theory: Spectral-Tensor Modelling

2.1 Preliminaries

The spectral representation of the three-dimensional fluctuating velocity fieldu′(x) andpoten-
tial temperature (hereafter temperature) θ ′(x), can be given in terms of the Fourier-Stieltjes
integral (Pope 2000)

�′
λ(x) =

{∫
eik·xdZλ(k), λ = 1, 2, 3,

dU
dz

(
g
θ

)−1 ∫
eik·xdZλ(k), λ = 4,

(1)

where �′(x) ≡ {
u′(x), θ ′(x)

}
, x = {x, y, z} is the (longitudinal, lateral, vertical) position

vector in space, dU /dz is the mean wind shear with the mean velocity field considered as
(U, 0, 0), g is the acceleration due to gravity, θ is the mean temperature, and k = (k1, k2, k3)
is the three-dimensional wavenumber vector. TheGreek index λ indicates no summation over
indices, and the integration in (1) is over the entire wavenumber space (Batchelor 1953).

In homogeneous turbulence, the spectral tensor for the velocity field is defined as

Φi j (k) = 1

(2π)3

∫
Ri j (r)e−ik·rdr, (2)

where Ri j (r) is the covariance tensor with separation distance r, and
∫
dr ≡ ∫ ∞

−∞
∫ ∞
−∞∫ ∞

−∞ dr1dr2dr3. The two-point correlations of the Fourier velocity components dZi are related
to the spectral tensor by Wyngaard (2010)
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Φi j (k) =
〈
dZ∗

i (k)dZ j (k)
〉

dk1dk2dk3
, (3)

where 〈 〉 denotes the ensemble average operator, and the superscript ∗ denotes a complex
conjugate.

The indices i, j = {1, 2, 3} denote the velocity components, i.e., {u′
1, u

′
2, u

′
3} =

{u′, v′, w′}, and the space vector {x1, x2, x3} = {x, y, z}. When the (scalar) temperature
is also included, we use the index notation l,m = {1, 2, 3, 4} for the three velocity compo-
nents along with the temperature fluctuations, so the full set Φlm(k) in (3) is a matrix, not a
tensor.

2.2 Model for the Spectral Tensor Including Buoyancy Effects

The homogeneous spectral tensor in (3) is modelled using RDT (Pope 2000), assuming the
evolution from an initial isotropic spectral tensor, and zero initial temperature fluxes. For
the initial velocity and temperature fluctuations, we assume the von Kármán energy spec-
trum and the spectrum proposed by Kaimal and Finnigan (1994) for the isotropic tensor,
respectively. Therefore, the spectral tensor becomes a function of a subset of parameters
(discussed later) defining the initial energy spectra. Rapid distortion theory assumes a mean
lapse rate and uniform shear, which distorts the eddies both spatially and temporally. The
time evolution of the tensor in (3) is replaced1 by a wavenumber evolution through the
wavenumber-dependent, eddy-lifetime parametrization of Mann (1994b). Therefore, the
equilibrium solution is achieved through a set of parameters based on the initial condi-
tions, the RDT equation, and eddy-lifetime parametrization. The physics of the model are
contained in the RDT equations with the initial conditions, which give the initial correlations
between the velocity components, as well as maintaining correlations among the velocity
components and the temperature through the mean uniform shear and lapse rate. This mech-
anism is time-limited by replacing the time variable with the non-dimensional eddy lifetime,
giving a statistical description of a stationary process, whereby turbulence is generated and
turbulent eddies are stretched over a finite extent. One-point observations are input to the
tensor model to determine the model parameters by fitting the one-dimensional model spec-
tra and cospectra to the data through a procedure described in Sect. 3.3. The model is now
described mathematically.

Due to the mean wind shear dU /dz, the third component of the wavenumber vector is
distorted with time and the rate of change of k(t) to give (Pope 2000)

dk3
dt

= −k1
dU

dz
, (4)

with k(0) = (k10, k20, k30) as an initial wavenumber. Therefore, the final wavenumber using
the dimensionless strain time ξ = (dU/dz)t gives

k(ξ) = (k10, k20, k30 − k10ξ). (5)

The equation for the evolution of the Fourier modes dZ(k, t) in (3) is deduced from
momentum and temperature equations according to RDT, and given as2

1 The time evolution of the tensor is part of the model derivation, but the resultant model does not predict
the temporal correlations. The reader can find a discussion on the temporal correlations in de Maré and Mann
(2016).
2 For the paper to be self-contained, information in this section is repeated from Chougule et al. (2017).
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D

Dξ
dZl(k(ξ), ξ) = Mlm(k(ξ), ξ)dZm(k(ξ), ξ), (6)

where l,m = 1, 2, 3, 4, and

Mlm(k(ξ), ξ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
2k21
k2

− 1 − k1k3
k2

0 0 2k1k2
k2

− k2k3
k2

0 0 2k1k3
k2

−
(

k23
k2

− 1

)

0 0 −Ri 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

Here, the Richardson number Ri is defined as (Kaimal and Finnigan 1994)

Ri =
(
g/θ

)
dθ/dz

(dU/dz)2
. (8)

Neglecting the Coriolis force, viscosity, non-linear terms, and molecular diffusivity, (6) con-
stitutes the governing RDT equations for homogeneous turbulent flow with the assumptions
of constant vertical gradients of themean temperature (dθ/dz) andmeanwind speed (dU/dz)
with respect to the vertical z direction (Hanazaki and Hunt 2004; Chougule et al. 2017).

Equation 6 is solved with the initial conditions assuming the state of isotropic turbulence
at k0 = k(0). For the velocity components, the isotropic tensor is given as (Pope 2000)

Φi j (k0) = E(k)

4πk2

(
δi j − ki k j

k2

)
. (9)

We use the form of the energy spectrum E(k) given by von Kármán (1948) as

E(k) = αε
2
3L 5

3
(kL)4

(1 + (kL)2)
17
6

, (10)

where ε is the rate of viscous dissipation of specific turbulent kinetic energy (TKE), L is a
length scale, and α ≈ 1.7 is the spectral Kolmogorov constant.

