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Abstract Atmospheric flow over complex terrain, particularly recirculation flows, greatly
influences wind-turbine siting, forest-fire behaviour, and trace-gas and pollutant dispersion.
However, there is a large uncertainty in the simulation of flow over complex topography,
which is attributable to the type of turbulence model, the subgrid-scale (SGS) turbulence
parametrization, terrain-following coordinates, and numerical errors in finite-difference
methods. Here, we upgrade the large-eddy simulation module within the Weather Research
and Forecasting model by incorporating the immersed-boundary method into the module to
improve simulations of the flow and recirculation over complex terrain. Simulations over
the Bolund Hill indicate improved mean absolute speed-up errors with respect to previous
studies, as well an improved simulation of the recirculation zone behind the escarpment of
the hill. With regard to the SGS parametrization, the Lagrangian-averaged scale-dependent
Smagorinsky model performs better than the classic Smagorinsky model in reproducing both
velocity and turbulent kinetic energy. A finer grid resolution also improves the strength of
the recirculation in flow simulations, with a higher horizontal grid resolution improving sim-
ulations just behind the escarpment, and a higher vertical grid resolution improving results
on the lee side of the hill. Our modelling approach has broad applications for the simulation
of atmospheric flows over complex topography.

Keywords Bolund Hill experiment - Complex terrain - Immersed-boundary method -
Large-eddy simulation - Weather Research and Forecasting model
1 Introduction

There is a growing demand for accurate and efficient numerical modelling of atmospheric
boundary-layer (ABL) flows over complex terrain. However, the prediction of complex tur-
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bulent flow is still problematic, particularly in places where recirculation occurs (Lopes
et al. 2007; Diebold et al. 2013; Abdi and Bitsuamlak 2014), which affects atmospheric-flow
patterns, and influences the mass and energy transport in the ABL over complex terrain.
Thus, the accurate simulation of recirculation is important for many diverse applications,
including wind-turbine siting (Yang et al. 2015a), the prediction of forest-fire behaviour
(Simpson et al. 2013), and the distribution of air pollution in urban environments (Lateb
et al. 2016).

Previous numerical studies indicate that, even over gently sloped topography, the accu-
rate simulation of recirculation on the lee side of hills continues to be a challenge (Castro
et al. 2003; Lopes et al. 2007; Bechmann and Sgrensen 2010), with several factors being
particularly influential. For example, a reliable wall-function model of the surface momen-
tum flux improves simulations (Kim and Patel 2000), because surface friction and fluxes
contribute greatly to the intensity of wake vorticity on the lee side of a hill (Ding and
Street 2003), while higher grid resolutions lead to improved results (Castro et al. 2003).
Apart from these two factors, it is believed that the turbulence-modelling methods cur-
rently employed also have a crucial impact on the accurate simulation of recirculation
flow.

Common turbulence-modelling methods include approximations to the Reynolds-
averaged Navier—-Stokes (RANS) equations and large-eddy simulation (LES), where a
time-averaged flow is simulated with consideration of the entire spectrum of turbulence
in the former, while only a certain range of large-scale turbulence is explicitly resolved
with the latter. Previous research has shown that the well-known two-equation turbulence
models, such as the so-called k — € and k — w RANS turbulence models, often generate a
suppressed recirculation flow (Bechmann and Sgrensen 2010; Prospathopoulos et al. 2012;
Abdi and Bitsuamlak 2014), with LES models generally able to generate a more realis-
tic recirculation than these turbulence models (Lopes et al. 2007; Bechmann and Sgrensen
2010).

However, the performance of a LES model is largely dependent on the choice of the
subgrid-scale (SGS) model. For example, the two commonly used SGS models for the simu-
lation of the ABL are the Smagorinsky model (Smagorinsky 1963) and the 1.5-order turbulent
kinetic energy (TKE) model (Deardorff 1980), which are believed to suppress the intensity
of recirculation (Allen and Brown 2002; Chow and Street 2009) due to the constant eddy
viscosity coefficient, which results in excess turbulence dissipation of the resolved turbulence
(Mirocha et al. 2010; Kirkil et al. 2012). Alternatively, dynamic-coefficient models calcu-
late the eddy viscosity based on certain characteristics of the turbulent flow. For example,
the Lagrangian-averaged scale-dependent Smagorinsky model (hereafter the LASD model;
Porté-Agel et al. 2000; Bou-Zeid et al. 2005) significantly improves the simulation of recir-
culation over complex terrain compared with a constant-coefficient approach, in conjunction
with the use of pseudo-spectral methods (Tseng et al. 2006; Wan and Porté-Agel 2011;
Diebold et al. 2013). In the framework of finite-difference methods, simulations over flat
or simple topography indicate that the LASD model behaves differently than when used
with pseudo-spectral methods, resulting in more dissipative behaviour (Kirkil et al. 2012;
Mirocha et al. 2013; Xie et al. 2015). Moreover, the odd-ordered, upwind-biased finite-
difference advection schemes induce extra numerical diffusion (Knievel et al. 2007; Kirkil
et al. 2012; Xie et al. 2015), which may also influence the accurate simulation of recircu-
lation with the LASD model, since more energy is dissipated into subgrid scales. Hence,
although widely used for pseudo-spectral methods, the LASD model has received less atten-
tion for the simulation of the ABL (Kirkil et al. 2012; Mirocha et al. 2014; Xie and Archer
2015).
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Over highly complex terrain marked by steep slopes, it is even more challenging
to perform a reliable simulation of turbulence. Atmospheric numerical models often
use terrain-following coordinates that induce significant errors, and result in numeri-
cal instability over steep slopes (Klemp et al. 2003). Alternatively, while computational
fluid dynamics (CFD) models (e.g., OpenFOAM and Fluent) using body-fitted coordi-
nates have been used to simulate ABL flows (Prospathopoulos et al. 2012; Abdi and
Bitsuamlak 2014; Vuorinen et al. 2015; Cavar et al. 2016), drawbacks include the
lack of options for representing atmospheric processes, and the time-consuming gener-
ation of body-fitted grids. Recently, the immersed-boundary method, first proposed by
Peskin (1972), has been used together with LES modelling (Tseng et al. 2006; Bou-Zeid
et al. 2009; Lundquist et al. 2012; Diebold et al. 2013) for representing complex ter-
rain in Cartesian coordinates. The coordinate-transformation errors in terrain-following
coordinate models are thereby eliminated, and problems of numerical instability in
traditional atmospheric numerical models over steep terrain are mitigated. Moreover,
such models benefit from both the rich physical packages existing within numerical
models, as well as the more rapid generation of grids over highly complex topogra-
phy.

