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Abstract When Lagrangian stochastic models for turbulent dispersion are applied to com-
plex atmospheric flows, some type of ad hoc intervention is almost always necessary to
eliminate unphysical behaviour in the numerical solution. Here we discuss numerical strate-
gies for solving the non-linear Langevin-based particle velocity evolution equation that
eliminate such unphysical behaviour in both Reynolds-averaged and large-eddy simulation
applications. Extremely large or ‘rogue’ particle velocities are caused when the numerical
integration scheme becomes unstable. Such instabilities can be eliminated by using a suffi-
ciently small integration timestep, or in cases where the required timestep is unrealistically
small, an unconditionally stable implicit integration scheme can be used. When the general-
ized anisotropic turbulencemodel is used, it is critical that the input velocity covariance tensor
be realizable, otherwise unphysical behaviour can become problematic regardless of the inte-
gration scheme or size of the timestep. Amethod is presented to ensure realizability, and thus
eliminate such behaviour. It was also found that the numerical accuracy of the integration
scheme determined the degree to which the second law of thermodynamics or ‘well-mixed
condition’ was satisfied. Perhaps more importantly, it also determined the degree to which
modelled Eulerian particle velocity statistics matched the specified Eulerian distributions
(which is the ultimate goal of the numerical solution). It is recommended that future models
be verified by not only checking the well-mixed condition, but perhaps more importantly by
checking that computed Eulerian statistics match the Eulerian statistics specified as inputs.

Keywords Lagrangian stochastic dispersion models · Large-eddy simulation ·
Rogue trajectories · Turbulent dispersion

1 Introduction

Langevin-based Lagrangian stochastic models have proven to be a practical method for
describing the dispersion of particulates in many classes of turbulent flows. In flows with
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inhomogeneous velocity statistics, earlyworkers found that isotropic Langevin-basedmodels
failed, as particles tended to accumulate in regions of low turbulent stress. Early heuristicwork
to remedy this problem began in the atmospheric boundary-layer community and involved
adding a mean bias velocity to the Langevin equation, which worked well in cases of weakly
inhomogeneous flow (Wilson et al. 1981; Legg and Raupach 1982). The problem was later
formalized by enforcing the requirement that the particle plume should satisfy the “well-
mixed condition” (WMC; Thomson 1984) or equivalently the “thermodynamic constraint”
(Sawford 1986). In either case, it was noted that an initially uniformly distributed particle
plume should not un-mix itself in the absence of sources or sinks, or more precisely, entropy
cannot decrease (i.e., the second law of thermodynamics). This is a crucial requirement for
any model, as a model in which entropy decreases in time is generally not useful given that
it does not tend toward a uniform equilibrium state in the absence of sources or sinks.

A rigorous theoretical solution to the “un-mixing” problem was devised concurrently
by Thomson (1987) and Pope (1987), whose remedies were based on the notion that the
Lagrangian dispersion models should satisfy their corresponding macroscopic Eulerian con-
servation equations, which clearly satisfy the second law of thermodynamics. Thomson
(1987) used the Fokker–Planck equation to determine the proper coefficients in the Langevin
equation, while Pope (1987) used the Navier–Stokes equations. The present paper primarily
focuses on the Thomson approach because it is themost common in atmospheric applications
(Lin et al. 2013), although similar problems are likely to arise when the Pope approach is
used depending on the chosen form of the model.

Despite the fact that the Thomsonmodel should satisfy the second law of thermodynamics
in theory, authors have begun to report unphysical model behaviour, particularly in cases with
complex inhomogeneity. This has been revealed by the failure of computed particle plumes
to satisfy the WMC in practice (Lin 2013), or by the presence of unrealistically large or
‘rogue’ particle velocities (Yee and Wilson 2007; Postma et al. 2012; Wilson 2013; Bailey
et al. 2014; Postma 2015). Although the Thomson model has been in use for several decades,
it is only until recently that authors began explicitly acknowledging the unphysical behaviour
in the numerical solutions of model equations.

Severalmethods have been suggested to dealwith such unphysical behaviour. The simplest
of which is ad hoc intervention in which velocities are artificially limited to some predeter-
mined range. When a particle becomes rogue (according to some predefined criteria), the
particle velocity is either artificially reset to some value, or the particle trajectory is restarted
from the beginning. This method removes rogue velocities, but does not in general satisfy the
second law of thermodynamics. Numerous discussions between the author and colleagues
using these types of models have revealed that some form of ad hoc intervention is ubiqui-
tous, although rarely acknowledged in the literature. In some situations, relatively infrequent
occurrence of rogue trajectories or some ad hoc correction may be tolerable, e.g., when only
mean concentrations are desired. However, in other instances they may contaminate results
to an unacceptable level (e.g., Postma et al. 2012; Wilson 2013).

More advanced integration schemes have been suggested that reduce (although not elim-
inate) rogue velocities. Yee and Wilson (2007) formulated a semi-analytical integration
scheme, whereby the integration is divided into analytical and numerical sub-steps. Unfor-
tunately, certain conditions must be met in order to allow for the analytical sub-step, often
requiring ad hoc intervention anyway when the conditions are not met. Bailey et al. (2014)
divided the integration into implicit and explicit sub-steps, which reduced but did not elim-
inate rogue trajectories. Lin (2013) presented a method that treats the turbulence field as
stepwise homogeneous, which eliminates sharp local gradients that can cause numerical dif-
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ficulties such as rogue trajectories. However, this method may be difficult to apply in cases
of complex geometry and could require high grid resolution to resolve large gradients.

Authors have reported that reducing the timestep used in numerical integration of the
Langevin equation could potentially reduce the frequency of rogue trajectories (e.g., Postma
et al. 2012). It is probable that the timestep would have to be unfeasibly small to eliminate
all rogue trajectories in complex flows. In accordance with this principle, Postma (2015)
developed an adaptive timestep scheme that reduced the timestep based on the local turbulent
time scales of the flow. Thismethodology still did not completely eliminate rogue trajectories,
and would also be quite complex to apply in general three-dimensional flows.

The goal of the present study was to uncover the root cause of reported unphysical behav-
iour in certain Lagrangian stochastic dispersion models. A remedy for the problem was
ultimately desired, which involved formulating a stable numerical scheme that satisfies the
thermodynamic constraint andmatches theEulerian velocity statistics specified as inputs. The
source code and input data for all examples presented herein are provided in the associated
online material.

2 Reynolds-Averaged Lagrangian Stochastic Models

In a Lagrangian framework, one can calculate the time evolution of particle position given
information about the velocity field as

dxp,i
dt

= Ui + ui , (1)

where xp,i is particle position in Cartesian direction i = (x, y, z), t is time, and Ui and ui
are respectively the mean and fluctuating particle velocity components.

Often in turbulent flows, only the ensemble-averaged component of dxp,i/dt is known, and
the fluctuating componentmust bemodelled. Thus, there has been large interest in developing
practical models for the Lagrangian particle velocity fluctuations that can be driven by easily
measured or estimated turbulence quantities such as the local turbulent kinetic energy. The
unresolved Lagrangian velocity is commonlymodelled using an analogy to Langevin (1908),
who developedmodels forBrownianmotion. The stochastic Langevin equation can bewritten
in modern form as

dui = −auidt + bi jdWj , (2)

where dW is an increment in a Weiner process with zero mean and variance dt , and a and
b are coefficients to be determined. This particular form assumes that the particle velocity is
Markovian and Gaussian.