For temperature, the isotropic three-dimensional spectrum is given as

Φθθ (k0) = S(k)

4πk2
, (11)

where S(k) is the potential energy spectrum containing the form of the inertial sub-
range (Kaimal and Finnigan 1994) as

S(k) = β1ε
−1/3εθL

5
3

(kL)2

(1 + (kL)2)
11
6

, (12)

where εθ is the dissipation rate for half the temperature variance, and β1 = 0.8 is a universal
constant (Kaimal et al. 1972). From (1), (11), and (12),

Φ44(k0) = S′(k)
4πk2

, (13)

where

S′(k) = βηθ

1 + (kL)2

(kL)2
E(k), (14)
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β = β1/α, and

ηθ = εθ

ε

[
g

θ

(
dU

dz

)−1
]2

. (15)

From (6) and the definitions of E(k) and S′(k), the anisotropic (where ξ �= 0) tensor
Φ(k, ξ) can be expressed as

Φ(k, ξ) ≡ Φ(k, αε
2
3 ,L, ξ, Ri, ηθ ). (16)

The spectral tensor in (16) is non-stationary (time dependent via ξ ), and the stretching of
eddies due to shear for an infinitely long time is unrealistic, since stretching must break the
eddies at some point, with eddies stretching or compressing depending on their orientation
in the plane of uniform shear. To make the spectral tensor stationary, and to account for the
eddy size, the general concept of a wavenumber-dependent eddy lifetime fromMann (1994a)
is parametrized as

τ(k) = Γ

(
dU

dz

)−1

(kL)−2/3
[
2F1

(
1

3
,
17

6
; 4
3
;−(kL)−2

)]−1/2

, (17)

where Γ is a parameter to be determined, and 2F1 is the ‘ordinary’ or ‘Gaussian’ hyperge-
ometric function. The spectral tensor in (16) is made stationary by replacing t in ξ with the
wavenumber-dependent eddy lifetime τ(k) given in (17), so ξ → Γ in the arguments of Φ,

and the anisotropic spectral tensor Φ can be expressed as Φ(k, αε
2
3 ,L, Γ, Ri, ηθ ). Further,

using (10)–(14), Φ can also be given as

�(5) = αε
2
3L 11

3 Φ(kL, 1, 1, Γ, Ri, ηθ ), (18)

where the spectral tensor with a five-parameter input is denoted by �(5).

2.3 Reduction of Model Stability Parameters from Two to One

For the parameters Ri and ηθ in (18), we use forms inferred from MOST (Obukhov 1946,
1971; Businger and Yaglom 1971; Foken 2006) to reduce the model parameter set from five
to four parameters, i.e. by collapsing {Ri , ηθ} to a single stability parameter z/L . We note
that this approach, strictly speaking, is only valid in the surface layer (with constant vertical
fluxes), the extent of which depends on the ABL depth (which in turn can depend upon
surface-layer stability). The Obukhov length L is defined as (Kaimal and Finnigan 1994)

L = −u�
3

κ
(
g/θ0

) 〈
w

′
θ

′ 〉
0

, (19)

where u� is the friction velocity, κ = 0.4 is the von Kármán constant, θ0 is the mean surface-
layer temperature, and

〈
w′θ ′〉

0 is the vertical flux of potential temperature in the surface
layer.

Formulated in terms of L , empirically determinedMOST relationships for Ri and the flux
Richardson number Ri f are given by Kaimal and Finnigan (1994) in terms of z/L as

Ri(z/L) =
{
z/L , −2 ≤ z/L ≤ 0,
(z/L)(1 + 5z/L)−1, 0 ≤ z/L ≤ 1

(20)

and

Ri f (z/L) =
{

(z/L)(1 + 16|z/L|)1/4, −2 ≤ z/L ≤ 0,
(z/L)(1 + 5z/L)−1, 0 ≤ z/L ≤ 1.

(21)
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Assuming local equilibrium between energy production and dissipation, while neglecting all
transport terms in the stationary equations of TKE and temperature variance, ηθ in (15) can
be expressed in terms of Ri and Ri f by

ε = − 〈
u′w′〉 (dU

dz

)
+ g

θ

〈
w′θ ′〉 , (22a)

and

εθ = − 〈
w′θ ′〉 (dθ

dz

)
, (22b)

along with the definition (Eq. 8), and

Ri f =
(
g/θ

) 〈
w′θ ′〉

〈u′w′〉 (dU/dz)
, (23)

leading to

ηθ = Ri

Ri−1
f − 1

. (24)

From (20), (21), and (24), ηθ can also be expressed in terms of MOST as

ηθ (z/L) =
{ z/L

(z/L)−1(1+16|z/L|)−1/4−1
, −2 ≤ z/L ≤ 0,

[(z/L)(1+5z/L)−1]2
1−(z/L)(1+5z/L)−1 , 0 ≤ z/L ≤ 1.

(25)

Using (20) and (25), the spectral tensor in (18) simplifies to

�(4) = αε
2
3L 11

3 Φ(kL, 1, 1, Γ, z/L), (26)

where �(4) is the spectral tensor with four input parameters. Therefore, the spectral tensor
in (26), including the effect of uniform shear and buoyancy (through a uniform lapse rate),
contains four parameters to be determined:

– αε
2
3 , where ε is the dissipation rate of TKE, and α is the spectral Kolmogorov constant;

– L, which represents the size of the energy-containing eddies;
– Γ , a non-dimensional eddy-lifetime parameter;
– z/L , characterizing atmospheric stability.