Lundquist et al. (2010, 2012) have incorporated a relatively simple immersed-boundary
method into the LES module of the Weather Research and Forecasting (WRF) model
(Skamarock et al. 2008), which is a widely-used numerical model with finite-difference
discretization methods and terrain-following coordinates, and has been extensively val-
idated for different applications (e.g., Moeng et al. 2007; Mirocha et al. 2010, 2013,
2014; Kirkil et al. 2012; Talbot et al. 2012; Zhang et al. 2013; Udina et al. 2016). The
immersed-boundary method within the WRF model uses a linear velocity profile near
the surface (hereafter the linear method), which is strictly valid for low- and moderate-
Reynolds-number flows, or for idealized ABL flows with a grid resolution that resolves
the viscous sublayer explicitly (Mittal and Iaccarino 2005). Another immersed-boundary
method (Chester et al. 2007) adopts a wall-function model near the immersed surface,
reconstructs a constant layer of near-surface turbulence stress (hereafter the stress method),
and simulates turbulent flows over complex terrain realistically (Diebold et al. 2013).
However, the near-surface stresses, which are based on the assumption of a logarith-
mic velocity profile, are problematic for separated flows over complex terrain, for which
a more sophisticated wall model is required (i.e., Yang et al. 2015b; Sadique et al.
2017).

Therefore, we incorporate a number of state-of-the-art modules into the WRF model for
the study of atmospheric flows, with a particular emphasis on recirculation, by including
the LASD model (Bou-Zeid et al. 2005) (which was first implemented into the WRF model
by Kirkil et al. 2012, but the code was not released) and the stress method (Chester et al.
2007), to make it the first such modelling system within the LES module of the WRF model.
To provide more realistic horizontal boundary conditions over complex terrain, we imple-
ment a turbulent inflow at the inlet as opposed to the default periodic boundary conditions.
Our approach is tested over the Bolund Hill under neutral stability conditions; due to the
sharp vertical escarpment of the Bolund Hill, the recirculation has not been reproduced
well in previous simulations. For example, most numerical models overpredict the speed-
up behind the escarpment (Prospathopoulos et al. 2012; Vuorinen et al. 2015; Cavar et al.
2016).

Below, the numerical methods and simulation set-up are described in Sects. 2 and 3,
simulation results are analyzed and compared with observations in Sect. 4, the numerical
diffusion is examined in Sect. 5, and our conclusions are provided in Sect. 6.
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2 Numerical Methods
2.1 Large-Eddy Simulation

The WRF model is a widely-used atmospheric modelling system for flow simulation at scales
from the mesoscale to the local scale. The latest WRF model is version 3.9 released on April
17 2017. The LES module within the WRF model, which has been used by Moeng et al.
(2007), Mirocha et al. (2010, 2013), Kirkil et al. (2012), applies a low-pass filter to separate
large from small eddies, where the large eddies are explicitly resolved, and the small eddies
are parametrized by the SGS model. Since the grid spacing acts as an implicit low-pass
filter, the unresolved stresses 7;; must be modelled based on the resolved velocity. With the
eddy-viscosity hypothesis, the unresolved stresses can be expressed as

1
Tij = 30ijThk = =2V Sij. ey

Here, §;; is the Kronecker delta, v, is the eddy viscosity, and S’i ; is the resolved strain-rate
tensor defined as N N
S"— 1 au,' +8uj (2)
Y2\ ax | ax; )’

where i; (ij) (i, j = 1,2, 3) are the resolved/filtered velocity components in the (x, y, z)
directions.
The determination of v; is a critical aspect, which the Smagorinsky model expresses as

v = (CoaA)? ‘S' : 3)

where C;  is the Smagorinsky coefficient (a constant), A is the grid spacing, and ‘S“ is the

magnitude of the resolved strain-rate tensor. As we find the default value of C; Ao = 0.25 to
be too large for simulations over the Bolund Hill, we apply the smaller value of 0.15. The
WRF model also includes the 1.5-order TKE parametrization, which gives a nearly identical
performance to the Smagorinsky model in idealized, neutrally-buoyant simulations (Kirkil
et al. 2012). Thus, only the Smagorinsky model is considered here.

As constant-coefficient models perform poorly in simulating recirculation flows due
to excess dissipation near the surface (Wan and Porté-Agel 2011; Kirkil et al. 2012), an
alternative is to compute Cs; o dynamically based on the resolved velocities. One such
dynamic-coefficient approach is the LASD model (Bou-Zeid et al. 2005), which utilizes
two explicit filters of twice and quadruple the sizes of the grid spacing for evaluating the
scale-dependent coefficients, C; 24 and Cy 44, respectively. Bou-Zeid et al. (2005) assumed
a power-law dependence of these coefficients, which yields

2 2 2 2
CS,A = Cs,ZA/ (Cs,4A/Cs,2A) . (4)

Here, the Smagorinsky coefficient Cs o a at two explicit filter scales (o« = 2, 4) is calculated

as
CXZ,O(A _ < ij,aA l./,OtA) ’ (5)
(Mij,aAMij,aA>
where the angled brackets (< >) represent the Lagrangian averaging along the fluid trajectory,
which limits numerical instabilities. Here, L;; oA and M;;j oA are given by

Lijan = Uilt; — Uil (6)
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and -
Mijan =267 ([3

5 -ff

57). %)

where the overbar denotes test-filtering at a scale of ¢ A. Note that the scale-dependent
parameter 8, which was expressed in terms of M;; oA in Bou-Zeid et al. (2005), is set to
unity here.

The LASD model has been incorporated into the WRF model, and validated over simple
topography, including flat terrain and a two-dimensional hill, by Kirkil et al. (2012). The two
explicit filters may be either top-hat or Gaussian filters, and since the performance of the
top-hat filter is superior to the Gaussian filter (Xie et al. 2015), we use the top-hat filter. For
example, a one-dimensional top-hat filter for the field variable ¢ at location xg is written as

x0+7
s = [ Sewa ®)

which is repeated in the x, y, and z directions in the case of a three-dimensional top-hat filter.

Aliasing and discretization schemes result in numerical errors (Chow and Moin 2003). In
the WRF model, the divergence form of the non-linear convective term (aliasing), together
with the fifth- and third-order differencing method in the horizontal and vertical directions,
respectively, may generate non-negligible errors (Kirkil et al. 2012; Talbot et al. 2012; Xie
et al. 2015). The odd-ordered, upwind-biased advection schemes in the WRF model are
numerically diffusive (Knievel et al. 2007) in the sense that resolved energy is dissipated at
the subgrid scale. We examine the significance of numerical diffusion below.

