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Abstract Amodel for the evaluation of the concentrationfluctuation variance is coupledwith
a one-particle Lagrangian stochastic model and results compared to a wind-tunnel simulation
experiment. In this model the concentration variance evolves along the particle trajectories
according to the same Langevin equation used for the simulation of the velocity field, and
its dissipation is taken into account through a decay term with a finite time scale. Indeed,
while the mean concentration is conserved, the concentration variance is not and our model
takes into account its dissipation. A simple parametrization for the dissipation time scale is
proposed and it is found that it depends linearly on time and on the ratio between the size
and the height of the source through a scaling factor of 1/3.

Keywords Concentration fluctuations · Concentration variance dissipation · Lagrangian
stochastic model

1 Introduction

Generally, atmospheric dispersion models prescribe the mean concentration field, noting
that mean concentration is the key parameter to evaluate air quality for regulatory purposes.
However, in a wide range of cases, such as the dispersion of toxic, flammable or chemical
reacting gases, evaluating the mean concentration field may not be sufficient and knowledge
of the concentration variance is needed.

Lagrangian (single-particle) stochastic models, beginning with the fundamental work of
Thomson (1987), have been applied to complex terrain and meteorological conditions (see,
for instance, Kaplan and Dinar 1989; Tinarelli et al. 1994). However, these models are not
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suitable for the simulation of chemical reactions, since they do not provide the second-order
moments of the concentration probability density function (p.d.f.). In fact, the concentration
fluctuations are needed unless the time scale of chemical reactions is long compared with
the time scale of the turbulence, i.e. for a very low Damköhler number (the ratio between the
time scales of turbulence and chemical reactions). In this case the turbulent concentration
fluctuations are damped and hence do not contribute to the reaction rate (Alessandrini and
Ferrero 2009).

It is well-known that the concentration covariances are necessary to reproduce the segre-
gation effect, i.e. the effect of the turbulent mixing, which reduces the reaction rate.When the
mixing rate is lower than the reaction rate, the turbulent cascade is unable to bring together
the reactants rapidly enough, in which case the turbulence time scale controls the reaction
(Sykes et al. 1999). This effect should be considered when the chemical reactions are not in
equilibrium and the bulk meandering and the in-plume mixing processes, generated by the
turbulent eddies, significantly increase the correlation between the reactants (Vilà-Guerau de
Arellano et al. 1995; Galmarini et al. 1997; Yee et al. 2003).

In the last ten years, many models have been developed for the second- or higher-order
moments of the concentration p.d.f.. Among these, Thomson (1990) and Borgas and Sawford
(1994) proposed the two-particle model, which provides information on the variance of the
concentration distribution, but can only be applied in idealized conditions (homogeneous,
isotropic and stationary turbulence).

Another approach, the so-called p.d.f. method (Pope 1985; Cassiani et al. 2005) appears
promising but, up to now, its application is difficult due to the large amount of computational
time required. A simple and effective method for predicting higher concentration moments
for the stationary release of contaminant is the fluctuating plume model (Yee et al. 1994;
Yee and Wilson 2000; Luhar et al. 2000; Franzese 2003; Mortarini et al. 2009; Ferrero et al.
2013). The basic idea of this approach (Gifford 1959) is that the absolute dispersion can be
divided into two independent components: the meandering motion of the centroid and the
relative dispersion around it. The meandering plume centroid is usually simulated in a static
coordinate system relative to the source; the internal mixing of the plume, i.e. the relative con-
centration p.d.f., can be parametrized on a relative coordinate system around the centroid as it
is locally evaluated. Mortarini et al. (2009) extended the Franzese (2003) approach, applying
the fluctuating plume model to the turbulent flow generated in a simulated canopy, while
Cassiani and Giostra (2002) proposed a similar model based on a linear compression of the
mean concentration p.d.f. that enables the rapid evaluation of the higher-order concentration
moments (Bisignano et al. 2014).

In the present study, a single-particle Lagrangian stochastic model has been developed
that is able to evaluate the concentration variance field. While the stochastic equations are
the classical Thomson (1987) formulation for the single-particle model, which is only able to
simulate the mean concentration, the approach proposed by Manor (2014) and used therein
allows us to predict also the concentration variance. In fact, the dynamics of the concentration
variance is simulated by means of single independent Lagrangian trajectories.