2.4 Spectra Derived from the Model Spectral Tensor

Following Mann (1994b), the relationship between the components of the spectral tensor
matrix and the cross-spectra χ is

χlm(k1,�y,�z) =
∫

Φlm(k)ei(k2�y+k3�z)dk⊥, (27)

or, from (26),

χlm(k1,�y,�z;αε
2
3 ,L, Γ, z/L) =

αε
2
3L 5

3

∫
Φlm(kL, 1, 1, Γ, z/L)ei(k2�y+k3�z)d(k⊥L2), (28)

where
∫
dk⊥ ≡ ∫ ∞

−∞
∫ ∞
−∞ dk2dk3, and �y and �z are transverse and vertical separations,

respectively. From (26) and (28), χlm also becomes a function [(≡ χlm(k1,�y,�z;αε
2
3 ,

L, Γ, z/L)] of the four model parameters.
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Fig. 1 The�(4) model velocity spectra and cospectra for uw, uθ , andwθ shown for stable (lines, z/L = 0.15)

and unstable (dashed lines, z/L = −0.03) cases,with {αε
2
3 ,L, Γ } = {0.05m4/3 s−2, 10m, 3.2}. Dotted lines

are the Mann-model velocity spectra and uw cospectrum for the same parameter values of αε
2
3 ,L and Γ

For zero separation distance (�y = �z = 0), the model cross-spectra become one-
dimensional spectra and cospectra,

Flm(k1) = χlm(k1,�y = 0,�z = 0;αε
2
3 ,L, Γ, z/L). (29)

Examples of �(4) model spectra and cospectra are shown in Fig. 1 for both stable (z/L =
0.15) and unstable (z/L = −0.03) stratification, with the values of αε

2
3 ,L, and Γ as 0.05,

10 and 3.2, respectively.
Figure 1 also shows the Mann-model velocity spectra and uw cospectrum for the same

values of {αε
2
3 ,L, Γ }, whose spectra falls between the �(4) model spectra for stable and

unstable stratification, while the Mann model does not account for the temperature fluxes.
The RDT relations in Eq. 6 are solved numerically using a 4th-order, Runge–Kutta adaptive
timestep (Press et al. 2007). The components of the spectral tensor are available in closed
form in Hanazaki and Hunt (2004) for w and temperature, and recently in Segalini and
Arnqvist (2015) for all three velocity components and temperature. We use our numerical
solution, which does not produce non-physical kinks in the spectra (Chougule et al. 2017).
Once the individual RDT equations are solved, the spectral tensor is formed using (3), and
the cross-spectra in (28) are integrated numerically, with the one-dimensional spectra given
at �y = �z = 0 according to (29).

An increase inαε2/3 shifts the velocity spectra and cospectra |uw| , |uθ |, and |wθ | upwards
along the ordinate. An increase in L results in the shifting of u-, v- and w-spectra and
|uw|, |uθ |, and |wθ | cospectra to the left along the abscissa (i.e., L ∝ k−1

1 ) and upwards
along the ordinate. With an increase in Γ , the spectral peaks of u-, v-spectra and |uw|,
|uθ | and |wθ | cospectra shift upwards, but downwards for the w-spectrum. The length scale
(corresponding to the spectral peak) of u is greater than that of v, which again is greater than
that of w, and higher values of Γ imply a larger scale separation between the three velocity
components. For stable cases, an increase in z/L (while holding theother parameters constant)
results in the shifting of the peaks of the velocity spectra to smaller scales, thereby reducing
the peak spectral amplitudes (including the amplitude of the peak of the uw cospectrum),
with the u-spectrummore sensitive than the v- andw-spectra. The peak amplitudes of the uθ

cospectrum increase, with the amplitude of (negative)wθ increasingwith stability (z/L > 0).
For unstable cases, an increase in the magnitude of z/L has a similar effect on the uθ and
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Fig. 2 The normalized �(4) model variance and covariances
〈
�′
l�

′
m

〉
N

=
〈
�′
l�

′
m

〉
/

√〈
�′
l�

′
l

〉
iso

〈
�′
m�′

m

〉
iso

(no summation), for stable stratification as a function of Γ and z/L , with Γ = 0, 1, 2, 2.5, 3, 3.5, 4, 4.5, and
5, in the direction of the arrow

wθ cospectra as that for the stable case, whereas the peak magnitudes of velocity spectra
increase; the peak of the uw cospectrum shifts downwards to a lower wavenumber.

The model velocity and temperature variances, and uw, uθ,wθ covariances can be given
as 〈

�′
l�

′
m

〉
= αε

2
3L 2

3

∫ ∞

−∞
χlm(k1L, 0, 0; 1, 1, Γ, z/L)d(k1L). (30)

In isotropic turbulence, all velocity variances are equal (≈ 0.688αε
2
3L 2

3 ; Mann 1994b),
and covariances are zero. In the buoyant RDT model, the initial temperature fluxes are zero,

and the initial temperature variance can be given as
〈
θ2

〉 ≈ 0.6(εθ /ε)αε
2
3L 2

3 , which can be
obtained from the initial one-dimensional temperature spectrum using (11), (12) and (27).

Figure 2 shows the influence of stability in terms of the ratio
〈
�′
l�

′
m

〉
/

√〈�′
l�′

l

〉
iso

〈�′
m�′

m

〉
iso

(no summation) as a function of z/L for different Γ values in the stable regime. For highly

123



380 A. Chougule et al.

unstable stratification, the model has deficiencies at low wavenumbers, which limits the
prediction of the longitudinal velocity component spectra and associated cospectra; therefore,
only stable conditions are shown in Fig. 2. The (co-) variances are shown in the z/L range
0−0.25, where the curves become almost invariant at z/L ≈ 0.25 and beyond. Previous
studies (Mann 1994a; Sathe et al. 2012; Chougule et al. 2015) have shown the value of Γ in
the neutral ABL to be close to 3, with Γ in the range 0−5 here, and Γ = 0 corresponding
to isotropic turbulence. The model initially assumes isotropic turbulence, where Γ = 0,
leading to σ 2

u = σ 2
v = σ 2

w and 〈uw〉 = 0. For Γ > 0, the turbulence is anisotropic, i.e.,
σ 2
u > σ 2

v > σ 2
w and 〈uw〉 < 0, so Γ describes the anisotropic nature of turbulence.