For homogeneous, isotropic turbulence, these coefficients can be determined indepen-
dently such that ui has the proper short- and long-time behaviour, which is made possible by
the Markovian assumption. The b coefficient is commonly specified such that the small-time
behaviour of ui is consistent with Kolmogorov’s second similarity hypothesis, which gives

b2dt = 〈(dui )2〉 = C0εdt, (3)

where 〈·〉 is an ensemble average, C0 is a ‘universal’ constant (Rodean 1991; Du 1997), and
ε is the mean dissipation rate of turbulent kinetic energy. The a coefficient is the inverse of
the particle integral time scale τL, which is commonly assumed to be (cf., Rodean 1996)

a = 1

τL
= C0ε

2σ 2 , (4)
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where σ 2 is the velocity variance. These choices for a and b give the familiar form of the
Langevin equation applied to homogeneous and isotropic turbulence

dui = −C0ε

2σ 2 uidt + (C0ε)
1/2 dWi . (5)

The first term on the right-hand side of Eq. 5 represents local correlation (with time scale
τL), and uniquely determines the correlation time scale of ui ; the second term corresponds
to (uncorrelated) motions on the order of the Kolmogorov scale (time scale τη).

2.1 Application to Flows with One-Dimensional Inhomogeneity

For inhomogeneous applications such as the atmospheric boundary layer, Eq. 5 is no longer
an appropriate model for ui for several reasons. First, mean spatial gradients cause Eq. 5
to produce non-uniform mean particle fluxes even in the absence of gradients in particle
concentration. This implies that models based on Eq. 5 will violate the second law of ther-
modynamics, considering that a nonuniform mean flux in a uniformly distributed particle
plume will “un-mix” itself or decrease in entropy over time. Secondly, the presence of het-
erogeneity implies that 2σ 2/C0ε is no longer the proper correlation time scale.

To obtain a consistent model for ui , we first assume a form of the (Eulerian) probability
distribution of ui . If the assumption is made that ui is Gaussian and isotropic, the Eulerian
velocity probability distribution at any instant is given by

PE(u; x) = 1√
2πσ(x)

exp

(
− uuT

2σ 2(x)

)
. (6)

This can be substituted into the Fokker–Planck equation, along with the previous assump-
tion that b2 = C0ε, to yield a consistent Langevin equation for ui (cf. Thomson 1987; Rodean
1996)

dui = − C0ε

2σ 2 uidt︸ ︷︷ ︸
I

+ 1

2

(
∂σ 2

∂xi
+ ui

σ 2

dσ 2

dt

)
dt

︸ ︷︷ ︸
II

+ (C0ε)
1/2 dWi

︸ ︷︷ ︸
III

, (7)

where dσ 2/dt = ∂σ 2/∂t+(
Uj + u j

) (
∂σ 2/∂x j

)
. The traditional interpretation of themodel

terms (e.g.,Rodean1996) is that term I is the “fadingmemory”of the particle’s earlier velocity,
term II is a “drift correction” that accounts for flow heterogeneity, and term III accounts
for random pressure fluctuations with very short time scales. Determining the Langevin
coefficients in this way leads to a Lagrangian dispersion model that theoretically adheres
to the second law of thermodynamics, which is that an initially uniformly distributed (well-
mixed) plume of particles cannot un-mix itself in the absence of sources or sinks (i.e., entropy
cannot decrease).

2.2 Alternative Interpretation of Terms

A new grouping and interpretation of terms is proposed, which will aid in later discussion.
Equation 7 can be equivalently written as

dui = − C0ε

2σ 2 uidt︸ ︷︷ ︸
I

+ 1

2σ 2

dσ 2

dt
uidt︸ ︷︷ ︸

II

+ 1

2

∂σ 2

∂xi
dt

︸ ︷︷ ︸
III

+ (C0ε)
1/2 dWi

︸ ︷︷ ︸
IV

, (8)
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where term I can be interpreted as deceleration due to energy dissipation by viscosity. Since
C0ε/2σ 2 is always positive, this term always acts to damp the particle velocity and relax it
toward the mean exponentially in time. Term II is an energy production/destruction term;
if the sign of dσ 2/dt is positive (negative), correlated energy is added to (removed from)
the particle velocity. Term III (along with term II) enforces the inherent requirement that the
mean of the velocity fluctuations must be zero. Finally, term IV is a random forcing term
corresponding to turbulent diffusion. As was the case in Eq. 5, the roles of terms I and IV are
to add energy (term IV) and remove energy (term I) at rates consistent with the prescribed
values of σ 2 and ε.

Heterogeneity in σ 2 causes term I to induce a mean diffusive particle flux. This is because
in regions of small σ 2, term I removes energy at a more rapid rate. As a result, particles
decelerate in these regions on average, causing a build-up of particles or a convergence. To
counteract this mean flux, terms II and III collectively give an ensemble mean acceleration
of ∂σ 2/∂xi . It is clear that term III represents exactly half of this acceleration, and the
average acceleration given by term II is also 1

2∂σ 2/∂xi . To see this consider a steady, one-

dimensional example where dσ 2/dt = u
(
∂σ 2/∂x

)
. When the average is taken, u2 cancels

with σ−2 to give an average acceleration of 1
2∂σ 2/∂x . The other role of term II is to ensure

that the ensemble ui has the correct local variance by increasing/decreasing particle energy
as particles traverse a gradient in σ 2.

Terms I and II represent correlated particle accelerations, whereas terms III and IV are
uncorrelated. Terms I and II can be re-written in the form

− ui
τ

= −
(
C0ε

2σ 2 − 1

2σ 2

dσ 2

dt

)
ui , (9)

with the correlation time scale being

τ =
(
C0ε

2σ 2 − 1

2σ 2

dσ 2

dt

)−1

. (10)

Although this is the correlation time scale, it could equivalently be viewed as the time scale
associatedwith energy production/dissipation. Loosely speaking,C0ε/2σ 2 can be interpreted

as the local component of the time scale due to dissipation by viscosity, and
1

2σ 2

dσ 2

dt
the

component corresponding to changes in correlation due to gradients in the velocity variance
along the particle path. Note that at any instant, τ may be negative, which indicates that
the particle has gained more energy due to the gradient in σ 2 than viscosity can dissipate.
However, the integral time scale τL will always be positive for any bounded or periodic flow
because any energy gained due to dσ 2/dt > 0 will be removed by a corresponding region of
dσ 2/dt < 0 (or the particle could reach an indefinite region of dσ 2/dt = 0, in which case
no energy is added or removed).

2.3 Numerical Integration

Equation5 canbediscretized into time increments ofΔt to numerically calculate the evolution
of ui . Using a simple explicit forward Euler scheme, this can be written for homogeneous
isotropic turbulence as

un+1
i = uni −

(
C0ε

2σ 2

)n

uni Δt + (
C0ε

n)1/2 ΔWi , (11)
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where superscripts n and n+1 correspond to evaluations at times of t and t+Δt , respectively.
Since C0, ε, and σ 2 are all positive (and subsequently the integral time scale is always
positive), this scheme is numerically stable (in the absolute sense) when C0εΔt < 4σ 2

(Leveque 2007).
Equation 11 can be modified to include the effects of heterogeneity in σ 2 to give the

discrete version of Eq. 8 as

un+1
i = uni −

(
C0ε

2σ 2 − 1

2σ 2

Δσ 2

Δt

)n

uni Δt + 1

2

(
∂σ 2

∂xi

)n

Δt + (
C0ε

n)1/2 ΔWi . (12)

where
(
Δσ 2

)n
is approximated as

(
σ 2

)n−(
σ 2

)n−1
. It should be noted that spatial derivatives

have not been discretized at this point, as they are assumed to be an ‘input’ value.
As was previously discussed, the addition of heterogeneity results in the additional mean

flux term, as well as the production/destruction term. By applying stability analysis (Leveque
2007), it is found that Eq. 12 is unstable when the correlation time scale is negative (i.e.,
C0ε < Δσ 2/Δt), or when the correlation time scale is positive and(

C0ε − Δσ 2

Δt

)
Δt > 4σ 2. (13)

Here, the term ‘unstable’ refers to stability in the absolute sense, which means that the
truncation error grows from time t to t + Δt . As a result, the numerical error in the particle
velocity does not necessarily become unsuitably large over a single timestep. Butwith enough
consecutive timesteps where the numerical integration is ‘unstable’, the numerical error can
grow to overwhelm the calculation. In this case, the numerical error adds more energy than
the dissipation due to viscosity plus numerical dissipation can remove, which is analogous to
the above discussion in which τL < 0. This is problematic because when a threshold value is
chosen to screen for rogue trajectories, particles can be continually adding erroneous energy
to the calculation without exceeding the threshold.

