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Abstract We develop a model that predicts all two-point correlations in high Reynolds
number turbulent flow, in both space and time. This is accomplished by combining the
design philosophies behind two existing models, the Mann spectral velocity tensor, in which
isotropic turbulence is distorted according to rapid distortion theory, and Kristensen’s lon-
gitudinal coherence model, in which eddies are simultaneously advected by larger eddies as
well as decaying. The model is compared with data from both observations and large-eddy
simulations and is found to predict spatial correlations comparable to the Mann spectral ten-
sor and temporal coherence better than any known model. Within the developed framework,
Lagrangian two-point correlations in space and time are also predicted, and the predictions
are compared with measurements of isotropic turbulence. The required input to the models,
which are formulated as spectral velocity tensors, can be estimated from measured spectra
or be derived from the rate of dissipation of turbulent kinetic energy, the friction velocity and
the mean shear of the flow. The developed models can, for example, be used in wind-turbine
engineering, in applications such as lidar-assisted feed forward control and wind-turbine
wake modelling.

Keywords Sheared turbulence · Spectral velocity tensor · Two-point correlations

1 Introduction

Renewed interest in the spatio-temporal structure of sheared turbulence comes from research
in wind energy, and whether forward-looking light detection and ranging (lidar) systems can
reduce mechanical loads on wind turbines by anticipating incoming gusts (Pao and Johnson
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2011; Bossanyi et al. 2012;Mikkelsen et al. 2013). The potential for both extreme and fatigue
load reduction seems obvious, but to model the complex interactions between lidar-sensed
turbulence and wind-turbine control and aerodynamics it is necessary to have a realistic
model for the spatio-temporal structure of turbulence (Bossanyi 2013).

Most turbine-mounted lidars are placed close to the centre of the rotor, either on the
nacelle or in the spinner, the aerodynamically shaped cover of the wind turbine rotor hub.
Fluctuations along the direction of the mean flow constitute the most important turbulence
component of the loads on the rotor. However, if a lidar is to measure these fluctuations over a
rotor sized area upwind of the turbine, it would for geometrical reasons have to measure quite
far upstream. The question arises whether the turbulent fluctuations measured there would
arrive unchanged to the rotor a short time later, or equivalently, whether departures from
Taylor’s frozen turbulence hypothesis are important. For a nacelle-mounted lidar Simley
et al. (2014) found that measurements made approximately one rotor diameter upstream
reproduce most faithfully the gusts that impinge on the rotor. If measured further upstream,
decorrelation during the advection to the rotor starts to become important. If measured closer
to the rotor, fluctuations in directions other than along the mean flow will contaminate the
measurements. Related questions pertain to how many beam directions will cover the rotor
in an optimal way (Schlipf et al. 2013), and how the significant probe volume of the lidar
influences the measurements (Sathe and Mann 2013). All these issues depend on the spatial
and temporal structure of sheared turbulence, the subject of the present study.

Wind-turbine wakes are important not only because they affect the energy production
adversely for downwind turbines in a wind farm but also because they increase dynamic loads
on rotors intersecting them. Dynamic loads arise mainly because the blades of a downwind
turbine partly in the wake of another, go in and out of the region with the wake velocity
deficit. Another important effect is that wakes can meander such that the entire rotor of a
downwind turbine alternately experiences unaffected flow and the reduced flow velocity of
the wake. This typically creates dynamic loads that are greater than those on a free-standing
turbine. A popular way to model wake meandering assumes wakes to be advected passively
in a frozen turbulence field (Larsen et al. 2008). A more realistic wake-meandering model
may include the temporal evolution as well. Such a model would then likely require both the
spatial and temporal structure of sheared turbulence as input.

Spatial correlations are tractable to describe in the Fourier domain by the use of a spectral
velocity tensor (see e.g. Pope 2000). In Mann (1994), rapid distortion theory was employed
to produce a spectral velocity tensor describing turbulence subjected to uniform shear. That
model was recently tested over homogeneous terrain for different values of aerodynamic
roughness length by Chougule et al. (2014) and for offshore conditions by de Maré and
Mann (2014). Alternative rapid distortion formulations include a formulation with blocking
effects from the ground also explored in Mann (1994), and formulations including buoyancy
effects, investigated e.g by Hanazaki and Hunt (2004) and Chougule (2013). In Kristensen
(1979), a model was developed to predict the correlation between two wind measurements
separated in the streamwise direction. This model primarily predicts temporal correlations,
and it has recently been implemented and used by Bossanyi (2013) in the context of lidar-
assisted wind-turbine control.