The cross-spectral properties, the squared coherence and cross-spectral phase spectrum,
are defined as

cohlm
(
k1,�y,�z;L, Γ , z/L

) = |χlm
(
k1,�y,�z

) |2
Fll (k1a) Fmm (k1b)

(no summation), (31)

ϕlm
(
k1,�y,�z;L, Γ , z/L

) = arg
[
χlm

(
k1,�y,�z

)]
, (32)

respectively, where for non-zero vertical separations, k1 = 4π f/(Ua +Ub). The average of
the parameters between two points (e.g., a and b) are used as inputs to estimate the model
coherence and phase. If we assume the validity of Taylor’s frozen turbulence hypothesis,
the time series measured at frequency f can then be related to spatial fluctuations through
k1 = 2π f/U . The model coherence as a function of L, Γ , and z/L is shown in Fig. 3,
where the model phase increases with Γ , whereas the influence of L and z/L on the model
phase is insignificant. The results from modelling and observations in Chougule et al. (2015)
show that the coherence (including phase) is independent from the viscous dissipation rate
ε, since ε dictates the intensity of the turbulence, provided everything else is left unchanged;

Fig. 3 The effect of input parameter variation on theoretical coherences: row a L, row b Γ , and row c
z/L (keeping the other two parameters constant in each graph with {L, Γ, z/L} = {40m, 3.0,− 0.03}, and
�y0 = �z0 = 20 m)
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the numerator and denominator in the definition of the coherence are each proportional to
ε4/3, while the coherence is invariant with respect to a scaling of ε.

3 Model Validation

A simple procedure for extracting the parameters of the Mann spectral-tensor model is
described in Mann (1994b), including reasons to not follow the method. In our case, in
addition to the Γ parameter, the (normalized) variances are a function of the parameter
z/L (Fig. 2) due to the inclusion of buoyancy. Also, in the diabatic ABL, the length scaleL is
affected by the atmospheric stability in terms of the Obukhov length L (Peña and Hahmann
2012; Sathe et al. 2012), so that determining Γ and L using the same method is not straight-
forward. Therefore, and because of the reasons described in Mann (1994b), we follow the
approach of the χ2-fit given in Sect. 3.3. We validate the model by following the strategy
similar to Mann (1994b) by first determining the four parameters αε2/3,L, Γ , and z/L , by
feeding the tensor with the observed velocity autospectra, and uw, uθ and wθ cospectra.
Secondly, we predict cross-spectral coherences and phases of velocity and temperature, and
then compare the model predicted coherences and phases (i.e. two-point cross-spectra) with
the measurements.

The model validation is performed using measurements recorded at the characteristic
wind-turbine hub height, and measurements recorded close to the ground (z ≈ 2−8m)
within the surface layer during the Horizontal Array Turbulence Study field program (HATS;
Horst et al. 2004). The data recorded at hub height (≈ 100 m) are from the National Centre
for Wind Turbines site at Høvsøre on the west coast of Denmark.

The calculations are performed for diabatic conditions. Each 30-min time series is classi-
fied into different atmospheric stability classes based on the range of the Obukhov length L
[c.f. Table 1; following Gryning et al. (2007)].

3.1 Horizontal Array Turbulence Study

TheHATSexperimentwas carried out over a relatively flat, homogeneous terrain of unplanted
farmland near Kettleman City, California in September 2000. Two horizontal (s and d) arrays
of identical Campbell Scientific three-component sonic anemometers, each measuring tem-
perature and the three velocity components at a sampling rate of 20 Hz, were placed at
different heights above the ground. The horizontal s-array consists of five sonic anemometers
placed at the height zs above the ground, whereas the d-array consists of nine anemometers
mounted at the height zd parallel to the s-array. The sonic anemometers in the s- and d-array

Table 1 Classification of ABL
stability

Atmospheric stability Obukhov length (m)

Near-neutral stable (NNS) 200 ≤ L ≤ 500

Stable (S) 50 ≤ L ≤ 200

Very stable (VS) 10 ≤ L ≤ 50

Near-neutral unstable (NNU) − 500 ≤ L ≤ − 200

Unstable (U) − 200 ≤ L ≤ − 100

Very unstable (VU) − 100 ≤ L ≤ − 50
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Table 2 Single 30-min time
series used from the HATS
dataset based on the measured
atmospheric stability z/L and
wind direction (WD) during
Pacific daylight time (PDT)

Stability z/L z (m) U (m s−1) PDT WD (◦)

NNS 0.014 4 6.0 2110 14 Sep 258

S 0.070 4 3.5 0100 14 Sep 259

VS 0.600 4 2.5 2200 13 Sep 257

NNU − 0.03 6 3.7 1755 06 Sep 250

U − 0.08 5 3.8 0835 26 Sep 270

VU − 0.09 8 4.5 0820 14 Sep 258

are horizontally separated by �ys and �yd , respectively. In eddy-covariance systems, these
measurements can be used to calculate the momentum and temperature fluxes.

The two lines of anemometers are oriented perpendicular to the prevailing wind direction.
For flow not exactly normal to the transverse array, the cross-spectra are rotated into the
mean wind direction. However, to avoid any transverse effects, flows almost normal (within
±13◦) to the plane of the sonic s- and d-arrays have been selected. The data have also been
selected for their particular stability conditions and heights (up to 8 m; c.f. Table 2). For the
cross-spectra analyses, horizontal separations in the d-arrays are used (up to 4×�yd ). More
information about the HATS experiment can be found in Sullivan et al. (2003) and Horst
et al. (2004).