In the model, the source term of the concentration variance is proportional to the mean
concentration field. The particles emitted from each source of concentration variance are
dispersed in the computational domain solving the same Lagrangian stochastic equation used
to calculate the mean concentration field. A quantity of concentration variance is assigned
to each particle. Further, as in previous works (see, for instance, Lewellen 1977; Sykes
et al. 1984; Galperin 1986; Manor 2014), the dissipation of the concentration variance is
simulated with an exponential decay term, whose time scale is parametrized and applied to
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the particles at each timestep. In order to compare the model with the Fackrell and Robins
(1982) experiment a new parametrization for this time scale is proposed.

We stress that the model is a simple single-particle Lagrangian stochastic model, and so
the implementation of the proposed methodology is straightforward and does not demand
excessive computer time. Furthermore, it can be applied to non-homogeneous turbulence.

The model is described in detail in Sect. 2, where the new parametrization for the dissi-
pation time scale is presented. The numerical results and experimental data are compared in
Sect. 3, while in Sect. 4 the main conclusions are summarized.

2 The Model

2.1 The Stochastic Equations

The model is based on the Lagrangian stochastic equations (Thomson 1987) (Langevin
equation),

dui = ai (u, x, t)dt + bi j (x, t)dWj (t), (1)

where ui are the turbulent velocity components, among which that along the wind direction
is added to the mean velocityU and dWj (t) is an incrementalWiener process with zero mean
and variance dt .

In stationary turbulence Eq. 1 becomes

dui = ai (u, x)dt + bi j (x)dWj (t), (2)

where the diffusion coefficients, bi j (x), are equal for the three components and depend only
on z,

bi j (x) = b(z) = √
C0ε(z), (3)

where C0 is a constant and ε(z) the mean dissipation rate of the turbulent kinetic energy
(TKE). The drift coefficients ai are

ai (u, z) = − ui
TLi (z)

+ 1

2

(

1 + u2i
σ 2
ui (z)

)
∂σ 2

ui (z)

∂z
, (4)

where σui are the velocity components standard deviations and TLi are the Lagrangian time
scales on the three axes that can be obtained, following Hinze (1975), as

TLi (z) = 2σ 2
ui (z)

C0ε(z)
. (5)

Substituting Eqs. 3 and 4 in Eq. 2 we obtain the Langevin equation for Gaussian non-
homogeneous and stationary turbulence,

dui = − ui
TLi (z)

dt + 1

2

(

1 + u2i
σ 2
ui (z)

)
∂σ 2

ui (z)

∂z
dt + √

C0ε(z)dWi (t). (6)

This equation is used in the model to drive the particles through the turbulent flow and, as
proposed by Manor (2014), to drive the concentration variance as well. The Manor (2014)
approach considers the concentration variance as a passive tracer whose dispersion can be
simulated in a Lagrangian frame by independent trajectories calculated using the Langevin
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equation. In addition, since the mean concentration is conserved along the particle trajec-
tory, while the concentration variance is not, we seek for a proper concentration variance
dissipation term.

We note that the Manor (2014) approach is very simple compared to other models for
concentration fluctuations such as the two-particle, p.d.f. and the fluctuating plume models,
and less demanding of computer time. It yielded satisfactory results in an urban environment
(Manor 2014), and for these reasons we test the model against the Fackrell and Robins
(1982) wind-tunnel experiment in order to verify its reliability in such controlled conditions.
Furthermore, we seek a new parametrization of the fluctuation dissipation term.

2.2 Source of the Concentration Variance

Manor (2014) suggested that the source of variance can be determined as proportional to the
mean concentration gradient,

Qv(r) = 2σ 2
ui TLi

(
∂C

∂xi

)2

. (7)

This choice can be justified looking at the Eulerian steady-state equation for the concentration
variance, adopting the K -closure (Sykes et al. 1984; Manor 2014),

−Ui
∂c′2

∂xi︸ ︷︷ ︸
I

− ∂

∂xi
K (v)
i

∂c′2

∂xi︸ ︷︷ ︸
II

+2σ 2
ui TLi

(
∂C

∂xi

)2

︸ ︷︷ ︸
III

−c′2

td︸ ︷︷ ︸
IV

= 0, (8)

where C is mean concentration, c′ is the concentration fluctuation and K (v)
i is the diffusion

coefficient. Here I is the homogeneous transport, II is the turbulent transport, III is the source
and IV is the dissipation. It is worth noting that Eq. 8 is an Eulerian equation and is shown
here only to show how the source of variance can be determined, but it is not used in the
model. Thus the sources of variance depend on the gradients of the mean concentration.