2.4 A Numerically Stable Integration Scheme

A common strategy for dealing with stiff differential equations is to use a numerical inte-
gration scheme with a large region of absolute stability (Hairer and Wanner 1996; Leveque
2007). Implicit schemes generally have much larger regions of absolute stability than explicit
schemes such as the forward Euler scheme. In fully implicit schemes, terms are evaluated
at the end of the discrete time increment rather than at the beginning. The complex nature
of the problem at hand means that formulating an implicit scheme is not straightforward for
several reasons, each to be addressed in this section.

If we begin by considering the integration of Eq. 8 using a fully implicit numerical scheme,
there is a problem that seemingly arises. In order to evaluate coefficients such as ε, σ 2, etc. at
time t + Δt , we must not only find the unknown velocity at this time, but also the unknown
particle position. This means that an iterative solution would be required for ui (t + Δt),
which is usually quite costly. One way of dealing with this is to ‘lag’ the coefficients, which
means evaluating the coefficients at time t but evaluating the velocity at t + Δt . This may
result in a slight loss of accuracy, but this loss is usually found not to be significant (Leveque
2007). If the coefficients are lagged, Eq. 8 can now be written using a fully implicit scheme
(backward Euler) as

un+1
i = uni −

(
C0ε

2σ 2 − 1

2σ 2

Δσ 2

Δt

)n

un+1
i Δt + 1

2

(
∂σ 2

∂xi

)n

Δt + (
C0ε

n)1/2 ΔWi , (14)
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where
(
Δσ 2

)n
is approximated as

(
σ 2

)n −(
σ 2

)n−1
. Note that all coefficients are evaluated at

time n, and that ui is evaluated at time n+ 1. It is then straightforward to obtain an algebraic
solution for un+1

i .
The scheme is stable for all τL > 0. As was discussed in the previous section, τL will

never be negative due to the particle dynamics alone, and the use of an implicit schememeans
that numerical error will also not make τL negative. Therefore, the implicit scheme should
be unconditionally stable (which will be demonstrated in the following sections).

One important additional item to note about Eq. 14 is that the total derivative of σ 2

is discretized directly as
(
Δσ 2/Δt

)n =
[(

σ 2
)n − (

σ 2
)n−1

]
/Δt rather than

(
∂σ 2/∂t

)n +
un+1
j

(
∂σ 2/∂x j

)n
. In other words, the total derivative is calculated along particle trajectories

(Lagrangian) rather than using the Eulerian definition at a fixed grid point. Using the Eulerian
approachwouldmakeEq. 14non-linear inun+1

i , thus eliminating the possibility for an explicit
algebraic solution for un+1

i . For consistency, the same Lagrangian approach was used for the
explicit method (Eq. 12), although the Eulerian approach was also tested to ensure that it did
not significantly change results.

2.4.1 Generalization to Three-Dimensional, Heterogeneous, Anisotropic Turbulence

This analysis can be easily generalized to cases of anisotropic turbulence. We can proceed
by assuming a form for the Eulerian velocity probability distribution function in terms of the
macroscopic velocity covariances

PE = (2π)−3/2 ( detR )−1/2 exp

(
−1

2
uTR−1u

)
, (15)

where R = Ri j is the Reynolds stress (or velocity covariance) tensor, R−1 is its inverse,
and uT is the transpose of u. It is clear that R must be positive semi-definite, otherwise the
argument to the exponential function is positive and PE → ∞ as

∣∣u∣∣ → ∞. It is known
that a true Reynolds stress tensor is positive semi-definite by definition (Du Vachat 1977;
Schumann 1977), but modelled stress tensors may not necessarily satisfy this condition. R
must also be non-singular since this formulation for PE involves a division by detR. When
such conditions are satisfied, the tensor is termed ‘realizable’. A new method for ensuring
realizability is suggested in Sect. 5.3 for cases where the modelled Reynolds stress tensor is
not necessarily realizable because it is not a true covariance tensor.

Thomson (1987) substituted Eq. 15 along with the previous expression for b into the
Fokker–Planck equation to solve for the coefficient a. Although the solution is not unique,
Thomson’s ‘simplest’ model for dispersion in Gaussian, inhomogeneous, and anisotropic
turbulence was given as

dui = −C0ε

2
R−1
ik ukdt + R−1

	j

2

dRi	

dt
u jdt + 1

2

∂Ri	

∂x	

dt + (C0ε)
1/2 dWi . (16)

We can obtain an implicit scheme in a manner analogous to the isotropic turbulence case

un+1
i = uni −

(
C0ε

2
R−1
ik

)n

un+1
k Δt

+
(
R−1

	j

2

ΔRi	

Δt

)n

un+1
j Δt + 1

2

(
∂Ri	

∂x	

)n

Δt + (
C0ε

n)1/2 ΔWi , (17)
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where (ΔRi	)
n = [

(Ri	)
n − (Ri	)

n−1]. The resulting scheme is unconditionally stable pro-
vided that Ri j is realizable.

Equation 17 is a 3 × 3 matrix system of equations in terms of ui , which can be easily
inverted analytically. Clearly the system of equations given by Eq. 17 must be non-singular
to allow for inversion. However, since velocity increments are generally small compared to
the velocity itself, the author has never found any instances where singularity was a problem,
as the determinant is generally of order unity.

2.5 Some Notes on Increasing Numerical Accuracy

If higher numerical accuracy is desired, one could use a numerical integration scheme with
a higher order of accuracy. Higher-order schemes are available (Kloeden and Platen 1992),
but we are limited by the fact that we either have to lag the coefficients, or else we end up
with a costly iterative solution.

Although many approaches are available to increase numerical accuracy, the present work
controls the accuracy by varying Δt ; Δt could be adjusted autonomously using a standard
adaptive timestepping approach (Press et al. 2007), although not explored here. These meth-
ods generally proceed as follows: a step of size Δtn is taken at some time t and the error
of the step is estimated. If that error is less than some predefined tolerance, the timestep is
increased for the next iteration in time. If the estimated error is greater than the tolerance,
the step is rejected and re-tried with a smaller step size until the error is below the tolerance.
There are some complications that arise when dealing with stochastic differential equations,
which are described in, e.g., Mauthner (1998) and Lamba (2003).