For simulations over complex topography with large-eddy simulation, it is more appro-
priate to apply realistic inflow boundary conditions than the periodic horizontal boundary
conditions, although, for this particular case, the periodic boundary conditions are acceptable
since the Bolund Hill is relatively low. To provide a realistic turbulent inflow, we perform
a precursor simulation identical to Chow and Street (2009) over a flat terrain with periodic
boundary conditions, with the same grid configuration as the simulations over complex ter-
rain. A constant pressure gradient driving the flow is applied along the streamwise direction
in the precursor simulation, whose magnitude is specified to ensure the mean velocity profile
is close to that desired. The velocity data are extracted from a slice and stored every timestep
once the flow reaches a statistically stationary state. The turbulent inflow is enforced at the
western lateral boundary, a zero-gradient boundary is set at the eastern boundary, and the
periodic boundary conditions are set at both the northern and southern boundaries. The out-
flow at the eastern boundary is set as zero-gradient for simplicity, where Lund et al. (1998)
and Lopes et al. (2007) used a convective boundary.

2.2 Immersed-Boundary Method

The immersed-boundary method is a numerical method for handling complex geometry
in Cartesian coordinates, by enforcing the boundary conditions at the grid nodes near the
surface. A number of variants for treating the effect of the immersed surface exists, including
the direct-forcing method first proposed by Mohd-Yusof (1997), which modifies the velocity
or stress near the grid nodes at the surface, with no further additional terms considered. Both
the linear method and the stress method are categorized as the direct forcing method. To save
computational time, subroutines are called each of the three Runge—Kutta (large) timesteps,
but not each acoustic timestep.

The linear method implemented into the WRF model by Lundquist et al. (2010, 2012)
uses the “ghost-cell” method to represent the immersed surface in Cartesian coordinates,
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Fig. 1 Topographic map and the measurement locations (M1-M8) of the Bolund Hill experiment

where a ghost cell is defined as the first grid node below the surface. If a no-slip boundary
condition (i.e., a zero velocity at the surface boundary) is applied, the ghost-cell velocity
components are reconstructed using

¢ = =91, ©))

where ¢ is the velocity component at a ghost point, and ¢; is the velocity at the image point
defined as the ghost point mirrored over the surface. Hence, Eq. 9 shows that the velocity
components are assumed to vary linearly near the surface, where ¢; is interpolated from the
surrounding points above the immersed surface, for which we apply the inverse-distance-
weighted interpolation suggested by Lundquist et al. (2012). The key step is, however, to
identify the image point (or the wall-normal direction) in a three-dimensional topography,
for which we adopt the method proposed by Mittal et al. (2008) for identification of the
wall-normal direction.

As the linear method is invalid in simulations of the ABL flows in which the viscous
sublayer is not explicitly resolved (Senocak et al. 2004), we incorporate the stress method of
Chester et al. (2007) into the WRF model. The stress method modifies the subgrid stresses
instead of the velocities at the grid nodes near the immersed surface, with the assumption
of the existence of a constant layer of subgrid stress, 7y, above the immersed surface in
the surface-normal direction. The thickness of the layer is slightly greater than the grid
spacing, and 7, which is defined as parallel to the local surface, is calculated from the
logarithmic velocity profile. All SGS components at grid nodes within the constant-stress
layer are reconstructed from ;. In addition, a second layer below the surface is used as
a smooth transition, where the subgrid stresses are extrapolated from the above layers.
The velocities at the grid nodes below the immersed surface are all set to zero at the
end of each timestep. Since it is no longer necessary to use the finite-difference method,
the stress method of Chester et al. (2007) is modified to neglect the smoothing of the
horizontal-plane stress further inside the immersed surface (e.g., below the second layer).
A detailed description of the implementation of the stress method is provided in Appendix
1.
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3 Simulation Set-Up
3.1 The Bolund Hill Experiment

The upgraded modelling system is used to simulate the flow over the Bolund Hill for exam-
ination of its performance in reproducing recirculation flows; a detailed description of the
experiment at Bolund Hill is provided in Berg et al. (2011) and Bechmann et al. (2011).
Briefly, the experiment was conducted from December 2008 to February 2009 on the Bolund
Hill, which is located north of Risg Technical University of Denmark. The Bolund Hill is
12-m high, 130-m long, and 75-m wide, and is surrounded by sea on all sides, except for
the eastern side (Fig. 1). Although the hill is relatively small, the steep slope and the 10-m
escarpment on the western side of the hill induce complex flow patterns. During the cam-
paign, velocities from four different directions (270°, 255°, 239° and 90°) were measured
at ten observational sites (M0-M9) using 35 anemometers. The MO and M9 sites further
to the west and east, respectively, act as the reference sites for the inflow conditions, while
the sites M1-M8 around the hill provide the comparison data. The measured velocity data
are averaged in time for 10-min intervals, while the atmosphere is considered to be neutral
during the observational periods.

3.2 Model Configurations

We use a computational domain size of 510 m x 290 m x 120 m in the x, y, and z directions
(Fig. 1), respectively, with a uniform roughness length (0.3 and 15 mm for flow originating
from water and land, respectively), which is similar to that used by Diebold et al. (2013). We
designed two sets of grid resolutions to investigate the impact on simulations. For the coarse-
resolution runs, the horizontal grid spacing is dx = dy = 2m. In the vertical direction, a
constant grid resolution dz = 0.5m is set below 25 m and stretched above, resulting in a
maximum grid spacing of approximately 3 m at the domain top. The vertical resolution yields
an aspect ratio dx /dz = 4 near the surface, as recommended by Mirocha et al. (2010) and
Kirkil et al. (2012). In the fine-resolution runs, the grid spacing is half the resolution of the
coarse runs, with a horizontal grid spacing of 1 m and a vertical grid spacing of 0.25 below
25 m. At the top of the domain, the vertical velocity component w is set to zero, with u and
v following free-slip conditions. Also, a 12-m Rayleigh damping layer is applied to w at the
domain top (i.e., 10% of the domain height). Fifth- and third-order upwind-biased spatial-
differencing methods are deployed for the horizontal and vertical advection, respectively. The
non-linear convective term is the default divergence form. The lateral boundary conditions
to the south and north are periodic, the turbulent inflow is applied to the western boundary,
and the zero-gradient condition to the eastern boundary. Since the height of the hill is much
lower than the height of the ABL, Coriolis effects are neglected (Berg etal. 2011). A constant
pressure-gradient forcing (8 x 10~* m s~ 2) in the streamwise (x) direction drives the flow
in the precursor simulation for generation of the turbulent inflow, and is also used in the
‘real’ runs in the streamwise direction for maintaining the velocity through the domain. Each
simulation runs for 12 min, with the first 2 min considered as spin-up time (approximately
nine advection times along the hill). Output data are averaged over the last 10 min, and are
saved at 5-s intervals during the averaging period.