3.2 Høvsøre Data

For the validation at higher altitudes where the surface-layer assumptions leading to a reduc-
tion in spectral-tensor parameters may be violated, data are taken from heights of 10, 20, 40,
60, 80, and 100 m at the 116.5-m tall Høvsøre mast equipped with Metek sonic anemometers
(Metek USA1 F2901A) measuring velocity and temperature at 20 Hz. The mast is located
near the western coast of Denmark, 1.5 km inland from the North Sea. Filtering of the flow
allows only the wind-direction sector 60◦−120◦ to avoid flow disturbance from the five wind
turbines situated over a distance of 1.4 km from themast to the northern side. To the east, a flat
agricultural landscape extends up to 15 kmbefore an extensive forested area (≈ 12×12 km2),
which may affect the turbulence at larger heights (Chougule et al. 2015).

The analyses are performed for mean wind-speed intervals of 8–9 m s−1 at the 80-m
height based on previous experience with the Høvsøre data giving similar velocity spectra
and cross-spectra results from the other wind speeds (Chougule et al. 2015). Each time series
is classified into different stability classes based on the L values measured at 10 m with
reference to Table 1.

For the wind-speed interval 8–9 m s−1, we obtain n 30-min time series for each stability
condition given in Table 3. More details about the location and instrumentation can be found
in Peña et al. (2016). Statistical analyses are carried out using seven years of data recorded
from 2004 to 2010.

3.3 Method

We estimate velocity autospectra and the uw cospectrum from 30-min time series using

Fi j ( f, z) ≡
〈
ûi ( f )û

∗
j ( f )

〉
, (33)
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Table 3 The Høvsøre spectra are
averaged over n 30-min time
series for each stability class

Stability n

NNS 298

S 359

VS 285

NNU 71

U 106

VU 60

along with the uθ and wθ cospectra calculated as

Fiθ ( f, z) ≡
〈
ûi ( f )θ̂

∗( f )
〉
, (34)

where ûi ( f ) and θ̂ ( f ) are the complex-valued Fourier transform of the i th velocity compo-
nent and potential temperature, respectively, measured at the height z.

We select segments of 30-min time series from the Høvsøre dataset according to L (mea-
sured at 10 m above ground level). Between the wind-direction sector 60◦−120◦, we obtain
n number of 30-min segments for each stability class. Spectra and cospectra are estimated
for each n ensemble of 30-min duration, where spectra are the average of the absolute square
of the Fourier transform over all n ensembles, whereas cospectra (or, cross-spectra) are the
ensemble average of the Fourier amplitude of the first time series (at height z1) times the
complex conjugate of the second (at height z2).

Single 30-min time series in the HATS dataset are based on the data availability, such that
the wind direction should be in the vicinity normal to the plane of the s- and d-array sensors.
Furthermore, the five-parameter model was validated with the HATS data in Chougule et al.
(2017), where the spectra were initially estimated from time series at each sonic anemometer
in both the arrays, and averaged over the sonic anemometers in each respective (s or d) row.
It was noted that there was no significant difference in the model parameter values obtained
from single sonic anemometers and those obtained from fitting (spatially) averaged spectra.
Because of the assumptions of homogeneity and stationarity, the spectral-tensor model is
valid for an ensemble-averaged spectrum.

The relative standard deviation of the spectral estimate is discussed in Mann (1994a),
where, for the Høvsøre data here, the number of time series is sufficiently long for the largest
relative standard deviation to be 60−1/2 = 13% for the very unstable case, whereas the
smallest is 359−1/2 = 5% for the stable case. Because of the limited number of n realiza-
tions, there is uncertainty in the estimated (cross-) spectra and, hence, in the corresponding
coherences and phases. While Kristensen and Kirkegaard (1986) showed that the coherence
is systematically overestimated, it is insignificant for the n values here. Spectra are not scaled
(or normalized) as we do not compare HATS data with Høvsøre data, but validate the model
both close to the ground and at greater heights. The Høvsøre data are analyzed for the wind-
speed range 8–9 m s−1, whereas each single 30-min HATS time series is analyzed for a given
z/L . Therefore, the analyses are not based on the wind-speed aggregation, but z/L . Also,
as the model does not have an inherent wind-speed parameter, analyses based on the wind
speed are not intended.

To determine the four model parameters αε
2
3 ,L, Γ , and z/L , we use an automatic pro-

cedure of χ2-fitting following Mann (1994b), where the model velocity spectra and uw, uθ ,
and wθ cospectra are fitted simultaneously with those measured using Taylor’s hypothe-
sis (k1 = 2π f/U ). The χ2-fit equation is
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χ2(αε2/3,L, Γ, z/L) =
3∑

l=1

1

[k1Fll(k1)]M

N∑
n=1

[
kn Fll,T (kn) − kn Fll(kn)

]2

+ 1

| [k1F13(k1)]M |
N∑

n=1

[
kn F13,T (kn) − kn F13(kn)

]2

+ 1

| [k1F14(k1)]M |
N∑

n=1

[
kn F14,T (kn) − kn F14(kn)

]2

+ 1

| [k1F34(k1)]M |
N∑

n=1

[
kn F34,T (kn) − kn F34(kn)

]2
, (35)

where N is the number of logarithmically spaced wavenumbers in the estimated spectra, sub-
script T refers to the theoretical spectra and cospectra F defined by ( Eq. 29), and [k1F(k1)]M
is the corresponding maximum value in the measured spectra and cospectra. The χ2-fit min-
imizes the sum of squared differences between the theoretical and the estimated spectra and
cospectra as given in (35), and thereby defines the optimal input parameter set. Due to the
scaling in (1), the model kinematic heat fluxes become

Fiθ (k1) =
[
g

θ

(
dU

dz

)−1
]−1

Fi4(k1) (36)

for i = {1, 3}.