3 Sinusoidal Test Case

3.1 Test Case Set-Up

To analyze the performance of the proposedmethodology inReynolds-averaged applications,
a simple isotropic turbulence field was formulated to facilitate straightforward analysis. The
required Eulerian statistics of the velocity field were specified as

σ 2(x) = 1.1 + sin x, (18a)

ε(x) = σ 3(x), (18b)

such that 0 ≤ x ≤ L , where here L = 2π . A graphical depiction of σ 2 and ε is given in Fig. 1.
The equation for ε stems from the scaling argument that ε ∼ k3/2/	 and k ∼ σ 2, where
k is the turbulent kinetic energy and 	 is a characteristic length scale for energetic eddies.
However the choices for σ 2 and ε are arbitrary, as these are model inputs. The goal of the
model is to produce particle velocitieswhose statistics are consistentwith the specified inputs,
whether they be physical or non-physical. A sinusoid was chosen because it is periodic, and
has regular intervals of heterogeneity; furthermore, it means that function evaluations and
derivatives are exact. All units in this section are arbitrary; each component of the mean
velocity Ui was set to zero for these tests.

In the test simulations, 100,000 particles were released from random points uniformly
distributed over the interval (0, 2π). Particle trajectories followed a periodic condition at
the flow boundaries x/L = 0 and 1; they were tracked over a time period of T = 10. C0

was taken to be equal to 4.0, and unless otherwise noted Δt = 0.1. The particle velocity
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Fig. 1 Profiles of turbulence
quantities in the sinusoidal test
case: a velocity variance σ 2, and
b average turbulence dissipation
rate ε
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was initialized by drawing a Gaussian random number with mean zero and variance σ 2(x0),
where x0 is the particle’s initial position.

The ‘mixedness’ of the particle plume was quantified using the entropy ‘S’, which, fol-
lowing the common approach used in information theory, is defined as

S = −
Nbins∑
i=1

P(xi ) ln P(xi ), (19)

where P(xi ) is the probability that a particle resides in the i th discrete subinterval of x
(i = 1, 2, . . . Nbins). When calculated in this way, the entropy of the perfectly mixed particle
distribution is S = 0. The entropy of the simulated particle plume is expected to be negative,
but the goal is to achieve an entropy as close to zero as possible.

If a particle became ‘rogue’, it was discarded and not included in the analysis. For practical
purposes, a particle is considered rogue when the absolute value of its velocity exceeds
10max(σ ). Previous work commonly uses a weaker threshold of closer to 6 σ (e.g., Wilson
2013; Postma 2015).Given the number of particle trajectory updates and the assumed velocity
distribution, it is not impossible to find a stable particle with a velocity near 6max(σ ). The
odds are around 1 in 5×108, and the simulations that follow have up to 109 particle updates.
However, it would be exceedingly unlikely to find a stable particle with a velocity greater than
10max(σ ). Experience has shown that if a particle is unstable, its velocity quickly exceeds
10max(σ ) or even 100max(σ ), which clearly distinguishes it from a stable particle whose
velocity has become large simply because it lies in the tails of the probability distribution.
Thus, it is preferable to choose a large threshold to define rogue trajectories. With this type
of thresholding methodology, the cumulative number of rogue trajectories over an entire
simulation is also expected to increase with the length of the simulated time period.

3.2 Particle Position Probability Density Functions

Figure 2a gives the probability density function (p.d.f.) of particle position at the end of
the simulation, with u calculated according to Eq. 11 (which assumes homogeneity). For
comparison, the ‘well-mixed’ particle distribution is shown by the vertical dashed line. The
figure illustrates the well-known result that this methodology violates the second law of
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Fig. 2 P.d.f. of particle position for the sinusoidal test case: a homogeneous model for u (Eq. 11) integrated
using an explicit forward Euler scheme (Δt = 0.1); b inhomogeneous model for u (Eq. 12) integrated using an
explicit forward Euler scheme (Δt = 0.1); c inhomogeneous model for u (Eq. 14) integrated using an implicit
backward Euler scheme (Δt = 0.1). R is the fraction of particles that were ‘rogue’, or

∣∣u∣∣ > 10max(σ ), and
S is the entropy of the plume

thermodynamics, and causes particles to accumulate in regions of low velocity variance
(see Fig. 1). Using the known region of stability introduced earlier Δt < min

(
4σ 2/C0ε

)
,

the timestep should be less than about 0.7 to ensure stability. Thus, as shown in the figure,
Δt = 0.1 gives no rogue trajectories. Although not shown, it was verified that at around
Δt ≈ 0.7, rogue trajectories began appearing as expected.

Using the inhomogeneous model for u with an explicit forward Euler integration scheme
(Eq. 12) actually degraded results (Fig. 2b). Firstly, the entropy substantially decreases over
that of the homogeneous model; secondly, 55 % of particles became rogue according to
the definition given above. Note that this value of 55 % increases continually in time until
eventually all particles become rogue. Whether there are only a few rogue trajectories or
whether there are thousands, the solution is still unstable over some region and all particles
are likely to eventually become rogue if the simulation runs for long enough time.

If the same inhomogeneous model for u is used but instead with an implicit backward
Euler integration scheme (Eq. 14), an improvement in results can be observed (Fig. 2c). The
entropy increases slightly over the homogeneous model (i.e., entropy is closer to zero), and
there are no rogue trajectories as expected.

3.3 Effect of the Timestep on Stability and ‘Mixedness’

Figure 3 shows the effect of varying the timestep for the ‘sinusoidal’ test case using the
explicit inhomogeneous model for u (Eq. 12, Fig. 3a–d) and the implicit inhomogeneous
model (Eq. 14, Fig. 3e–h). It should be noted that for the homogeneous model (Eq. 11),
reducing the chosen timestep had little effect, and therefore no further results are shown for
that case.
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Fig. 3 P.d.f. of particle position for the sinusoidal test case using the inhomogeneous model for u (Eq. 8).
Columns correspond to varying timestep. Rows correspond to varying integration scheme, with panels a–d
using the explicit forward Euler scheme (Eq. 12), and panels e–h using the implicit backward Euler scheme
(Eq. 14). R is the fraction of particles that were ‘rogue’, or

∣∣u∣∣ > 10max(σ ), and S is the entropy of the plume

As the timestep is decreased when using the explicit forward Euler scheme, the fre-
quency of rogue trajectories decreases towards zero. This is an expected result, since
decreasing the timestep means that the scheme will tend toward its region of absolute
stability.

It is difficult to use Eq. 13 to calculate the required timestep for stability since Δσ 2,
or equivalently u

(
∂σ 2/∂x

)
Δt , is not readily calculated. If we estimate that max

∣∣u∣∣ ∼
6max (σ ), we can estimate that the explicit scheme is stable when
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Fig. 4 Probability distribution
P(x/L) of the location where
particles became ‘rogue’, or first
exceeded the velocity threshold
of 10 σ(x) for two timestep
choices. The shaded area shows
the region of instability for
Δt = 0.05, as approximated by
Eq. 20

Δt � min

⎛
⎜⎜⎝ 4σ 2

C0ε ± 6max (σ )
∂σ 2

∂x

⎞
⎟⎟⎠ . (20)

Substituting values gives that the forward Euler scheme is stable for this test case when
Δt � 0.03, which agrees with Fig. 3. Note that this is only a rough estimate, and should
not be considered exact. This equation can also be used to estimate the region(s) of the flow
where particles are most likely to become unstable. Figure 4 shows the distribution of the
locations of rogue trajectories (i.e., the particle’s location when its velocity first exceeded
the threshold of 10max (σ )), as well as the region of absolute instability as estimated from
Eq. 20. Not surprisingly, rogue trajectories were most likely to occur in the region where the
model equations were unstable.