Simulations are performed for four different wind directions (270°, 255°, 239° and 90°),
with the topography rotated to ensure inflow from the west of the domain, where the turbulent
inflow is applied with wind-speed profiles following Bechmann et al. (2011). The first three
cases (270°, 255° and 239° with flow from the sea) use the same wind-speed profile of the
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Table 1 List of the simulation

cases, with all three runs using Run name SGS model Resolution

the stress method LASD-dx2m LASD dx =dy=2m,dz=05m
LASD-dx1m LASD dx =dy=1m,dz=0.25m
Smag-dx2m Smagorinsky dx =dy=2m,dz=0.5m

inflow, with a friction velocity of 0.4 ms~! and a roughness length of 0.3 mm. The fourth
case (90° with flow from the land) uses a logarithmic velocity profile, with a friction velocity
of 0.5ms~!, and a roughness length of 15 mm. The mean velocity profiles at the inflow
boundary agree well with the suggested logarithmic profile (not shown).

Both the linear and stress methods have been tested using the coarse resolution over the
Bolund Hill, with the linear method performing worse than the stress method (see Sect. 4.1).
Therefore, we limit discussion to simulations of the stress method for all four wind directions,
and with different grid resolutions and SGS models (see Table 1). Note that there is no
Smagorinsky run ata 1-m grid resolution in Table 1, because this did not significantly improve
results for a wind direction of 270° (not shown). The simulation results are compared with
measurements at the eight mast locations shown in Fig. 1.

4 Results
4.1 Comparison Between the Linear and Stress Methods

Following Bechmann et al. (2011), the speed-up AS and speed-up error R are used to
evaluate the prediction of the mean wind speed according to

UR - Urs @

AS = 10
Ugs (2) (10)

and
R; = 100 (ASs; — AS,) (11)

where U (z) is the time-averaged wind speed at a height z above ground level (a.g.l.), and
Urs (2) is the time-averaged wind speed at a reference site MO or M9 (inlet boundary). The
subscript s and m denote the simulated and measured variables, respectively. The speed-up,
which is a normalized wind-speed deficit used widely for the evaluation of numerical models,
indicates the departure from the inflow speed at the same height a.g.1. Note that a negative
speed-up does not necessarily imply a recirculation flow.

Both immersed-boundary methods are tested using the coarse-grid resolution with the
same model configurations as the LASD-dx2m case. Comparison of the speed-up for the
270° flow direction shows that the linear method gives results inferior to the stress method,
particularly near the near-surface region (Fig. 2), with the greatest differences occurring in
regions close to the surface at the M2 and M7 sites, where a small recirculation exists. Table 2
shows the mean absolute speed-up errors for the four wind directions, with the numbers in
parentheses showing the errors for the stress method. Overall, the stress method performs
better than the linear method near the surface, with a mean absolute error of 13% for the stress
method and 20% for the linear method at 2 m a.g.1. At 5 m a.g.1., although both methods yield
a similar speed-up, with a mean absolute error of 10% for the stress method and 12% for the
linear method, the actual wind speeds differ greatly. Since the wind speeds shown here are
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Fig. 2 Vertical profiles of speed-up at the eight mast locations for the 270° wind-direction case

Table 2 Comparison of mean absolute speed-up error Ry (%) between the two immersed-boundary methods
for four wind directions at eight sites (M1-M8)

Wind direction (°) 2ma.gl Sma.gl Average of 2
and Sma.g.l

270 17.9 (7.9) 9.1 9.0) 13.5(8.5)

255 20.9 (13.6) 6.2(3.9) 13.6 (8.7)

239 19.0 (16.2) 14.3 (11.4) 16.6 (13.8)

90 21.6 (16.1) 16.9 (16.6) 19.3 (16.4)

The numbers in parentheses represent the errors for the stress method

normalized, the actual wind speeds for the linear method are much smaller than those for the
stress method. Therefore, the stress method is used for the remaining simulations.

4.2 Overall Performance of the Simulation of Speed-Up

There is generally good agreement in the simulation of speed-up between simulations and
observations, with the best performance by the LASD-dx1m run (coefficient of determination
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Fig. 3 Overall performance of the simulations from the four wind directions at the eight mast locations, a
Scatterplot of simulated and observed speed-up, the solid lines are generated from the linear regression, b ratio
of simulations to observations for the normalized wind speed. Different colours denote different simulation
sets, and different markers different observation locations

R? = 0.87) and the worst performance by the Smag-dx2m run (R*> = 0.80) (Fig. 3a). The
LASD-dx2m run tends to underpredict the speed-up. All three runs perform better in the high
speed-up ranges (approximately AS > 0.1) than in the low speed-up ranges (approximately
AS < 0.1). Linear regression indicates that all the simulations tend to underpredict the speed-
up in the low ranges where recirculation flows usually develop, suggesting the simulation of
excess recirculation.

To further investigate the overall model performance in simulating recirculation, we first
separate the data into three groups: behind the escarpment, on the lee side of the hill, and
at the remaining locations, and then calculate the ratio of the simulated and observed wind
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Table 3 Mean absolute speed-up error Ry (%) for our simulations and those reported in the literature

270° 255° 239° 90° Four directions
averaged

LASD-dx2m 8.5 8.7 13.8 16.4 11.9
LASD-dx1m 6.3 6.4 9.4 13.1 8.8
Smag-dx2m 14.9 10.2 14.4 22.0 154
Bechmann et al. (2011) - - - - 16.0

Diebold et al. (2013) 12.1 5.9 7.1 24.0 12.3

Conan et al. (2016) 11 - - - -

All results are obtained with LES modelling

speeds (Fig. 3b), with the normalized wind speed UNorm defined as U (z)/ Urs(z). Note that
in Fig. 3b, the discrepancy is amplified for measured very small wind speeds. The greatest dif-
ferences in the speed-up occur behind the escarpment and on the lee side of the hill, especially
in the near-surface region where recirculation flows are most likely to occur (Fig. 3b). Almost
all the simulations tend to underestimate wind speeds on the lee side of the hill. Behind the
escarpment, complex flow patterns occur near the surface (below 5 m a.g.1.), where previous
studies report difficulties in obtaining accurate flow simulations (Prospathopoulos et al. 2012;
Vuorinen et al. 2015). For locations apart from the lee side and behind the escarpment, the
LASD model simulates the speed-up fairly well, whereas the Smagorinsky model underpre-
dicts the speed-up, particularly below 2 m a.g.l. Generally, our simulations indicate that the
LASD-dx1m run performs reasonably well behind the escarpment region, on the lee side, as
well as the other regions.