In Sect. 2, after first introducing definitions, we attempt to combine the design philosophy
of the Mann (1994) tensor, in which isotropic turbulence is distorted by uniform shear, with
the design philosophy of Kristensen (1979), in which eddies are simultaneously advected
randomly by larger eddies as well as decaying. In Sect. 3, we discuss the implementation
of the developed model as well as strategies for obtaining the necessary input information.
Finally in Sect. 4, we compare the predictions of ourmodel to observations from experiments,
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data from large-eddy simulation (LES) and, where applicable, to the predictions of the Mann
(1994) tensor.

Saffman (1963), Hunt et al. (1987), and more recently Wilczek and Narita (2012) and
Wilczek et al. (2014), suggested the temporal evolution of the velocity tensor to be given by
wavenumber-dependent Gaussian functions. A number of such models were evaluated for
isotropic turbulence in Ott and Mann (2005). As the validation section includes comparisons
with those same experiments, comparisons with themodels evaluated in Ott andMann (2005)
are implicitly made.

2 Modelling

2.1 Preliminaries

It is common to assume statistical stationarity (aswell as ergodicity) and decompose the three-
dimensional flow velocity, ũ(x, t), into a mean velocity,U(x), and a fluctuating part, u(x, t).
We define the coordinate system tomovewith a suitable velocity,U0, so that in our coordinate
system U(0) = 0. We further assume a constant and non-negative shear, dU1/dz, such that

ũ(x, t) = U(x) + u(x, t) =
(
x3

dU1

dz
, 0, 0

)
+ u(x, t), (1)

where z and x3 are used interchangeably. Provided that u(x, t) is statistically homogeneous,
we can define a covariance tensor

Ri j (r, τ ) = 〈ui (x, t) u j (x + r + U(x + r)τ , t + τ)
〉
. (2)

In (2) we have accounted for the mean velocity of the flow varying with height by introducing
the termU(x + r)τ , therebymodifying the traditional definition of the covariance tensor. The
role of this term is easiest to demonstrate for r = 0, when it causes the right-hand side of (2)
to denote the covariance at a point that moves with themean flow velocity,U(x). The spectral
velocity tensor (or velocity-spectrum tensor), R̂i j , is the spatial Fourier transform of (2),

R̂i j (k, τ ) = 1

(2π)3

∫∫∫
Ri j (r, τ ) e− i k·r d3r, (3)

where d3r = dr1 dr2 dr3. From the spectral velocity tensor a number of quantities can be
derived, for example the (one-dimensional) spatial cross-spectrum

χi j (k1, r, τ ) = 1

2π

∫
Ri j ((ξ1, 0, 0) + r, τ ) e− i k1 ξ1 dξ1

=
∫∫

κ1=k1
R̂i j (κ, τ ) ei κ ·r d2κ, (4)

and the closely related quantity

χ̊i j (k) =
∫∫

|κ |=k
R̂i j (κ, 0) d2κ . (5)

From the spatial cross-spectra the spatial spectral coherence is in turn derived as

cohi j (k1, r, τ ) = |χi j (k1, r, τ )|2
χi i (k1, r, 0)χ j j (k1, r, 0)

, (6)

where, as our only exception, no summation over repeated indices is intended.
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Batchelor (1953) used a generalized stochastic Fourier–Stieltjes decomposition of the
fluctuating part of the wind velocity; however, as we find this notation somewhat unintuitive
we use the less stringent notation

u(x, t) =
∫∫∫

û(k, t) ei k·x d3k. (7)

We find that

u
((

x1 + x3
dU1

dz
τ, x2, x3

)
, t + τ

)

=
∫∫∫

û(κ, t + τ) e
i κ ·
(
x1+x3

dU1
dz τ,x2,x3

)
d3κ

=
∫∫∫

û
((

k1, k2, k3 − dU1

dz
τ k1

)
, t + τ

)
ei k·x d3k, (8)

where in the last step the variable transformation

κ = (κ1, κ2, κ3) =
(
k1, k2, k3 − dU1

dz
τ k1

)
(9)

has been used. Combining (8) with (2) and (3) it is possible to show that

R̂i j (k, τ ) =
〈̂
ui (k, t )̂u j (k(τ ), t + τ) d3k

〉
, (10)

where we have introduced notation for complex conjugation, and k(τ ) has been introduced
as

k(τ ) =
(
k1, k2, k3 − dU1

dz
τ k1

)
. (11)