For both the explicit and implicit integration schemes, the entropy or ‘mixedness’ tends
toward zero as the timestep is decreased. However, it appears that the implicit scheme
approaches a well-mixed state more rapidly than the explicit scheme. For moderately small
timesteps (e.g.,Δt = 0.1 and 0.05), the entropy is substantially lowerwhen an implicit scheme
is used. This result is important for cases where an extremely small timestep cannot be used
and compromisesmust bemade. In such cases, it appears preferable to use an implicit scheme,
as it results in unconditional stability and better adherence to the well-mixed condition.

When the timestep was increased to extreme levels, there also became a point where
the plume started tending back toward a well-mixed state. When this occurred, velocity
increments were very large, and an additional diffusive effect became present, which mixed
out the particle plume (see Fig. 3a,e). This happens when the particle timestep is on the order
of the integral time scale. As will be further illustrated in Sect. 3.4, the WMC is seemingly
satisfied because particle timesteps are so large that the particle’s variance is uncoupled with
the local Eulerian variance, and thus the local gradient in the variance does not act to un-mix
particles. This is an important result, as it indicates that the WMC alone is not a sufficient
indicator of the performance of the numerical scheme. The next section presents a more
thorough examination.
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3.4 Eulerian Profiles of Particle Velocity

The direct purpose of the above models is not necessarily to satisfy the well-mixed condition
or second law of thermodynamics (i.e., this is not the governing equation being solved).
Satisfying these consistency conditions is simply a byproduct. Rather, the purpose is to
produce an ensemble of Lagrangian particles that has the velocity p.d.f. prescribed by Eq. 6,
i.e., Gaussian with zero mean and local variance σ 2(xi ). It will be shown that if the computed
Eulerian particle velocity p.d.f. has zero mean and local variance σ 2(xi ), the well-mixed
condition will be satisfied by default.

To better assess the numerical procedure, it is instructive to calculate Eulerian statistics
of the Lagrangian particle velocities, and compare them with the ‘exact’ values. Fortunately,
the exact values of the Eulerian mean velocity and variance are always known, since they
were specified as inputs. The ensemble mean particle velocity should be zero at every point,
and the ensemble mean of the particle velocity increments should be equal to ∂σ 2(x)/∂x .
The ensemble particle velocity variance should be equal to σ 2(x), and the variance of the
particle velocity increments should be equal to C0ε(x)Δt .

Figures 5 and 6 compare calculated Eulerian profiles of mean particle velocity, mean
particle velocity increments, particle velocity variance, and variance of the particle velocity
increments. These profiles are determined by establishing a set of discrete spatial bins, and
calculating the mean/variance of all particles residing in a given bin. This Eulerian averaging
operator is denoted as 〈·〉E.

3.4.1 Homogeneous Model

When the model lacks correction terms for heterogeneity (Eq. 11), the mean particle velocity
correctly remains zero everywhere (Fig. 5a), but the particles do not assume the correct
velocity variance profile (Fig. 5b). This is because the mean acceleration required for the
particles to assume the correct velocity variance is not properly applied (Fig. 5c). In other
words, a mean acceleration is required for particles to assume a heterogeneous σ 2(x) profile.
Since Eq. 11 has zero mean acceleration, un-mixing occurs regardless of the timestep when
σ 2 is heterogeneous (Fig. 2a).

3.4.2 Inhomogeneous Model, Implicit Scheme

When the effects of instability are removed from the inhomogeneous model by using an
implicit scheme, numerical accuracy dictates the degree to which un-mixing occurs. Numer-
ical errors lead to particle ensembles that deviate from the ‘exact’ Eulerian statistics specified
as inputs (Fig. 6). Errors induce a non-zero Eulerian mean particle velocity (Fig. 6a), and
cause particles to fail to assume the correct variance distribution (Fig. 6b).When the timestep
is too large, the model fails to correctly represent the mean acceleration that corrects for the
effects of heterogeneity (Fig. 6c) and the variance of the velocity increments (Fig. 6d). When
the timestep is extremely large, the model correctly predicts a zero ensemble mean particle
velocity everywhere, but it predicts an incorrect velocity variance profile that is uniform. The
uniform variance profile explains why no un-mixing is observed in Fig. 3e.

The mean velocity induced by numerical errors (Fig. 6a) appears to be consistent with the
un-mixing patterns shown in Fig. 3e–h. The change in sign of in 〈u〉E at x/L ≈ 0.75 causes a
convergence, while the change in sign at x/L ≈ 0.25 causes a divergence. However, it can be
seen from Fig. 3e–h that the convergence at x/L ≈ 0.75 is much larger than the divergence
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Fig. 5 Simulated Eulerian profiles for the sinusoidal test case using the explicit scheme: a average particle
velocity, b particle velocity variance, c average particle acceleration, d variance of particle velocity increments.
Profiles are formed by calculating an average or variance over all particles residing in the i th discrete spatial
bin. The solid blue line denotes results when the homogeneous model (Eq. 11) was used withΔt = 0.01. Note
that Δt = 4.0 is not shown because so many particles were rogue that it made it difficult to obtain meaningful
profiles

at x/L ≈ 0.25. This is due to the fact that the velocity variance (or standard deviation) is
much smaller at x/L ≈ 0.75, and thus the induced mean velocity has a much larger effect
(i.e., 〈u〉E/σ is much larger at x/L ≈ 0.75).

3.4.3 Inhomogeneous Model, Explicit Scheme

The explicit scheme showed similar behaviour in the induced mean velocity and acceleration
profiles as the timestep was varied (Fig. 6a, c). The primary difference when compared with
the implicit scheme was that when the timestep was moderately large, the explicit scheme
added too much energy (Fig. 6b, d). An exceptionally large spike in particle energy can
be found near x/L ≈ 0.75, which corresponds to the most probable location of instability
(Fig. 4). Thus, it appears that instabilities act to add erroneous energy to the particles.

Interestingly, the patterns in un-mixing for the explicit scheme (Fig. 3a–d) are opposite
of the implicit scheme, where a strong divergence is found at x/L ≈ 0.75 rather than
a convergence. It is probable that this is related to the presence of instabilities. As was
previously shown, instabilities add erroneous energy, which is strongest at x/L ≈ 0.75. This
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Fig. 6 Same as Fig. 5 except that the implicit integration scheme was used

energy is liable to create a diffusive effect that will cause particles to vacate this region,
thus resulting in a divergence. However, it is difficult to demonstrate directly that this is the
case, as the effects of instability and numerical inaccuracy cannot be readily separated for
the explicit scheme.

3.5 Effect of Numerical Interpolation and Differentiation

In the above methodology, coefficient evaluations and spatial derivatives were exact since
explicit equations were available for σ 2 and ε. However, in most real situations, only discrete
‘gridded’ data are available. This means that in order to evaluate e.g., σ 2(xi ), a numerical
interpolation schememust be used. Additionally, spatial derivatives such as ∂σ 2/∂xi must be
estimated using a numerical scheme. Since the above section found that numerical accuracy
in integrating the differential equation for ui affected the degree to which the well-mixed
conditionwas satisfied, it is reasonable to imagine that numerical accuracy of the interpolation
and spatial differentiation schemes may also play a role.

The previous simulations were repeated using a discrete grid of 20 points, with linear
interpolation used for function evaluations between discrete points. Spatial derivatives were
calculated at each grid point using a centred finite difference scheme, whichwere interpolated
between grid points using a linear scheme (both of which are second-order accurate). When
this approach was used, no significant differences were found in Figs. 2 or 3. It was found that
as long as the Eulerian grid was fine enough to adequately resolve mean spatial gradients,
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numerical errors in the differencing and interpolation schemes had aminimal overall effect on
the ability of model outputs to match the specified input fields. In the following section, cases
are noted where very large gradients in σ 2(x) caused difficulty in the numerical estimation
of gradients, and some simple solutions are suggested.