The mean absolute speed-up errors are summarized in Table 3 for a complete evaluation
of the model performance. Here, we only present the results at 2 and 5 m a.g.l. to compare
with previous studies (see Bechmann et al. 2011 for details). In Table 3, the error reported by
Bechmann et al. (2011) is averaged from six blind LES results. For the LES of Diebold et al.
(2013), the LASD model with a pseudo-spectral code was used, while Conan et al. (2016)
deployed an unstructured CFD code (e.g., OpenFOAM) with a TKE-based SGS model.
Table 3 shows that the LASD-dxIm run has the smallest mean absolute speed-up error
(9%), while the Smag-dx2m run has the largest error (15%), indicating that the dynamic
SGS model with a fine grid resolution substantially improves the results (Table 3). Smaller
or comparable errors with other studies are found here even though our grid resolution is
coarser. For example, a grid resolution of dx = dy = dz = 1 m was used by Diebold et al.
(2013), and a much finer grid resolution of dx &~ 0.3 m and dz & 0.15 in the escarpment
region was used by Conan et al. (2016).

4.3 Recirculation Flows Around the Escarpment

As the simulated flow patterns in the 270°, 255° and 239° flow-direction cases are quite simi-
lar, we analyze the 270° direction, which has been numerically studied extensively (Vuorinen
etal. 2015; Conan et al. 2016), with wind-tunnel experiments (Yeow et al. 2015; Conan et al.
2016), and lidar field observations (Lange et al. 2016).

Figure 4 compares the speed-up profiles along line B shown in Fig. 1 at 2 and S m a.g.l.
Whereas the LASD-dx 1m case reproduces the horizontal speed-up well, large discrepancies
exist between both the LASD-dx2m and Smag-dx2m simulations, and observations on the lee
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Fig. 4 Speed-up profiles at, a 2 m, and b 5 m above ground level along line B for the 270° wind-direction
case

side of the hill and behind the escarpment, which are largely due to the inaccurate simulation
of the recirculation. Flow deceleration occurs upstream of the escarpment (near the M7 site)
as indicated by all three runs, the observed vertical profiles of the speed-up at the M1 and
M7 sites (Figs. 4, 5), and by the many previous numerical studies (Lopes et al. 2007; Chow
and Street 2009; Diebold et al. 2013), wind-tunnel experiments (Yeow et al. 2015), and even
linearized analytical models (Bechmann et al. 2011). The vertical speed-up profiles presented
in Fig. 5, together with the observations, indicate that the LASD-dx2m run performs better
than the Smag-dx2 run.

It is a challenging task to correctly simulate the near-surface flow behind the escarpment,
where the most divergent results from the three runs are detected (see the M6 site in Fig. 4a,
and the M2 sitein Fig. 5). A substantial speed-up reduction behind the escarpment is simulated
well by all three runs (Fig. 4a), which is attributable to the existence of recirculation. The
averaged streamwise velocity component (Fig. 6) indicates a slight recirculation from all three
runs, consistent with the speed-up profiles (Fig. 4a). Note that, because the recirculation zone
is so small, it has a negligible impact on the flow at 5 m a.g.1., resulting in a nearly identical
speed-up for the three runs. The small recirculation region explains why previous simulations
usually overestimate the speed-up at 2 m a.g.l. at the M6 site (Prospathopoulos et al. 2012;
Vuorinen et al. 2015; Yeow et al. 2015; Cavar et al. 2016; Conan et al. 2016). Our simulated
recirculation is supported by lidar observations indicating a recirculation height of about 2 m
(see Lange et al. 2016).

The simulated sizes and positions of the recirculation depends on the nature of the SGS
model, as well as the grid resolution. Recirculation is suppressed slightly in the vertical
direction by the Smagorinsky model, tending to elongate along the downwind direction,
resulting in a longer distance for flow recovery, which explains the small underestimation of
speed-up at 2 m a.g.l. at the M3 site. However, recirculation is clearly present in the results of
the LASD model, with varying recirculation size and position suggesting the influence of the
grid resolution. A relatively smaller recirculation closer to the escarpment is reproduced by
the LASD-dx1m run compared with the LASD-dx2m run. Note that the recirculation behind
the escarpment is greatly dependent on the choice of the Smagorinsky coefficient for the
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Fig. 5 Vertical profiles of speed-up at the eight mast locations for the 270° wind-direction case

Smagorinsky runs. Simulations with the default value of Cs, o = 0.25 indicate a substantially
suppressed recirculation, which is absent in the mean velocity field (not shown).

To further investigate the impact of the SGS model, we depict the time-averaged Smagorin-
sky coefficientin Fig. 7. Clearly, the coefficient from the LASD model decreases as the surface
is approached, with a particularly small coefficient over the escarpment where a large strain
rate is found. The coefficient for the LASD-dx1m run is slightly larger than that for the
LASD-dx2m run, suggesting a dependence on the grid resolution. Figure 7 also demon-
strates a Smagorinsky coefficient of 0.15 near the recirculation zone behind the escarpment
consistent with the value in the Smag-dx2m run, which reproduces a similar recirculation in
this region. Hence, the recirculation flow is sensitive to the Smagorinsky coefficient, with a
large coefficient tending to suppress recirculation by dissipating resolved energy at the sub-
grid scale. The relatively larger coefficient at the M6 site for the LASD-dx2m run partially
explains the small shift of the recirculation zone compared with the Smag-dx2m run.