Several Lagrangian models use an Eulerian grid to store the concentrations, e.g. the p.d.f.
models (Pope 1985; Cassiani et al. 2005). Hybrid (Lagrangian/Eulerian) models were also
developed by Alessandrini and Ferrero (2009) and Kaplan (2014), where the mean concen-
trations can be either calculated at one time if stationary conditions are assumed, or over
the run-time. It should be noted that a fixed grid may not have sufficiently high resolution
close to the source, and higher resolution than necessary far from it. However, adaptive grids
can be used to better represent the wide range of scales but this is beyond the scope of the
present work. It is worth stressing that in a Lagrangian particle model themean field is always
calculated using a spatial mean over several Eulerian grid cells.

2.3 Concentration Variance Dissipation

Once the sources of variance are determined, the Lagrangian Eq. 2 of the turbulent velocities
can be used to simulate the dispersion of the concentration variance. However, as already
noted, the concentration fluctuations are not conserved along the flow. Hence the dissipation
of variance should bemodelled. In analogywith the Eulerian Eq. 8 the concentration variance
dissipation, to be introduced in the Lagrangian equation in order to determine the decrease
of the concentration variance at each timestep, can be evaluated as,

dc′2

dt
= −c′2

td
, (9)

123



A Simple Parametrization for the Concentration Variance… 95

where td represents a characteristic time scale. The determination of this time scale is the
key point in simulating the concentration variance dispersion. A first attempt to predict td
was made by Lewellen (1977) who calculated this parameter through the plume standard
deviations. However, Sykes et al. (1984) observed that the variance dissipation is controlled
by eddies with length scales of the order of the plume size. They also suggested that, while
the outer scale becomes rapidly independent of the source, as also shown by Fackrell and
Robins (1982), the total concentration variance depends on the inner scale λc. As a matter of
fact, the plume can be divided into inner and outer scales. The outer scale corresponds to the
scale over which the plume meanders and the inner scale is the relative spread of the plume.
As a consequence, Sykes et al. (1984) prescribed an inner scale from which they determined
the dissipation time scale td. In particular they showed, as also stated by Sawford (1982), that

λc should be initially proportional to the time t and then to t
3
2 . However, in these works, the

time scale is obtained from both the length scale and a velocity scale, and the velocity scale
actually depends on the length scale. Galperin (1986) showed that the dissipation time scale
grows linearly with time, and if we consider the dissipation time scale as the lifetime of the
fluctuations, it should be smaller close to the source where the intense mixing causes rapid
development and dissipation of the fluctuations. Thus, we considered the following function,

td = T s
Lws

[

α1

(
t

t∗

)
+ α2

(
ds
hs

) 1
3
]

, (10)

where T s
Lws

is the value of the vertical component of the Lagrangian time scale at the source
height, t∗ = zi/U (zi is the boundary-layer depth and U is the freestream velocity) and α1,
α2, are two constants; ds is the source diameter, hs is the source height. As t → 0, Eq. 10
becomes a constant depending on the Lagrangian time scale and the ratio between source
diameter and height. The proportionality between td and the integral time scale was proposed
by Bèguier et al. (1978) and Warhaft and Lumley (1978), and used by Andronopoulos et al.
(2002) and Milliez and Carissimo (2008). A similar relationship between td and the integral
scale can be found in Yee et al. (2009). Since the results of the Fackrell and Robins (1982)
experiments showed that the concentration variance dispersion depends both on the source
size and height, we introduced this dependency in the parametrization for td. The exponent
1/3 was found to give the optimum smoothing to this relation; α1 = 1.3 and α2 = 1.25 were
determined by tuning their values with the experimental data. The parametrization is similar
to the expression derived in Appendix of Sykes et al. (1984) except that the source-size ratio
has a 1/3 power rather than 2/3. Thus different results might be obtained whether our model
or Sykes et al. (1984) model is used. However, we stress that, when changing the power of
the exponential in Eq. 10, the comparison with some experiments corresponding to given
sources can be better reproduced but may also worsen others.

3 Comparison with Wind-Tunnel Data

We compared the model results obtained using the parametrization given by Eq. 10 with the
Fackrell and Robins (1982) wind-tunnel experiment, and simulated both the mean concen-
tration and concentration variance using the Lagrangian model presented in Sect. 2.1. The
mean field was determined on an Eulerian grid. The comparison is made in terms of mean
and concentration variance vertical profiles, normalized with their maxima, and fluctuation
intensity.
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Fig. 1 Comparison between simulated (lines) and measured (points) plume mean concentration vertical
profiles, normalized with their maxima, for the elevated source and ds = 8.5 mm