4 Channel Flow Test Case

4.1 Test Case Set-Up

The simplicity of the above sinusoidal test case provided a convenient means for testing the
given numerical schemes. However, such a case is clearly unphysical. To demonstrate that
the above analysis still holds in a more realistic case, a channel flow was considered. The
channel-flow direct numerical simulation (DNS) data of Kim et al. (1987) andMansour et al.
(1988) were used to drive the dispersion simulations. Horizontally-averaged profiles were
calculated from the DNS dataset in order to set up a one-dimensional inhomogeneous flow
that could be used to test the Reynolds-averaged models. In this section, only the isotropic
model is considered, with testing of the anisotropic model left for the next section.

Vertical profiles of the normalizedmean velocityU , the velocity varianceσ 2, and turbulent
dissipation rate ε are given in Fig. 7, whose values were defined on 50 uniform grid points.
Dimensional values are normalized by some combination of the channel half-height δ and
the friction velocity uτ . The simulations were set up such that particle position and velocity
evolved through time in all three Cartesian coordinate directions, although only transport in
the wall-normal direction will be examined. The mean velocity components were equal toU
in the streamwise (x) direction, and zero in other directions. The Eulerian velocity variance
was equal to σ 2 in all three Cartesian directions (isotropic). Note that the isotropic velocity
variance was specified as σ 2 = 2

3k, where k is the turbulent kinetic energy. 105 particles
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Fig. 7 Input profiles for the channel-flow test case: a mean velocity magnitude, b isotropic velocity variance,
and c mean turbulent dissipation rate. Profiles are normalized using the friction velocity uτ and the channel
half-height δ
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were uniformly released at t = 0, and simulated for a period of T = δ u−1
τ ; C0 was set equal

to 4.0.

4.1.1 Boundaries

The zero-flux boundaries and associated problems arising in the model need consideration.
The first relates to how the boundaries should affect particle motion. Because the particles
are simply fluid parcels with no mass, in reality such particles generally never impact upon
the wall. As real particles approach the wall, their velocity is damped to zero by viscosity
before impacting the wall. Thus particle velocities should approach zero at the lower wall,
and the vertical velocity component should approach zero at the upper boundary. The models
used herein do not have a viscous sublayer model, and therefore particles do not necessarily
obey such constraints. The strategy used was to ensure that all variables go to zero at the
lowest grid point, and all gradients and vertical fluxes go to zero at the highest grid point.
In this case, particles tended to naturally follow the zero-flux wall boundary conditions on
their own. Cases where particles still crossed boundaries were due to numerical inaccuracies,
and in general as the numerical solution converged, fewer and fewer wall crossings were
observed. To ensure the boundary conditions were always enforced regardless of numerical
errors, perfect reflection was used.

Another boundary-related issue was with regard to calculation of vertical gradients. When
gradients were numerically calculated in the previous test case, a central differencing scheme
was used throughout, which was made possible by the fact that boundaries were periodic.
Near zero-flux boundaries, a forward (backward) scheme must be used at the lower (upper)
boundaries. Switching schemes near thewalls tended to create problems related to themodel’s
ability to satisfy the well-mixed condition in those areas. This caused un-mixing to occur
near the boundaries regardless of how small a timestep was used. Two possible remedies
were found that eliminated this. One was to linearly interpolate gridded data onto a finer grid
such that near-boundary gradients were well-resolved. Another was to use the same scheme
throughout the domain as is used at the lower wall (i.e., a forward scheme). This still requires
a change in schemes at the upper wall, but if gradients are small there, it did not seem to
create a problem. In what follows, a second-order forward differencing scheme was used for
all nodes except at the top two nodes, in which case a second-order backward scheme was
used. Furthermore, 50 vertical grid points were chosen so that there was at least one grid
point between the lower wall and the point where σ 2 begins to rapidly decrease.

4.2 Particle Position p.d.f.s

First, the model’s ability to satisfy theWMC or thermodynamic constraint was assessed. Fig-
ure 8 gives the probability distribution of vertical particle position at the end of the simulation.
Results showed similar behaviour as in the previous ‘sinusoidal’ test case. Using the forward
Euler scheme resulted in a substantial number of rogue trajectories, which decreased as the
timestep was decreased. The frequency of rogue trajectories was seemingly less than for the
sinusoidal case, but this could likely be related to simulation duration. If the simulation time
was longer, rogue trajectories would increasingly accumulate.

For moderately small timesteps (Δt = 0.01 δ u−1
τ ), the backward Euler scheme gave a

more well-mixed plume than the forward Euler scheme, in addition to ensuring stability. For
very small timesteps (Δt = 10−4 δ u−1

τ ), both schemes gave a very well-mixed plume and
zero rogue trajectories. Using Eq. 20, it is estimated that a timestep of Δt � 0.004 δ u−1

τ

is required for stability. The simulations were used to confirm that rogue trajectories started
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Fig. 8 Probability density functions of particle position for the channel-flow test case using the inhomogeneous
model for ui (Eq. 8). Columns correspond to varying timestep (values given at the top of columns). Rows
correspond to varying integration scheme, with panels a–c using the explicit forward Euler scheme (Eq. 12),
and panels d–f using the implicit backward Euler scheme (Eq. 14). R is the fraction of particles that are
‘rogue’, or

∣∣ui ∣∣ > 10max(σ )

appearing at roughly Δt > 10−3 δ u−1
τ . It is notable that if a small amount of un-mixing

is tolerable, the implicit scheme allowed Δt to be increased by one or even two orders of
magnitude while still achieving stability.

4.3 Eulerian Profiles of Particle Velocity

Figures 9 and 10 depict the ability of themodels tomatch Eulerian statistics given as inputs for
several different timestep choices. As expected, refining the timestep leads to a convergence
of the solution toward the specified Eulerian statistics. Using too large a timestep induces a
mean vertical velocity that tends to un-mix particle plumes. Instabilities resulting from the
forward Euler integration scheme tended to add far toomuch energy to the particles, resulting
in overprediction of the variance of the vertical velocity and velocity increments. In general,
numerical errors in the implicit backward Euler scheme tended to underpredict variances.
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Fig. 9 Eulerian particle velocity statistics for the channel-flow test case when an explicit forward Euler
integration scheme was used. Calculated profiles are compared to exact profiles for a average particle vertical
velocity, b particle vertical velocity variance, c average vertical particle acceleration, d variance of particle
vertical velocity increments. Profiles are formed by calculating an average or variance over all particles residing
in the i th discrete spatial bin

For intermediate timesteps (e.g., Δt = 0.01 δ u−1
τ ), the implicit scheme was superior to the

explicit scheme at predicting Eulerian profiles, which is likely due to errors associated with
instabilities when the explicit scheme was used.