4.4 Recirculation on the Lee Side of the Hill

Generally, the two SGS models reproduce different recirculation patterns on the lee side of
the hill (Fig. 6). The Smagorinsky model tends to suppress the recirculation in the verti-
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Fig.7 The mean Smagorinsky coefficient Cy A for the 270° wind direction case along line B. a LASD-dx2m,
b LASD-dx1m

cal direction, resulting in an elongated recirculation downstream (see also the recirculation
behind the escarpment). The LASD model predicts a deeper recirculation consistent with
Kirkil et al. (2012), with the LASD-dx1m run predicting a relatively smaller recirculation
zone than found in the LASD-dx2m run (see Fig. 6a, b). Although the flow pattern is sim-
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ulated differently on the lee side of the hill by the LASD-dx1m and Smag-dx2m runs, the
vertical profiles of the speed-up at the M8 site both agree well with observations (see the
MS panel in Fig. 5). From the overall performances on the lee side of the hill (Fig. 3b) and
the smaller mean speed-up errors (Table 3), we find that the LASD-dx1m run generates a
more reliable flow pattern than the other runs, but with a slight underestimation of the size
of the recirculation at the MS site (Fig. 5), where one expects a deep, narrow recirculation.
The vertical suppression of the recirculation on the lee side of the hill by the Smag-dx2m run
may result from the relatively large Smagorinsky coefficient in the upper portion of the recir-
culation zone (see Fig. 7a). Tests with a larger coefficient (Cs, o = 0.25) for the Smag-dx2m
run result in the further suppression of the recirculation in the vertical direction, which is
consistent with previous studies. For example, Allen and Brown (2002) reported a depressed
recirculation on the lee side of a two-dimensional hill when using the Smagorinsky model.
Chow and Street (2009) found that the 1.5-order TKE model underestimates recirculation,
and overpredicts the speed-up on the lee side of the Askervein hill.

Note that the flow characteristics for the 90° direction differ from the other three wind
directions. The sudden decrease in the speed-up downwind from the escarpment is substan-
tially underestimated by all three runs, leading to the largest mean speed-up error among the
four wind directions (Table 3). Diebold et al. (2013) also found the largest error for this wind
direction when using the LASD model, and attributed this error to the difference in surface
roughness between the land and water. However, it may also be caused by the wall model
used in the stress method, as the nature of the SGS model may also play a role here. However,
further confirmation is required.

4.5 Mean Prediction of Turbulent Kinetic Energy

To evaluate the production of TKE, the TKE increase AK and TKE error R7gg are defined

as
_ K@ —Kgs (@

AK 5
Uks (@)

12)

and

I, — Iog) — (Iy — Iop
RTKEZIOO(S OS)I (m 01)’ (13)
Om

respectively, where K (z) is the TKE at height z, Kgs (z) is the TKE at a reference site (inlet
boundary), and I = VK / Urs. Note that, since both the LASD and Smagorinsky models do
not provide the unresolved TKE explicitly, we use the SGS stresses to estimate the unresolved
TKE (Mason and Callen 1986). Hence, the total TKE is

Kuoa = 0.5 [ (wa+ o)) | + (v el ) + (wwr + Tesl) . (14)

where u’ is defined as the departure of instantaneous # from its time-averaged value (with
the same definition for v' and w’), and the overbar symbol (™) denotes time-averaging.
The overall performance of the four direction cases is shown in Fig. 8. With the exception
of the region behind the escarpment where the TKE increase is greatly underestimated, all
runs simulate an accurate TKE increase despite the generally superior performance of the
LASD-dx1m run compared with the LASD-dx2m and Smag-dx2m runs. Similar predictions
of the TKE increase for the LASD-dx2m and Smag-dx2m runs are attributable to the similar
magnitude of the Smagorinsky coefficient behind the escarpment. The mean absolute TKE
errors indicate that the overall TKE increase is comparable with previous studies (Table 4).
The TKE error for the 90° case confirms that the primary error source is the recirculation

@ Springer



436 Y. Ma, H. Liu

T T T T

0.20 , /]
@® LASD-dx2m s
® LASD-dx1m d
@ Smag-dx2m ’
o) 7
0 0.15} 7 1
© ’
g 7
9] 7/
£ ’
w 7 O]
2 0101 R ® :
7
S / ®@®
& -2
S /
2 o.osf ol s © %9
& ®
® C@ @
0.00 i
0> ©
vd L L L 1 L
0.00 0.05 0.10 0.15 0.20

Observation TKE increase
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Table 4 Mean absolute TKE errors

270° 255° 239° 90° Four directions
averaged

LASD-dx1m 358 34.0 38.6 8.1 29.1
LASD-dx2m 52.7 55.5 56.7 16.7 454
Smag-dx2m 56.9 58.3 61.7 222 49.8
Bechmann et al. (2011) LES - - - - 359
Yeow et al. (2015) wind tunnel 56.3 - - - -

Conan et al. (2016) LES 19 - - - -

behind the escarpment, since errors for the 90° case without a recirculation are smaller than
the other three wind-direction cases with recirculation behind the escarpment (see Table 4;
Fig. 8).

To further evaluate model performance in the simulation of TKE, we analyze the results
of the 270° wind-direction case. The Smag-dx2m run provides a similar TKE field to the
LASD-dx2m run, but with a smaller value above the recirculation (Fig. 9). The size of the
elevated TKE region behind the escarpment for the Smag-dx2m run is larger than that for
the LASD-dx2m run, corresponding to the mean velocity field (Fig. 6). Note that the TKE
fields are different from the two LASD model runs, with the finer grid resolution resulting
in larger TKE values than the case of the coarser resolution, suggesting the underestimation
of the unresolved part of the TKE by Eq. 14. Another notable feature in Fig. 9 is the closer
location of the peak value of TKE to the escarpment for high-resolution runs, as indicated
more clearly in the horizontal profiles of TKE increase in Fig. 10.
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Fig. 9 Vertical cross-section of mean resolved TKE along line B for the 270° wind-direction case, a LASD-
dx2m, b LASD-dx1m, and ¢ Smag-dx2m. Vertical black lines denote the locations of masts

0.15
(a) — LASD-dx2m
— LASD-dx1m
0.10 M6 —— Smag-dx2m

¥ Observations
M8

TKE increase
o
o
wm

0.05]

0.00

TKE increase

-100 -50 0 50 100 150
Relative position along line B (m)

Fig. 10 Horizontal profiles of the TKE increase at, a2 m, and b 5 m above ground level along line B for the
270° wind-direction case

As shown in Fig. 10, the TKE increase is relatively well simulated, except for the near-
surface region behind the escarpment, where the TKE is underestimated, consistent with
previous results from both RANS and LES models (Prospathopoulos et al. 2012; Jafari et al.
2012; Conan et al. 2016; Cavar et al. 2016). In our simulations, although the speed-up at the
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Fig. 11 Probability of occurrence of the instantaneous negative streamwise velocity component at the plane
along line B. a LASD-dx2m, b LASD-dxIm, ctest 1 (dx =dy = 0.5m,dz = 0.25m),d test2 (dx =dy =
0.5m,dz =0.5m)

M6 site is predicted well, it is still difficult to predict an accurate magnitude of the TKE.
We also note that the peak value of the TKE increase at 2 m a.g.1. produced by the LASD-
dx1m run is close to the observations (at the M6 site), with its location shifting towards the
escarpment. This shows that the grid resolution of LASD-dx 1m is still insufficiently fine for
capturing most of the energetic eddies being generated at the escarpment.