Formulating a model for R̂i j (k, τ ) is one of our goals. For comparison, Mann (1994)
developed amodel for R̂i j (k, 0) andKristensen (1979) developed amodel for coh11(k1, 0, τ ).
We are also interested in the Lagrangian covariance tensor defined by

RL
i j (r, τ ) = 〈ui (x, t0) u j

(
XL
t0(x + r, t0 + τ), t0 + τ

)〉
, (12)

where XL
t0(x, t) is the position at time t of a fluid particle, which at t0 was located at x.

Therefore we also attempt to model the Lagrangian spectral velocity tensor defined through

R̂L
i j (k, τ ) = 1

(2π)3

∫∫∫
RL
i j (r, τ ) e− i k·r d3r. (13)

Wewill frequently sacrifice physical realism formathematical tractability.One such exam-
ple is our assumption of constant shear, which in reality would create infinitely large turbulent
eddies. This particular problem is handled by having a turbulent length scale as amodel input.
Due to such simplifications, in the end, it will be the prediction capabilities of the final models
that determine their applicability.

2.2 Analysis of Eddy Decay

The focus here is the evolution of turbulent eddies in the presence of vertical shear, excluding
the turbulent advection of small-scale eddies by larger eddies, a topic we address instead
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Fig. 1 The three frames show a sequence of snapshots of conceptual turbulence distorted by shear (illustrated
by the black arrows). The two green eddies are distorted (from circles to ellipses) by the shear while at the
same time decaying (illustrated by the shift from solid lines to dashed lines). We note that the smaller, dark
green, eddy appears to decay more rapidly than the larger, light green, eddy. We also note the newborn blue
and red eddies in the middle and right-most frames, respectively

in the next section. We start from the rapid distortion equation for sheared flow derived by
Moffatt (1967) and Townsend (1976),

D ûi (k(t), t)
D t

= dU1

dz

(
−δi1 + 2

ki k1
|k(t)|2

)
û3(k(t), t), (14)

where

k(t) =
(
k1, k2, k30 − k1

dU1

dz
(t − t0)

)
. (15)

Equation 14 does not include any term for buoyancy effects, so the results may or may not be
valid for non-neutral atmospheric stratification. More elaborate rapid distortion formulations
are in use (Kaneda and Ishida 2000; Hanazaki and Hunt 2004; Salhi and Cambon 2010;
Chougule 2013); however, we stay with the above version for now.

In Fig. 1 we show a sequence of snapshots of conceptual turbulence; the sequence of
snapshots is continued in Fig. 2, in which the dashed black lines illustrate the distortion of a
sample wavenumber according to (15). We now write û(k, t) as

û(k, t) =
∫ t

−∞
η(k0, t0, t − t0) dt0, (16)

where we have introduced η(k0, t0, t − t0) dt0 as the contribution to û(k, t) from eddies that
were created between t0 and t0 + dt0. The newborn eddies in Fig. 1 would thus contribute to
different η than the older eddies in the same frames. In (16) k0 is derived from k by inverting
(15),

k0 = (k1, k2, k30) =
(
k1, k2, k3 + k1

dU1

dz
(t − t0)

)
. (17)

It follows from homogeneity that for a fixed t , the η’s contributing to different wavenum-
bers are uncorrelated. We, however, go beyond homogeneity and postulate that

〈
ηi (k0, t0, t − t0)η j (κ0, τ0, t − τ0 + τ) d3k dt0

〉 = 0 (18)

unless τ0 = t0 and κ0 = k0. This assumption reduces our objective of determining R̂i j , to
quantifying 〈

ηi (k0, t0, t − t0)η j (k0, t0, t − t0 + τ) d3k dt0
〉
, (19)
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Fig. 2 The three frames are a continuation of the sequence of conceptual turbulence in Fig. 1. The left-most
frame is identical to the last frame of Fig. 1, except that the shear is now illustrated by the dashed black lines

which represent a wavenumber evolving according to k(τ ) =
(
k1, k2, k3 − dU1

dz τ k1
)
. In the two right-most

frames we notice that the blue eddy advects the smaller red eddy, causing it to move relative to the illustrated
wavenumber

as we can then use (10) and (16) to find R̂i j . Direct validation of (18) would require isolating
the contribution of newly formed eddies, from the contributions of older eddies, an objective
that may be challenging, to say the least, in practice.