5 Large-Eddy Simulation and Anisotropic Models

5.1 Model Formulation

The above analysis was performed in the context of modelling the fluctuating velocity result-
ing fromReynolds decomposition.Anatural generalization canbemade to extend the analysis
to large-eddy simulation (LES) models. This analysis is also relevant to Reynolds-averaged
models, as the close similarities of LES and Reynolds-averaged formulations implies that the
LES models can be used to illustrate the feasibility of the methods in any general anisotropic
flow scenarios.
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Fig. 10 Eulerian particle velocity statistics for the channel-flow test case when an implicit backward Euler
integration scheme was used. Calculated profiles are compared to exact profiles for a average particle vertical
velocity, b particle vertical velocity variance, c average vertical particle acceleration, d variance of particle
vertical velocity increments. Profiles are calculated by performing an average or variance over all particles
residing in the i th discrete spatial bin

In LES, turbulent length scales larger than the numerical grid scale Δ are calculated
directly from the filtered Navier–Stokes equations, while smaller scales are modelled. Using
this approach, the evolution of a particle’s position with time can be written as

dxp,i
dt

= ũi + us,i , (21)

where ũi is the resolved particle velocity, which is available from the LES solution assuming
the particle velocity is equal to theEulerianfluid velocity at the point xp,i .us,i is the unresolved
(subfilter-scale) particle velocity, which must be modelled. This approach has a considerable
advantage over the traditional Reynolds-averaged approach described in Sect. 2 in that us,i
presumably contains only the small ‘universal’ scales of motion, which are more likely to
follow standard gradient-diffusion theory.

LES Lagrangian dispersion models have generally evolved in parallel to Reynolds-
averaged models. The underlying theme in essentially all LES models is they assume that
simulated velocity fluctuations from the ensemble mean can be applied to fluctuations from
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the filtered velocity (with a few minor modifications). In theory, this assumption seems rea-
sonable as the ensemble averaging operator is simply a filter over all scales.

It is assumed that the subfilter-scale velocity has a Gaussian distribution of a form analo-
gous to Eq. 15, but with the Reynolds stress tensor Ri j replaced by the subfilter-scale stress
tensor τi j . As in Eq. 15, it is necessary that τi j is positive semi-definite and non-singular
(realizable). A method is presented below in Sect. 5.3 to ensure realizability of the stress
tensor.

The assumed form for PE can be substituted into the Fokker–Planck equation in the same
way as in the Reynolds-averaged case, which yields an equation identical to Eq. 16 except
with ui replaced by us,i , Ri j replaced by τi j , and ε is an instantaneous and local value.
The turbulence dissipation rate ε represents approximately the same quantity as in Eq. 16
on average. If Δ lies in the inertial subrange (a critical assumption for most LES models),
dissipation is still unresolved in LES. Thus, the rate at which turbulence is removed by
dissipation shouldbe the sameonaverage in both theReynolds-averaged andLESapproaches.
However, the precise value of ε that is chosen is not critical for the present discussion, as our
goal is simply to match the prescribed distribution of ε, whatever it may be.

5.2 Eulerian LES Momentum Solution

A large-eddy simulation was performed for a channel flow to drive the 3D anisotropic model.
The LES model is described in full detail in Stoll and Porté-Agel (2006), and only essential
details are summarized here. As introduced above, LES resolves turbulent motions with
length scales larger than the characteristic grid scale Δ, which for hexahedral grid cells of
size Δx ×Δy ×Δz , can be given by

(
ΔxΔyΔz

)1/3. In essence, this is a generalization of the
Reynolds-averaged approach where all turbulent motions are below the filter scale. In both
cases, the effects of the subfilter scales must be modelled.

The deviatoric component of the subfilter-scale stress tensor was modelled using the
Smagorinsky approach

τi j = 2

3
ksδi j − 2 (ΔCs)

2 |S̃|S̃i j , (22)

where ks is the subfilter-scale turbulent kinetic energy, S̃i j = 1
2

(
∂ ũi
∂x j

+ ∂ ũ j
∂xi

)
is the resolved

strain rate tensor, and |S̃| =
(
2S̃i j S̃i j

)1/2
. Cs is the Smagorinsky coefficient, which is scale-

dependent and calculated dynamically along fluid particle trajectories following Stoll and
Porté-Agel (2006). Test filtering for the scale-dependent scheme is performed at scales of
2Δ and 4Δ.

The subfilter-scale dissipation rate (needed by the dispersion model) was calculated fol-
lowing the recommendation of Meneveau and O’Neil (1994), who suggested the scaling of
ε ∼ ks

∣∣S̃∣∣. An initial guess for ks was calculated using the model of Mason and Callen (1986)

ks =
(
ΔCs|S̃

∣∣)2 /0.3, which is equivalent to the frequently used model of Yoshizawa (1986)

to within a constant.

5.3 Ensuring a Realizable Stress Tensor

The anisotropic Lagrangian particle dispersion model requires specification of the total (i.e.,
deviatoric plus normal components) stress tensor. Many turbulence models compute the
deviatoric and normal components separately, which means there is no guarantee that the
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total stress tensor is realizable. In order for τi j (or Ri j ) to be realizable, the normal stresses
must be large enough that the three invariants of the tensor are positive (Sagaut 2002), i.e.,

τkk > 0, (23a)

τ11τ22 + τ11τ33 + τ22τ33 − τ 212 − τ 213 − τ 223 > 0, (23b)

det
(
τi j

)
> 0. (23c)

In practice, it is necessary to ensure that the invariants are larger than some small positive
threshold Iε in order to avoidmarginal realizability. Itwas found that Iε could not be arbitrarily
small, and for this test case Iε = 10−5 was sufficient to eliminate all rogue trajectories.
Increasing this value by one or two orders of magnitude seemed to have no noticeable
impact on results. Decreasing by one or two orders of magnitude resulted in very infrequent
occurrence of rogue trajectories (i.e., less than 10 out of 105 total trajectories), which did not
seem to affect results. It is noted that required values of Iε may be flow-dependent and also
dependent on model details.

The following methodology was used to find the ks that ensured a realizable stress tensor.

The parameter ks was estimated at every Eulerian grid point as ks =
(
ΔCs|S̃

∣∣)2 /0.3, and the

resulting τi j was then checked to ensure that its three invariants were greater than Iε . If not,
ks was incrementally increased by 5 % until the invariants were all above the threshold. This
is not the most efficient algorithm, and if further computational efficiency is desired a faster
converging method could be used, such as bisection or the Newton-Raphson method. It was
possible that although τi j was realizable at every Eulerian grid node, when interpolated to the
particle position it could fail to be realizable, particularly near the wall. Thus, a similar check
(and possibly correction)was performed to ensure that the interpolated τi j was still realizable.
The additional computational expense from performing these checks and corrections was
not substantial, as a correction was most commonly only necessary for particles between the
lowest computational grid node and the wall.

5.4 Test Case Set-Up

Large-eddy simulation was performed of a very high Reynolds number channel flow; the test
case was essentially the same as in Porté-Agel et al. (2000). The flow was bounded in the
vertical direction by a lower no-slip, rough wall, and an upper zero stress rigid lid at z = δ.
The lower wall had a characteristic roughness length of z0 = 10−4 δ, the lateral boundaries
were periodic, and the flow was driven by a spatially constant horizontal pressure gradient of
Fx = 3.125×10−3 u2τ . The domain of size 2πδ ×2πδ × δ was discretized into 32×32×32
uniform hexahedral cells, where δ is the channel half-height. This grid resolution is quite
low for this flow, which was intentionally chosen to emphasize the effects of the unresolved
scales.

For simplicity, theLagrangiandispersion simulationswere drivenby a single instantaneous
realization of the LES. This was preferable as it resulted in minimal data that could be easily
distributed with the code provided in the supplementary material. Such a case is physically
equivalent to having a flowwith high heterogeneity in space, but that is steady in time, similar
to that of a Reynolds-averaged flow with highly complex geometry. From the point of view
of a particle, the difference between heterogeneity in space and unsteadiness in time is not
likely to be significant, as either one gets wrapped into the total derivative term in the same
way.