4 Results and Discussion

4.1 Spectra: Quality of Fitting and Resulting Model Parameters

A comparison of the model spectra and cospectra with the HATS data (c.f. Table 2) is shown
in Figs. 4 and 5 for stable and unstable stratification, respectively. The model results are
fitted to the data using the χ2-fit equation given in (35) for velocity spectra and uw, uθ,wθ

cospectra to obtain the four model parameters given in Table 4, along with the five parameter
values determined from fitting the�(5) model defined by (18). The results from the fits based
on the Høvsøre data at 100 m are shown in Figs. 6 and 7, respectively, for the stable and
unstable ABL, with the parameters obtained at each height from the fits shown in Fig. 8a–d.
Figure 8 also shows a variation of the parameters obtained from the �(5) model fits [see the
empty symbols in (a)–(c) and (e)–(f)].

Fits toHATSdata demonstrate no significant difference between the�(4) and�(5) models,
with the exception of the uθ cospectrum, where F1θ (k1) is systematically underestimated
when using the �(4) model for the HATS (and Høvsøre) data for the stable ABL (the near-
neutral stable, stable, and very stable cases). The model spectra and cospectra from the
�(5) model fits are shown as dashed lines in Figs. 4, 5, 6 and 7. For the HATS stable and
very stable cases, as well as Høvsøre stable and near-neutral stable cases, the magnitudes
of the �(4)-modelled u-spectra are slightly larger, and the w-spectra slightly smaller (see
Figs. 4, 6), compared with the five-parameter formulation �(5). The reason could be that the
Γ parameters are larger using the four-parameter method (see Fig. 8c), resulting in larger
separations between the spectral peaks of F11 and F33, which is consistent with the theoretical
results presented in Fig. 2, where the u-variance increases and w-variance decreases with
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(a)

(b)

(c)

Fig. 4 Horizontal Array Turbulence Study stable: example of�(4) model spectra and cospectra (solid smooth
lines) fitted with observations (ragged lines) at z = 4 m, for the stability classes a near-neutral stable with
z/L = 0.014, U ≈ 6m s−1; b stable with z/L = 0.07,U = 3.5 m s−1; and c very stable with z/L =
0.6,U ≈ 2.5 m s−1. Dashed lines are the �(5) model fits
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(a)

(b)

(c)

Fig. 5 Horizontal Array Turbulence Study unstable: model spectra and cospectra fitted with observations at:
z = 6 m, z/L = −0.03,U ≈ 3.7 m s−1 [near-neutral unstable, (a)]; z = 5 m, z/L = −0.08,U = 3.8 m s−1

[unstable, (b)]; and z = 8 m, z/L = −0.09, U ≈ 4.5m s−1 [very unstable, (c)]. The notation follows Fig. 4
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Table 4 Four �(4) spectral-tensor parameters obtained from χ2-fits of HATS spectra in Figs. 4 (stable) and
5 (unstable) with five �(5) spectral-tensor values shown in brackets ‘[ ]’. The z/L parameter from the �(4)

model fit is used to calculate Ri(z/L) and ηθ (z/L) using (20) and (25)

Stability �(4) and �(5) model parameters

αε2/3 (m4/3 s−2) L (m) Γ z/L Ri(z/L) [Ri] ηθ (z/L) [ηθ ]

NNS 0.20 [0.20] 4.3 [4.2] 4.0 [3.9] 0.007 0.007 [0.02] 5 × 10−5 [0.03]

S 0.07 [0.07] 4.7 [4.8] 4.4 [4.2] 0.030 0.026 [0.08] 7 × 10−4 [0.12]

VS 0.04 [0.04] 1.5 [1.5] 4.0 [3.3] 0.150 0.086 [0.17] 8 × 10−3 [0.20]

NNU 0.05 [0.05] 5.7 [5.7] 3.8 [3.8] − 0.02 − 0.02 [− 0.02] 4 × 10−4 [0.005]

U 0.08 [0.08] 3.4 [3.4] 3.1 [3.1] − 0.04 − 0.04 [− 0.04] 2 × 10−3 [0.003]

VU 0.05 [0.05] 6.2 [6.2] 3.0 [3.0] − 0.05 − 0.05 [− 0.05] 3 × 10−3 [0.005]

increasing Γ . However, the increased Γ resulting from the four-parameter method does not
cause significant differences in the v-spectra and uw cospectra. We also note from Fig. 2
that, in the range of higher Γ and z/L values, 〈vv〉 and 〈uw〉 become insensitive to Γ . The
dependence of �(4) model-predicted 〈uθ〉 increasing with Γ (shown in Fig. 2) appears to
contradict the fits shown in Figs. 4, 6, where uθ cospectra are underestimated, yet have larger
Γ than those resulting from the �(5) fits (c.f. Table 4 and Fig. 8c). This can again be due
to the fact that the RDT can deviate from MOST, where the ηθ values (as a function of
effective z/L obtained from the �(4) fit) are much smaller than those from the �(5) model
fit (see Fig. 8f) for stable regimes. This is also consistent with the effective Ri fit to spectra
being much smaller in stable conditions for the four-parameter model than the five-parameter
model (Fig. 8e). The RDTmodelling of the unstable ABL through the four-parameter MOST
application matches well with the five-parameter method, both in terms of the spectral fits
(Figs. 5 and 7) as well as parameter values (Table 4; Fig. 8a–c, e). As noted in Chougule
et al. (2017), the buoyancy-affected, spectral-tensor model shows limitations in predicting
spectra at lower frequencies for increasingly unstable conditions for both the original and
new four-parameter approach.

The difference between the�(5) and�(4) model performance for theHøvsøre data appears
related to the diminished applicability of MOST at heights above the surface layer, which
is somewhat supported by the results presented in Fig. 8e, where differences between the
two parameter sets seem to increase for heights above the surface layer—i.e. at altitudes
exceeding roughly 40m (Kaimal and Finnigan 1994). For observationswell inside the surface
layer, it is also interesting to observe that, even in this regime, differences persist between
the investigated model parameter sets. The rough compatibility of MOST with the present
model has consequences, particularly for the fitting of Γ , Ri and ηθ , whereas the fit-derived
values of ε and the turbulence length scale L are not significantly affected. Typically, the
�(4) fit in stable ABL results in increased Γ values compared with the �(5) fit. The last two
parameters in the �(5) model, Ri and ηθ , can also be compared with the MOST estimates as
a function of z/L obtained from the �(4) spectral fits using (20) and (25), respectively. The
Ri and ηθ values obtained as a function of z/L from MOST (shown by the filled symbols)
are lower, with ηθ values smaller by a factor of 10 (see Fig. 8e and f).