Many authors used the dataset gathered in this experiment to test their models for con-
centration fluctuations (Sykes et al. 1984; Mortarini and Ferrero 2005; Cassiani et al. 2005;
Cassiani 2012; Kaplan 2014). The Fackrell and Robins (1982) wind-tunnel boundary layer
was characterized by a height H = 1.2 m, a friction velocity u∗ = 0.188 m s−1, a roughness
length z0 = 2.4 × 10−4 m and an asymptotic velocity Ue = 4 m s−1. The experiments
were carried out with two different source heights: an elevated source at hs = 0.228 m
and a ground-level source. For the ground-level source three different source diameters ds
were used (3, 9, 15 mm), while for the elevated source five source sizes were used, viz.
ds = 3, 9, 15, 25, 35 mm. Initial measurements were also performed with ds = 8.5 mm.
Besides these parameters, the mean flow, U (z), the standard deviation σui (z), and the mean
TKE dissipation, ε(z), are required to run the Lagrangian model. An interpolation of the
Fackrell and Robins (1982) experimental data provided us with these quantities.

As explained above, our model uses the mean concentration field to calculate the source
term for the concentration variance, hence we first evaluated it with the stochastic Langevin
equation, Eq. 6. The results are shown in Fig. 1, where the vertical profiles of the simulated
and measured mean concentrations at different distances from the source are compared for
the elevated source and ds = 8.5 mm. It can be seen that the observed profiles are reproduced
well by the model even though a slight underestimation in values can be observed at the
largest distances.

Then, after having calculated the mean field on an Eulerian grid, we were able to estimate
the sources of variance given by Eq. 7. Given that the sources of variance depend on the
gradient of the mean concentration, they may vary when using different grid size. Thus we
performed a series of simulations with different space steps in the three directions, and found
that changing the grid spacing in the direction along the flow does not result in remarkable
differences in the variance concentrations. The model results are sensitive to variations in
the grid resolution for the vertical and crossflow directions, since the gradients along these
directions are larger. However, for the vertical direction, these variations are smaller for grid
spacing ≤0.01m, which corresponds to 0.0083 when normalized with the boundary-layer
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Fig. 2 Comparison between simulated (lines) and measured (points) plume concentration variance vertical
profiles, normalized with their maxima, for the elevated source and ds = 8.5 mm

height H . The results we present in the following were all obtained with these values: �x =
0.18 m (�x/H = 0.15), �y = 0.04 m (�x/H = 0.033), �z = 0.01 m (�x/H = 0.0083).

The concentration variance evolution was simulated with the same stochastic equation,
Eq. 6, and with the same turbulence parameters used to evaluate the mean concentration
field. On each trajectory the concentration variance decay followed Eq. 9. The comparison
between simulated and measured normalized concentration variance vertical profiles for the
elevated source with ds = 8.5 mm is presented in Fig. 2. It can be seen that the agreement is
satisfactory for all distances from the source apart froma slight overestimation near the ground
at x/H = 3.83 and x/H = 4.79. However the agreement at the last distance is very good. It
can be stressed that, as noted by Fackrell and Robins (1982), the height of the concentration
variance maximum increases with the distance from the source. The results confirm the
linear dependence of the dissipation time scale on time, proposed by Galperin (1986). The
general behaviour of the dissipation rate is captured by the model and, in particular, by the
parametrization of the dissipation term. The ability of the model to reproduce the dependence
of the concentration variance field on the source size can be tested. It is important to note that
the source-size dependence not only enters themodel through themean field, but also through
the concentration variance dissipation term (Eq. 10). Figure 3 shows the comparison between
the modelled and the measured fluctuation intensity as a function of the normalized distance
for the different source diameters and the source height equal to 0.228 m. The fluctuation
intensity is defined as the maximum concentration standard deviation over the maximum

mean concentration, ic =
√

(c′2 )max
Cmax

.
Generally, the overall agreement is satisfactory. The model results for ds = 3 mm under-

estimate the maximum and reproduce correctly the measurements at the furthest distances.
In the case of ds = 9 mm the discrepancy between the calculated and simulated maxima is
remarkable, while reducing for ds = 15 mm. More satisfactory results are found with larger
source diameters. It is worth noting that these results are comparable with those obtained
by, e.g. Cassiani et al. (2005), Cassiani (2012), Kaplan (2014) using more sophisticated and
time-demanding models. It can be seen that the quantities in Figs. 2 and 3 are different since
in Fig. 2 the concentration variance is normalized with its maximum, while Fig. 3 represents
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Fig. 4 Comparison between simulated (lines) and measured (points) plume mean concentration vertical
profiles, normalized with their maxima, for the ground level source and ds = 15 mm

the fluctuation intensity. Thus, it is not surprising that the good agreement of Fig. 2 profiles
does not correspond to a similar behaviour of the 9-mm source experiments in Fig. 3.