We introduce the expected contribution from newborn eddies,

Ni j (k0) =
〈
ηi (k0, t0, 0)η j (k0, t0, 0) d3k dt0

〉
, (20)

which is constant in time due to stationarity. As the eddies are expected to decay over time the
contributions cannot, however, be expected to be statistically stationary with respect to t− t0.

Townsend (1976) suggested that the time evolution of an eddy can be described as a super-
position of rapid distortion and viscous decay. Inspired by this argument andMann (1994) we
introduce into the rapid distortion equation a term where the eddy viscosity depends on k(t).
Continuing to disregard advection by larger eddies, we thus postulate that the contributions,
η, evolve in time according to the deterministic equation,

D ηi (k0, t0, t − t0)

D t
= dU1

dz

(
−δi1 + 2

ki k1
|k(t)|2

)
η3(k0, t0, t − t0)

− 1

2 τe(k(t))
ηi (k0, t0, t − t0), (21)

where the eddy viscosity term is the last term on the right-hand side. We refer to the process
described by (21) as eddy decay.

For the isotropic case, where dU1/dz = 0 and therefore k(t) = k0, the solution to (21) is
simply

ηISO(k0, t0, t − t0) = ηISOt0 (k0, t0, 0) exp
(

− t − t0
2 τe(k0)

)
. (22)

From this solution it can be seen that the expected lifetime of the energy of eddies created at
the same time is ∫∞

t=t0
ηISO(k0, t0, t − t0) · ηISO(k0, t0, t − t0) dt

ηISO(k0, t0, 0) · ηISO(k0, t0, 0)

=
∫ ∞

t=t0
exp

(
− t − t0
2 τe(k)

)
exp

(
− t − t0
2 τe(k)

dt

)

= τe(k). (23)
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Based on (23) we refer to τe(k) as the eddy lifetime, even though this is not an entirely
accurate term when dU1/dz �= 0. In Fig. 1 we have illustrated the dependence of τe on k by
the smaller eddies decaying more rapidly than the large ones.

The general solution to (21) can be written

η(k0, t0, t − t0) = B(k0, t − t0) η(k0, t0, 0), (24)

where

B(k0, t − t0) = exp (− (	(k0, t − t0) − 	(k0, 0)))

⎡
⎢⎢⎢⎣
1 0 ζ1

(
k0,

dU1
dz (t − t0)

)

0 1 ζ2

(
k0,

dU1
dz (t − t0)

)
0 0 |k0|2/|k(t)|2

⎤
⎥⎥⎥⎦ , (25)

and where in turn ζ1(k0, β) and ζ2(k0, β), derived in Mann (1994) and Townsend (1976),
are

ζ1(k0, β) = βk21
(|k0|2 − 2k230 + βk1k30

)
|k(t)|2 (k21 + k22

)

− k22 |k0|2
k1
(
k21 + k22

)3/2 arctan

(
βk1

(
k21 + k22

)1/2
|k0|2 − βk1k30

)
, (26)

ζ2(k0, β) = k2βk1
(|k0|2 − 2k230 + βk1k30

)
|k(t)|2 (k21 + k22

)

+ k2|k0|2(
k21 + k22

)3/2 arctan

(
βk1

(
k21 + k22

)1/2
|k0|2 − βk1k30

)
, (27)

and 	(k0, t − t0) has been introduced such that

∂	(k0, t − t0)

∂t
= 1

2 τe(k(t))
. (28)

For comparison, inMann (1994) the eddies are not continuously decaying. Instead the eddy
lifetime, τe(k), is used as the typical time the eddies contributing to k have been subjected
to the rapid distortion.