In the dispersion simulations, 105 particles were instantaneously released from a uniform
source, and tracked over a period of T = δ u−1

τ . Numerical differentiation of Eulerian fields
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Fig. 11 Eulerian profiles for the LES test case: a mean velocity, b unresolved, resolved, and total turbulent
kinetic energy, c viscous dissipation rate. Profiles are formed by averaging in the horizontal at the instant used
to drive the simulations

were calculated using a second-order central finite differencing scheme in the horizontal. In
the vertical, a second-order forward scheme was used except at the top two nodes, where
a backward scheme was used. Rogue trajectories were assumed to occur when

∣∣us,i ∣∣ >

10max( 23ks)
1/2 was satisfied for any component of us,i .

5.5 Input Profiles

For reference, various LES flow profiles are given in Fig. 11, which gives a sense of the
importance of the subfilter-scale model. On average, about 90 % of the turbulent kinetic
energy was resolved by the numerical grid. At maximum, the subfilter-scale turbulent kinetic
energy accounted for about 25 % of the total turbulent kinetic energy. Note that all variables
were forced to zero at the wall for reasons discussed in the previous test case. This appears
especially abrupt for this test case given that the numerical grid is quite coarse. As the LES
grid is refined, this assumption will improve.

5.6 Particle Position p.d.f.s and Eulerian Profiles

Figure 12 shows p.d.f.s of vertical particle position using various schemes. When an explicit
forward Euler scheme was used and no efforts were made to ensure a realizable τi j , rogue
trajectories became significant (Fig. 12a–c). By the end of this simulation, roughly 20 % of
particles were rogue regardless of timestep. Surprisingly, the number of rogue trajectories
increased with decreasing timestep.

Ensuring that τi j was realizable significantly decreased the number of rogue trajectories
(Fig. 12d–f). However, even for a very small timestep (Δt = 10−4 δ u−1

τ ), the explicit inte-
gration scheme still produced over 100 rogue trajectories. It is likely that the timestep would
have to be extremely small to eliminate all rogue trajectories. As discussed previously, even
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Fig. 12 Probability density functions of particle position for the LES test case with varying timestep (values
given in figure). a–c shows results for the explicit forward Euler scheme without ensuring that τi j is realizable,
d–f shows results for the explicit forward Euler scheme while ensuring that τi j is realizable, and g–i shows
results for the implicit backward Euler scheme (with realizable τi j ). R is the fraction of particles that were

‘rogue’, or
∣∣us,i ∣∣ > 10max( 23 ks)

1/2, and S is the entropy of the plume

a small number of rogue trajectories can be problematic. If the simulation is allowed to run
long enough, there may be a point where enough rogue particles accumulate that results are
noticeably affected.

As expected, the implicit backward Euler scheme produced no rogue trajectories, provided
that τi j is realizable. The timestep did not have a significant effect on the implicit model’s
ability to satisfy the second law of thermodynamics. This is likely related to the fact that
the resolved velocity (which clearly satisfies the thermodynamic constraint) accounts for the
majority of the total velocity. When a relatively large timestep was used with the explicit
numerical scheme (Δt = 10−2 δ u−1

τ ), some un-mixing occurred. The presence of rogue
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Fig. 13 Eulerian particle velocity profiles for the LES test casewith an implicit integration scheme: a sub-filter
scale turbulent kinetic energy, b covariance between us andws, and c variance of vertical velocity increments.
Profiles are formed by calculating an average or variance over all particles residing in the i th discrete spatial
bin

trajectories could have had some influence on this un-mixing, since the implicit scheme with
an equivalent timestep showed almost no un-mixing.

Figure 13 shows Eulerian profiles of particle velocity statistics near the wall when the
implicit integration scheme was used. Well away from the wall, the model was able to match
specified Eulerian profiles regardless of timestep, which is because gradients are very small
in this region. As with previous test cases, using too large of a timestep meant that Eulerian
particle velocity statistics were under predicted in regions of large gradients (i.e., near the
wall) with respect to the exact profiles specified as inputs. As the timestep was reduced,
particle velocity statistics converged to the exact values. Although not shown, if an isotropic
model were used that neglected off-diagonal components of τi j , the model would be able to
match profiles of 〈k2s 〉 and 〈(dWs)

2〉E/Δt . However, all cross-correlations would clearly be
zero in that case.

6 Summary

This study explored aspects of the numerical solution of Lagrangian stochastic model
equations. Isotropic, Reynolds-averaged models were examined using a simple sinusoidal
turbulence field, as well as using channel flow data. The generalized three-dimensional and
anisotropic model formulations were examined using large-eddy simulations, although the
results are directly applicable to Reynolds-averaged models as well.
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It was found that the so-called rogue trajectories result from numerical instability of the
temporal integration scheme. Due to the stiff nature of the velocity evolution equations, very
small timesteps are required to maintain stability when an explicit scheme is used. A natural
remedy for this problem is to use an implicit numerical scheme. Formulating a fully implicit
scheme is complicated by the fact that the velocity evolution equation is coupled with the
position evolution equation, and by the non-linearity of the velocity evolution equation. Fur-
thermore, in the case of three-dimensional, anisotropic turbulence, the three components of
the velocity evolution equation are non-linearly coupled. To solve these problems, the equa-
tions were linearized by re-writing the total derivative term using the Lagrangian definition.
Furthermore, coefficients were ‘lagged’ in order to avoid having to use a costly iterative
scheme. The resulting implicit scheme was shown to be unconditionally stable. In the case
of the anisotropic model, it was critical that the velocity covariance tensor be realizable,
otherwise rogue trajectories frequently occurred regardless of the size of the timestep. Real-
izability was enforced by ensuring that the turbulent kinetic energy was large enough that
the three tensor invariants were larger than some specified threshold.

In addition to examining stability, the degree to which statistics of the numerical solution
matched the specified inputs was examined. Fortunately, the exact statistics of the solution
are always known, since they are simply given by model inputs. The fundamental task of the
numerical solution is to provide an ensemble of particles whose Eulerian velocity statistics
match those that were originally specified. As expected, it was found that the size of the cho-
sen timestep determined the degree to which computed particle statistics matched specified
statistics. In addition to failing to match specified statistics, using too large of a timestep
also induced a mean particle flux that leads to a violation of the well-mixed condition. If
the timestep is extremely large, it was found that the well-mixed condition could also be
satisfied, but that Eulerian particle statistics would be incorrect. Thus, it was recommended
that numerical solutions be verified by comparing computed Eulerian velocity statistics with
those specified as inputs.

No scenario was found where it was preferable to use an explicit scheme over an implicit
scheme. When the timestep required for stability of the explicit scheme is unfeasibly small,
the implicit scheme is preferable because it can provide reasonable results with a much
larger timestep than the explicit scheme. When the anisotropic model is used, there is a small
additional cost associated with the inversion of a 3×3 matrix which results from the implicit
formulation. However, this seems minor compared to the added assurance of obtaining an
unconditionally stable scheme. Furthermore, for moderate timesteps, the implicit scheme
showed better overall performance than the explicit scheme. Thus, it is recommended to
always use the implicit scheme.

Although only Gaussian models were examined, future work should explore the use of
implicit numerical schemes for cases of skewed turbulence (e.g., Luhar andBritter 1989;Weil
1990). Skewed models present significant challenges, as the model equations themselves are
not algebraically explicit. As such, formulation of an implicit numerical scheme will almost
certainly involve an iterative approach. Thiswill create a noticeable increase in computational
cost, whichmay or may not be acceptable given the severity of rogue trajectories. Regardless,
many of the results presented hereinwill likely still apply, such as the importance of numerical
accuracy in satisfying the well-mixed condition and matching prescribed Eulerian velocity
p.d.f.s.
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