The parametrized Ri (z/L) and ηθ (z/L) are governed (simultaneously) by the MOST-
derived expressions Eqs. 20 and 25, and the results confirm that ηθ is not as sensitive as
Ri is to z/L . However, in the original spectral-tensor model, Ri and ηθ are unconnected to
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(a)

(b)

(c)

Fig. 6 Høvsøre stable: model spectra and cospectra (smooth lines) fitted with observations (ragged lines) at
z = 100 m for a near-neutral stable; b stable; c very stable cases, and the wind-speed interval 8–9 m s−1.
Dashed lines are the �(5) model fits
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(a)

(b)

(c)

Fig. 7 Høvsøre unstable: model spectra and cospectra fitted with observations at z = 100m,U = 8−9m s−1

for: near-neutral unstable (a); unstable (b); and very unstable (c) cases. For notation, see Fig. 6
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(a) (b) (c)

(f)(e)(d)

Fig. 8 Height profiles of the four �(4) model parameters (filled symbols) obtained from χ2-fits at Høvsøre:
a αε2/3; bL; c Γ ; and d z/L . Open/hollow symbols are model parameters obtained from the �(5) model fits.
The z/L value from the �(4) model fit is used to calculate Ri(z/L) and ηθ (z/L) using (20) and (25), which
are compared in (e) and (f), respectively, to Ri and ηθ parameters obtained from the �(5) model fits

each other in the same way as that given by MOST, and one can also infer from the figure
that for the four-parameter-model fits for stable conditions, larger Γ values are found, which
compensate for the smaller Ri values compared with the five-parameter results.

4.1.1 On the Power-Law Behaviour of the Inertial Range of uθ

As indicated in earlier studies (Kaimal et al. 1972; Wyngaard and Coté 1972; Chougule
et al. 2017), we do not find F1θ to follow a power-law behaviour, i.e. the spectral ‘slope’
(in logarithmic coordinates) of uθ is not constant. An averaged exponent of − 5/2 was
noted in Kaimal et al. (1972) for stable cases, while Wyngaard and Coté (1972) predicted an
exponent of − 3 for the uθ cospectrum, whereas values from their data fall closer to − 7/3
at a 22.6-m height. Chougule et al. (2017) also predicted an inertial-range exponent of − 3
for the uθ cospectrum under both stable and unstable stratification. Neither the model nor
the observations show a clear power-law behaviour, and the derived spectral slopes depend
on the wavenumber interval chosen for the fit as demonstrated in Fig. 9.

Measurements from near-neutral stable and stable cases at Høvsøre show a trend with
height in the inertial-range behaviour of Fuθ . Surprisingly, the model (based on the χ2-fit
using Eq. 35) shows a similar trend as shown in Fig. 9, where k1Fuθ exponents from the
model and data are shown for the stable case. The k1Fuθ exponent increases with height,
with values of − 8/3 at 10 and 20 m, − 7/3 at 40 and 60 m, and − 2 at 80 and 100 m. The
model uθ spectral slopes from the fits for the very stable case show similar values. However,
for the very stable case, the data do not show the same slopes because of the noise in the
temperature spectra, which significantly contaminates Fuθ in the inertial subrange.
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Fig. 9 The uθ cospectrum as a function of height in the stable ABL at Høvsøre with inferred power-law
exponents of the �(4) model cospectrum (smooth curves). Straight lines indicate the estimated power-law
behaviour

4.2 Cross-Spectra: Evaluation of Model Predictions

The four parameters αε2/3,L, Γ and z/L from the χ2-fits (Eq. 35) are used as input to cal-
culate the cross-spectral properties of the coherence and phase spectra using (31) and (32),
respectively. The model predictions of coherences are compared with the HATS data for sta-
ble and very unstable cases in Figs. 10 and 11, respectively. The�(4) model predicts identical
coherences as the �(5) model, except that the predicted stably stratified temperature coher-
ence for �(4) is overestimated because ηθ , which is responsible for maintaining the initial
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Fig. 10 Comparison of coherences between model predictions (smooth lines) and HATS data (ragged lines)
for the stable (S) case for separation distances a �y0 = 0; b �y0 = 4.34; c �y0 = 8.68 m, with a vertical
separation distance of �z0 = 4 m. Dashed lines are the coherence predictions of the �(5) model

Fig. 11 Modelled coherences compared with HATS data for the very unstable (VU) case for separation
distances a �y0 = 0; b �y0 = 4.34; c �y0 = 8.68 m, with a vertical separation distance of �z0 = 4 m. See
Fig. 10 for notation

temperature variance, is much smaller (c.f. Fig. 8f), giving a higher coherence predominantly
at lower wavenumbers. The same can be observed from the coherence comparisons for the
Høvsøre data shown in Fig. 12a.
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Fig. 12 Comparison of model coherence (smooth lines) with Høvsøre data (ragged lines) for a stable and
b near-neutral unstable cases with a separation distance �z0 = 40 m. Dashed lines are the �(5) model
predictions

Fig. 13 Effects of atmospheric stability on coherences. Ragged lines are the Høvsøre data, and smooth lines
are the �(4) model predictions

Fig. 14 Comparison of �(4) model phases (thin solid lines) with HATS data (thick solid lines) for a stable
and b very unstable cases with the separation distance �z0 = 4 m. Dashed lines are the phase predictions
from �(5) model fits

We note from theHATS results (Figs. 10, 11) that themodel overestimates coherencemore
significantly in stable than in unstable conditions, which, for the same vertical separation
distance of 4 m, decreases with the increase in horizontal separation. Moreover, the �(4)
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Fig. 15 Modelled cross-spectral phases (smooth lines) comparedwith Høvsøre data (ragged lines) for a stable
and b near-neutral unstable cases with the separation distance �z0 = 40 m. Dashed lines are the �(5) model
predictions

model gives similar predictions to those of the�(5) model, although the number of parameters
is reduced from five to four.