As described in Sect. 2.3, the parametrization of the variance dissipationwe propose herein
depends both on the size and the height of the source. Hereafter we show the results of the
simulations performedwith the ground-level source (placed 7mm above the domain bottom).
In Fig. 4 the comparison between modelled and experimental mean concentrations, for the
case of ds = 15 mm, is shown. The agreement can be considered satisfactory at all distances
except for the closest one to the source where the model overestimates the experimental
data. As for the elevated source case, the concentration mean field of the ground-level source
was used to calculate the sources of variance. The concentration variance dispersion was
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Fig. 5 Comparison between simulated (lines) and measured (points) plume concentration variance vertical
profiles, normalized with their maxima, for the ground-level source and ds = 15 mm

then evaluated through Eqs. 6 and 9. The comparison between simulated and measured
normalized concentration variance vertical profiles for the ground-level source with ds = 15
mm is presented in Fig. 5. In this case, the agreement is not completely satisfactory as in
the case of the elevated source. Only at x/H = 5 do the simulated profiles reproduce the
measurements well, while closer to the sources values are overestimated, near the ground.
This can be partially due to the Lagrangian model and the boundary conditions (perfect
reflection), since themean concentrations are not perfectly reproduced close to the source. As
a matter of fact, in this case the particles are emitted at a very small distance from the bottom,
thus generating an asymmetric source shape. However, the poor results for the concentration
variance profiles at the two first distances might indicate a numerical limit of the method
that calculates the sources of variances as proportional to the mean concentration gradient.
This estimation may be imprecise when very large gradients are calculated and the model
resolution can be inadequate for the purpose. It can be noted that the experimental points in
Fig. 5 are the same in all panels. As a matter of fact, Fackrell and Robins (1982) observed
that the different profiles collapse onto a unique curve in the case of the ground-level source.
In Fig. 3 the fluctuation intensity as a function of the normalized distance for the different
source diameters is depicted also for ground-level source. While the results are satisfactory
for the elevated source, even with some limitation, in the case of the ground-level source the
model underestimates. In this case improved results are obtained by modifying α1 = 7 in
Eq. 10. This last result is similar to that of Galperin (1986) who used two different constants
in the parametrization of the dissipation length scale for the elevated and ground-level sources
respectively.

4 Conclusion

A model for the concentration fluctuations is proposed using the Lagrangian single-particle
stochastic model for the concentration variance developed by Manor (2014). The model
calculates the sources of concentration variance from the previously simulated mean field,
after which the particles emitted from these sources are dispersed in the flow using the
Langevin equation for single-particle trajectories,which is the sameas that used for simulating
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the mean concentration. A value of the concentration variance is assigned to each particle,
and depends on the source strength and the number of particles emitted. However, unlike the
mean concentration that is conserved, the variance is dissipated along the trajectories and an
appropriated parametrization for the dissipation term has to be considered. In analogy with
the Eulerian diffusion equation for the concentration variance, this dissipation term is given
by the ratio between the variance itself and a dissipation time scale that is to be parametrized.
While Manor (2014) suggested that the dissipation may be proportional to the Lagrangian
time scale using an ad hoc coefficient, we present a different parametrization scheme, which
depends on the Lagrangian time scale and grows linearly with time, as suggested by Galperin
(1986). Furthermore, followingFackrell andRobins (1982) andSykes et al. (1984),we require
that the dissipation time scale should also depend on both the size and the height of the source.
In order to assess its reliability we applied the model to the Fackrell and Robins (1982) wind-
tunnel experiment reproducing the dispersion from sources of different sizes and heights.
The fluctuation variance production term is based on the K -theory that could be a rough
approximation for short time dispersion. The poor results for the vertical profiles near the
ground-level source demonstrate this incorrectness. On the other hand the furthest profiles
show a better agreement between simulation results and measurements confirming that the
turbulent flux can only be represented by K -closure at large time. The results regarding the
elevated source seem to suggest that the K -hypothesis also applies for small times in this
case. This could be due to the larger eddy involved in the mixing process far from the ground.
The results show that the model can reproduce the Fackrell and Robins (1982) experiments,
at least as far as the elevated sources are considered. While to simulate the ground-level
source experiments the value of the constant α1 should be modified. The model results also
demonstrate that it can be applied in some situations in which the hypothesis we have made
are valid (farthest distances, elevated sources) while it should be less trusted when very
short times and ground-level sources are accounted for. In these cases more sophisticated
choices should be made to ensure the correctness of the model and the accuracy of the results.
However, there are many real cases in which this model could be applied.
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