We end by noting that eddy decay can be applied sequentially, i.e that

Bim(k(t), τ ) Bmj (k0, t − t0) = Bi j (k0, t − t0 + τ). (29)

2.3 Modelling Advection by Larger Eddies

Kristensen (1979) attributed the loss of longitudinal coherence to a combination of eddies
decaying, and large eddies advecting smaller eddies, causing them to miss the downstream
anemometer. The latter process, which is not captured by rapid distortion theory, is illustrated
in Fig. 2. A straightforward way of modelling this advection by larger eddies is to assume
that an eddy moves as a suitably sized sphere. To be more exact, let us assume that an eddy
with a size corresponding to wavenumber of magnitude k, positioned at x at time t , has a
velocity uRk

i (x, t), which is the average velocity over a sphere with radius Rk , i.e.,

uRk
i (x, t) =

∫∫∫
|r|<Rk

ui (x + r, t) d3r
4
3πR3

k

. (30)
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Assuming that eddies move like spheres may not be entirely realistic because a sphere has
a well-defined edge whereas an eddy most likely does not. It can also be argued that owing
to eddy decay the shape of a typical eddy would be better represented by an ellipsoid, rather
than by a sphere.

Inspired by (3), if we were to define a spectral velocity tensor based on the averaged wind
velocity of (30) we would, for τ = 0, obtain

R̂Rk
i j (κ, 0) = H2

k(|κ |)R̂i j (κ, 0), (31)

where

Hk(κ) = −3
κRk cos(κRk) − sin(κRk)

κ3R3
k

(32)

is the Fourier transform of the “averaging sphere” convolution kernel, which, we may add,
effectively acts as a low-pass filter. The right-hand side of (32) is a scaled version of the
Bessel function J3/2(x). Based on the argument that eddies do not advect themselves, we
select Rk such that kRk equals the first zero of J3/2(x), i.e.

Rk ≈ 4.4934

k
. (33)

We note that Rk = π/k or Rk = π/2k would be just as natural a choice as (33). We will
briefly return to this topic when discussing the cross-over point of Eulerian and Lagrangian
covariances in Sect. 4.2.

From R̂Rk
i j (κ, 0) in (31) we can, among many other quantities, derive the standard devia-

tion of uRk
i (x, t) along any vector. We take the opportunity to introduce, s(k), the standard

deviation of the velocity of the eddies with radius R|k|, in the direction of k,

s(k) =
√〈

ki k j
|k|2 u

R|k|
i (x, t)u

R|k|
j (x, t)

〉
=
√∫∫∫

ki k j
|k|2 H

2
|k|(|κ |)R̂i j (κ, 0) d3κ

=
√∫ ∞

0

ki k j
|k|2 H

2
|k|(κ)χ̊i j (κ) dκ. (34)

Now, let us again consider the blue eddy in Fig. 2. If we denote the illustrated wavenumber
k(t) and assume that R|k| happens to be the characteristic size of the blue eddy, then, according
our definitions, the blue eddy moves with a velocity

vblue(t) = ki
|k(t)|u

R|k|
i (xblue(t), t), (35)

in the direction of k(t), i.e. perpendicular to the dashed black lines. If the blue eddy is the
only eddy described by η(k0, t0, t − t0), then η(k0, t0, t − t0 + τ) is equal to

B(k, τ )η(k0, t0, t − t0) e
− iφblue(τ ), (36)

with φblue(τ ) the “distance travelled in radians” given by

φblue(τ ) =
∫ t+τ

t
vblue

(
τ ′)|k(τ ′)| dτ ′. (37)

Now, η(k0, t0, t − t0) not only represents the blue eddy, but all eddies of approximately
the same size and age as the blue eddy. Equation 34 introduced the standard deviation of the
velocity of these eddies in the direction of k, as s(k), and we assume that s(k), analogously
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to (37), can be integrated to give the standard deviation of the distance in radians travelled
by the eddies,

�(k, τ ) =
∫ t+τ

t
s
(
k
(
τ ′))|k(τ ′)| dτ ′. (38)

We further assume that the distances in radians travelled by the eddies in question are normally
distributed,

1

�(k, τ )
√
2π

exp

(
− φ2

2�2(k, τ )

)
, (39)

a choice supported by the fact that this distribution has maximal entropy for given first and
second moments. Combining (36) with (39) leads to

〈
ηi (k0, t0, t − t0)η j (k0, t0, t − t0 + τ) d3k dt0

〉

=
〈
ηi (k0, t0, t − t0)

(∫ ∞

−∞
1

�(k, τ )
√
2π

e
− φ2

2�2(k,τ ) Bjn(k, τ )

η j (k0, t0, t − t0 + τ) e− iφ(τ) dφ

)
d3k dt0

〉

=
〈
ηm(k0, t0, t − t0)e− 1

2�2(k,τ ) Bjn(k, τ )ηn(k0, t0, t − t0) d
3k dt0

〉

= e− 1
2�2(k,τ ) Bim(k0, t − t0)Nmn(k0)Bjn(k0, t + τ − t0), (40)

where in the last step we have used (20) and (29). The last line of (40) describes new-
born eddies, Nmn(k0), swhich, since their birth at t0, have been subjected to eddy decay,
Bi j (k0, t − t0). Moreover, if observed twice, at t and t + τ , advection by larger eddies has
caused unalignment resulting in a loss of correlation according to exp

(− 1
2�

2(k, τ )
)
.