4.6 Grid Sensitivity of the Recirculation Flows

A further objective is the investigation of the recirculation immediately behind the escarp-
ment, whose simulation has proven difficult in the past (see discussion above). We find that a
large SGS eddy viscosity suppresses the development of recirculation in this area, resulting in
an overprediction of the velocity speed-up. The grid resolution also influences the magnitude
of the TKE by affecting the location and shape of the recirculation zone.

To test the sensitivity to the grid resolution, two additional simulations for the 270° wind-
direction case are considered with a smaller grid spacing: one case with dx = dy = 0.5m
and dz = 0.25 m (hereafter test 1), and another case with dx =dy = 0.5manddz = 0.5m
(hereafter test 2). The LASD model is used in both cases, with the same domain size as the
LASD-dx2m run. To save computational time, periodic horizontal boundary conditions are
used instead of the turbulent inflow conditions, which is acceptable since the hill is relatively
low, and the flow recovers at approximately 150 m downwind of the hill.

Figure 11 shows the probability of occurrence of an instantaneous negative streamwise
velocity component on the plane along line B (see Fig. 1), together with the LASD-dx2m
and LASD-dx1m simulations for comparison. Note that the LASD-dx2m run and test 2 have
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Fig. 12 Time-averaged recirculation heights with different grid resolutions, a just behind the escarpment, b
on the lee side of the hill

the same vertical resolution of 0.5 m (Fig. 11a, d), and the LASD-dx1m run and test 1 have
the same vertical resolution of 0.25 m (Fig. 11b, c). Figure 11 shows that the recirculation
behind the escarpment is mainly controlled by the horizontal resolution. As the horizontal
grid spacing decreases, the size of the recirculation behind the escarpment becomes smaller,
and the centre of the recirculation zone shifts towards the escarpment. Interestingly, for the
recirculation on the lee side of the hill, the vertical resolution plays a more important role
than the horizontal resolution.

To give a direct comparison, we plot the recirculation size, and compare the results with the
lidar measurements reported in Lange et al. (2016). The recirculation height § is calculated

using
i
5 :argmax[ ”(Z)] (15)
z dx

with the time-averaged height shown in Fig. 12. It is clear that the recirculation size behind
the escarpment is overestimated by the LASD-dx2m run, while the other three simulations
generally reproduce similar results. Figure 12 also confirms the tendency shown in Fig. 11
that the horizontal resolution has a significant impact on the simulation of the recirculation
flow behind the escarpment, with a minor impact resulting from the vertical resolution.
Although the four cases simulate different recirculation shapes, they all produce almost
the same recirculation height at the M6 site, leading to a similar speed-up prediction there
(Fig. 4). The recirculation on the lee side of the hill suggests the opposite conclusion: the flow
is mainly affected by the vertical grid resolution instead of the horizontal resolution, which
we also conclude for the flow before the escarpment (Fig. 11). The different grid-resolution
dependences can be explained by the different turbulent flow structures in the two regions.
Just behind the escarpment, the flow has a strong horizontal wind shear, while on the lee
side of the hill, the flow has a strong vertical wind shear (Fig. 6). We also notice a similar
relationship between the size of the well-resolved recirculation and the grid resolution. The
ratio of the recirculation length behind the escarpment to the horizontal grid resolution is
approximately 40, which is identical to the ratio of the recirculation height on the lee side to
the vertical grid resolution.

5 Numerical Diffusion from the Odd-Ordered Upwind-Biased
Advection-Differencing Method

It is well-known that the fifth-order upwind-biased differencing scheme for horizontal advec-
tion in the WRF model induces numerical diffusion, which is a similar feature to a SGS model
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Fig. 13 Vertical cross-section of the mean streamwise velocity component along line B for the 270° wind-
direction case without a SGS model. The domain configurations are the same as the LASD-dx2m run

(Knievel et al. 2007; Kirkil et al. 2012; Talbot et al. 2012). Because of the complex non-linear
interactions between numerical diffusion and SGS model near the grid spacing, it is difficult
to identify the effect of numerical diffusion in the LES model. For simplicity, we deactivate
the SGS models to examine the effects of numerical diffusion, which is termed implicit LES
(Grinstein et al. 2007). Hence, the simulation configurations are the same as the LASD-dx2m
run, except without a SGS model. Figure 13 shows the time-averaged streamwise velocity
component on the vertical plane along the line B. Interestingly, the main features in the mean
velocity field are similar to those from the LASD-dx2m run, despite a notable difference in
the recirculation behind the escarpment. Without a relatively large SGS diffusion (see the M6
site in Fig. 7a), the recirculation elongates towards the escarpment, which is consistent with
our previous analysis. For the recirculation zone on the lee side of the hill, the detachment
point is slightly higher than for the LASD-dx2m run, and we note that the flow in these
two regions contains many small energetic eddies (Fig. 9). Therefore, the truncation error
from the odd-ordered discretization scheme alone cannot provide adequate diffusion in the
recirculation region. The truncation error, however, is similar to the LASD model in the areas
of low TKE.

It is worth noting that, although a similar mean velocity field is reproduced by the implicit
LES with a mean absolute speed-up error of 9%, a greater discrepancy occurs in the sim-
ulation of TKE. Here, much higher TKE is generated than for the LASD-dx2m run in the
recirculation region. Compared with the observations, the implicit LES approach overesti-
mates the TKE increase at most locations with a mean absolute TKE error of 66%. Note that
the simulated magnitude of TKE at the M6 site is mainly affected by the horizontal grid res-
olution, confirming our previous conclusion that the numerical diffusion alone is inadequate
in the recirculation region. Although the interaction between the numerical diffusion and the
LASD model could not be identified clearly in our results, the simulation of the recirculation
is largely unaffected by the numerical diffusion when using a SGS model. Hence, the LASD
model provides sufficient diffusion for the reduction of the numerical diffusion (Xie et al.
2015), especially in the recirculation region.