The effects of atmospheric stability on the coherence can be seen from the Høvsøre data
in Fig. 12, where the coherences are higher in the unstable ABL than those in the stable
ABL (Chougule et al. 2015). This is also consistent with the theoretical predictions shown
in Fig. 3, whereby the �(4) model predicts the buoyancy effects on coherences, as shown
in Fig. 12. Figure 3 also shows that the coherences are affected towards high wavenumbers,
which is also observed in the Høvsøre data, and more so for the w-coherence. These effects
would be clear when the coherences from the data, and the �(4) model predictions for the
stable and near-neutral unstable cases are presented together, as shown in Fig 13. For the
HATS data, however, the stability effects are not predominant, since the measurements are
close to the ground, where the eddies have smaller length scales, and are not as affected by
buoyancy.

The phases in the modelled cross-spectra are compared with the HATS and Høvsøre
data for the non-neutral ABL in Figs. 14 and 15, respectively. For smoother phases in the
HATS data, however, we average the cross-spectra calculated from the data over the five
sonic anemometers located directly over each other in the s- and d-arrays. The modelling
based on the four-parameter input gives similar velocity phases as compared with those using
the spectral tensor with five parameters, with the exception of the Høvsøre stable ABL (see
Fig. 15a). The temperature phases are smaller in stable cases, however, due to the same reason
as discussed previously where the temperature coherences are larger. As noted by Chougule
et al. (2012), the w-phase may become zero, which is also predicted by the model as seen in
Fig. 15a. We also observed negative w-phases both in the near-neutral stable and very stable
cases at the Høvsøre site.

5 Conclusions

Asimplified spectralmodelmaybe constructed by combining theRDTdescribed inChougule
et al. (2017)withMOST (Obukhov 1946, 1971) to give a spectral tensor (�(4)) accounting for
non-neutral stability conditions using only the four parameters αε2/3,L, Γ and z/L . These
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parameters are obtained by fitting the model to measured one-dimensional velocity spectra,
and cospectra between horizontal and vertical velocity components, and temperature.

The model spectral fits are presented, with the predictions of cross-spectral coherence and
phases comparedwithABL data up to 100-m height for stratification varying from very stable
to very unstable. The model results are also compared with those obtained from the modelled
spectral tensor (�(5)) of Chougule et al. (2017) described in terms of the five parameters
αε2/3,L, Γ , Ri and ηθ .

The �(4) model described in terms of four parameters generates velocity spectra and
cospectra between the longitudinal and the vertical velocity components, as well as that
between the temperature and the vertical velocity component. The model systematically
underestimates the cospectra between the temperature and the horizontal velocity components
in the stably stratified cases, which is also observed for the�(5) model. As stated in Chougule
et al. (2017), however, excluding the temperature spectrum from the�(5) model, as performed
here, improves the fitted uθ cospectrum. With an increase in the value of Γ , the energy of
the u-spectrum increases, whereas that of the w-spectrum decreases, while no significant
changes in the v-spectrum and uw cospectrum are observed. Moreover, the u-component is
themost important one for wind-loading calculations, and, with the use of the�(4) model, the
Γ value increases the magnitude of the u-spectra, particularly at wind-turbine rotor heights
(c.f. Fig. 6), which should give more conservative estimates of turbine loads. There is not any
significant difference in the spectral fits of the unstable ABL spectra from the RDTmodelling
with and without the application of MOST. When comparing the parameters of the �(4) and
�(5) models, it is observed that

• In unstable regimes, no significant difference is evident in the values of αε2/3, L, Γ

and Ri (see Fig. 8a–c, e); and
• In stable regimes, the values of Γ increase, while Ri and ηθ values decrease (see Fig. 8c,

e–f).

The �(4) model is able to capture the trend in the uθ cospectrum slope, which systematically
decreases with height in the stable ABL. Further investigation of uθ -slope behaviour is,
however, needed.

Our model has deficiencies in reproducing spectra and cospectra in unstable regimes at
lower wavenumbers for larger lapse rates. Despite this, the model is able to predict velocity
cross-spectra, including those involving temperature, even though the temperature auto-
spectra are not included in the fitting. Themodel overestimates velocity coherence for vertical
separations, and these overestimations are smaller in the unstable ABL than in stable cases,
and decrease with an increased horizontal separation. The model overestimates temperature
coherences in the stable case, but underestimates cross-spectral phases when compared with
the �(5) model. However, for the unstable case, no significant difference both for the coher-
ence and phase is found. The atmospheric stability has an effect on the low-wavenumber
coherence, where the coherences are higher in the unstable, and lower in the stable ABL.
However, the simplified spectral-tensor model with the inclusion of buoyancy does model
the effects of atmospheric stability on the coherence.

In summary, when compared with results from the five-parameter model, our four-
parameter approach produces similar results in terms of the spectra, values of model
parameters, including their variation with height, and the cross-spectral properties of coher-
ence and phases for the unstable regime,with slight differences in the stable regime.However,
there is a discrepancy between the value of z/L obtained from the model fits and that mea-
sured (c.f. Tables 2, 4).
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Finally, Fig. 8 serves as a reminder that stability can become altitude dependent above the
surface layer. This is an important observation, since ABL stability then affects turbulence
and, thus, local wind-turbine loading (Kelly et al. 2014), where conventional turbine rotors
often extend beyond the surface layer. As the classic stabilitymeasure used here (theObukhov
length L) is defined in the surface layer, and we are using this parameter both in and above the
surface layer, one may additionally consider the four-parameter model’s Richardson number
Ri as a model parameter. Ongoing work includes the relation of the model’s Ri to the local
Obukhov length, which is beyond the scope here.
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