6 Conclusion
We incorporated the immersed-boundary methods and the LASD model into the LES module
within the WRF model to investigate the flow around Bolund Hill. Good agreement between

the results of the simulations and observations demonstrate the capability of our modelling
system in simulating atmospheric flows with recirculation. The stress method outperforms the
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linear method, and helps to generate a small recirculation zone behind the escarpment of the
Bolund Hill, leading to the observed low speed-up and high TKE. Our study demonstrates
that SGS models have a significant impact on the prediction of recirculation. The LASD
model performs better than the Smagorinsky model over complex terrain by reproducing a
reliable pattern of turbulent flow. The magnitude of the Smagorinsky coefficient significantly
affects the results, especially within the small recirculation zone behind the escarpment.
The shapes and locations of the recirculation zones are also influenced by the numerical
grid resolution. A horizontal resolution is more important for reproducing the recirculation
immediately behind the escarpment, whereas the vertical resolution is more important for
the flow on the lee side of the hill. Numerical diffusion tests suggest that the discretization-
truncation errors are small in the recirculation regions, where the SGS model has a significant
influence, thus the accuracy of the simulations is not greatly influenced by numerical
diffusion.

In general, our modelling system reproduces the recirculation reasonably well over the
Bolund Hill. However, as pointed out in Sect. 4.4, the flow downstream of the escarpment
for the wind direction of 90° is not well captured, for which the equilibrium wall model used
in the stress method may be at fault. In future work, a more sophisticated wall model (i.e.,
Yang et al. 2015b) should be tested.
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Appendix 1: Implementation of the Stress Immersed-Boundary Method

The implementation of the stress method in the LES module of the WRF model consists of
four steps:

Step 1 Identify two layers of reconstruction grid nodes: one layer contains the first grid
nodes immediately above the immersed surface (circles in Fig. 14), while the other layer
contains the first grid nodes just below or on the immersed surface (squares in Fig. 14).
The reconstruction nodes are identified by searching column-by-column along the grids
of the WRF model. Also, the velocities are all set to zero at any grid nodes below the
immersed surface.

Step 2 Find the surface-normal direction for each reconstruction node. In our imple-
mentation, the surface/terrain is represented at the discrete points at one-half of the grid
spacing of the WRF model using a two-dimensional array H; ; (where i and j are the grid
numbers in the horizontal directions). We first determine the closest surface point (e.g.,
Hj,, j,) for a chosen reconstruction node P. Then, eight surrounding surface-discrete
points H;y_1, jo—1, Hig, jo—1> Hig+1,jo—15 - - - » Hig41, jo+1 are identified, and those points
construct eight triangles with a shared vertex Hj, j,. On each triangle, find an intercept
point (not necessarily the projection point) with the shortest distance to P, and repeat
for eight triangles to produce the intercept point P/ having the shortest distance to P for
all eight triangles. The direction from P/ to P (or from P to PI) is assumed to be the
surface-normal direction n for the node P. In the case that P/ coincides with P where n
cannot be identified, a small modification is made on Hj_ j,, and we revert back to find
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Fig. 14 Schematic of the
implementation of the stress
method. The solid black line
denotes the immersed surface.
The circles are the reconstruction
points of the stresses, and the
squares are the smooth transition
points. The line through circles
and squares are in the
surface-normal directions. The
stresses are assumed to be
constant along the surface normal
direction in the layer of thickness

T(P2) = 27(P3) — T(P3)

124 ) \
N NTsn

the intercept point P /. Note that this procedure allows P to be on the edge or vertex of
the triangles.

Step 3 Specify stresses at the circled points in Fig. 14. Let Py denote a circled point,
P1I; denote the corresponding intercept point on the immersed surface, and n; denote
the surface-normal direction passing through Pj. The velocity V at a distance around
the grid spacing from the immersed surface along n; can be identified by a trilinear
interpolant, for which we use a distance of 1.2A, where A is the grid spacing. Next,
define the local spanwise direction of the flow w; = n; x V/|V]| and the streamwise
direction s; = w; x nj. In this local coordinate system defined by s, wi, and ny, the
tangential velocity component is calculated as V; = V - sy. The surface shear stress is
parametrized as

2
kV;

(14 128) e

Tsurf = Tsn = —

where z¢ is the roughness length and £ = 0.4 is the von Kdrmdn constant. Finally, the local
shear stress is transformed to the grid stress of the WRF model using 7;; (P1) = a;5a, Tsn,
where the g;; is the direction cosine between the x; axis of the WRF model and the local
X axis.

Step 4 Specify stresses at square points using extrapolation. Let P, denote a square point,
P I, denote the corresponding intercept point on the immersed surface, d> denote the
distance from P, to PI,, and n, denote the surface-normal direction passing through
P>. Two points in the fluid along ny are used in the extrapolation, which are defined as
P = P>+ hny and Py = P> + 2hny, where h = 1.1A. If 1.1A < d (P; is below the
immersed surface), then & = d» 4+ 0.3A is used instead for calculating P; and P;’. The
stresses at PQ/ and PZ” are identified from a trilinear interpolant, and the stresses at P, are
then extrapolated using 7 (P;) = 21 (P3) — © (PJ).
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Fig. 15 LES results and wind-tunnel measurements of flows over a three-dimensional hill on the vertical slice
crossing the centre of the hill. Results are normalized and averaged in time. a Streamwise and vertical velocity
components. b Variances of the streamwise and vertical velocity components. All LES results are normalized
byup =5.1m s~!. Wind-tunnel data are adapted from Ishihara et al. (1999)

Appendix 2: Validation Against Wind-Tunnel Observations

We tested our modelling system against the wind-tunnel experimental data from Ishihara
etal. (1999), where the height of the three-dimensional hill in the wind tunnel is described by
0.5

z(x,y)=h cos? (%), with 7 = 40 mm and L = 100 mm. The flow speed outside
the boundary layer was maintained at 5.8 m s~ !, and the roughness length was 0.01 mm, which
we also adopted. The simulation domain size is 0.76 m x 0.64 m x 0.32 m in the streamwise,
spanwise, and vertical directions, respectively, and the grid resolution is dx = dy = 2.5 mm
and dz = 0.8 mm. The upper boundary condition is set as stress-free, while the lateral
boundary conditions are periodic. The simulation time is 3.5 s with a timestep of (1/50,000)
s. We ignore the model data during the first 1 s as a result of spin-up, and use the data during
the following 2.5 s with a time interval of (1/500) s for analysis. Figure 15 shows the results
of model simulations correspond well to the measurements.
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