We can now, using (10), (16), (18) and (40), derive an expression for R̂i j (k, τ ),

R̂i j (k, τ ) =
〈̂
ui (k, t) û j (k(τ ), t + τ) d3k

〉

=
〈∫ t

−∞
ηi (k, ξ0, t − ξ0) dξ0

∫ t

−∞
η j (kτ , ζ0, t − ζ0) dζ0 d

3k
〉

=
∫ t

−∞

〈
ηi (k0, t0, t − t0)η j (k0, t0, t + τ − t0) d

3k dt0
〉
dt0

=
∫ t

−∞
e− 1

2�2(k,τ ) Bim(k0, t − t0)Nmn(k0)Bjn(k0, t + τ − t0) dt0, (41)

where k0 and and �(k, τ ) are given by (17) and (38), respectively. We note that �(k, τ ) by
definition = 0 for τ = 0 and it is therefore not a problem that R̂i j (k, 0) is used, through the
definition of s(k), to define �(k, τ ). Owing to stationarity, the right-hand side of (41) does
not depend on the value of t .

We cannot evaluate (41) numerically just yet because we have neither introduced an
expression for the eddy lifetime nor an expression for the added energy due to newborn
eddies, Ni j (k0). Before addressing these needs, we turn our attention to the Lagrangian
covariance tensor, R̂L

i j , defined in (13).
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2.4 A Model for the Lagrangian Tensor

The Lagrangian approach can be described as observing the flow by tracking fluid particles
and recording their instantaneous velocities. If we follow one of the fluid particles within the
small red eddy of Fig. 2 and use it to study the wavenumber illustrated by the dashed black
lines, then it is clear that the Lagrangian velocity may lose coherence even when, as in this
case, the blue eddy (which likely contributes to the illustrated wavenumber) stays more or
less coherent. Our assumption is therefore that the evolution of the Lagrangian tensor is a
combination of eddy decay and the fluid particles moving relative to the eddies of which they
are a part.

If wewant to quantify themovement of a point within the small red eddy, relative to the red
eddy itself, then the fact that the blue eddy is advecting both the red eddy and our observation
particle should be of little importance. Similarly, if we are interested in the point’s movement
relative to the blue eddy, then the fact that it is also moving within the small red eddy likely
has limited impact. Based on these arguments we quantify the velocity of a particle relative
to an eddy of size R|k|, as the velocity of the particle minus both the velocity contribution
from eddies that are large enough to move the eddy of interest, H|k|(|κ |)̂ui (κ, 0), and the
velocity contribution from eddies that are small enough to be moved by the eddy of interest,
H|κ |(|k|)̂ui j (κ, 0). The standard deviation of the velocity with which a fluid particle moves
relative to its eddy in the direction of k can then be quantified as

sL(k) =
√∫∫∫

ki k j
|k|2

(
1 − H|k|(|κ |) − H|κ |(|k|)

)2
R̂i j (κ, 0) d3κ

=
√∫ ∞

0

ki k j
|k|2

(
1 − H|k|(|κ |) − H|κ |(|k|)

)2
χ̊i j (κ) dκ. (42)

The factor
(
1 − H|k|(|κ |) − H|κ |(|k|)

)2 is illustrated for |k| = 1 in Fig. 3.
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Fig. 3 The velocity of a particle relative to an eddy of size R|k|=1 is quantified as the velocity of the
particle minus both the velocity contribution from eddies that are large enough to move the eddy of interest,
H|k|=1(|κ |)̂ui (κ, 0), and the velocity contribution from eddies that are small enough to be moved by the eddy

of interest, H|κ |(|k| = 1)̂ui (κ, 0). The resulting factor (1 − H1(κ) − Hκ (1))2 is illustrated (in red) versus a
linear as well as a logarithmic κ . We note that the choice of expression for Rk in (33) ensures that H1(κ) = 0
for κ = 1
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Using similar arguments as the ones leading from (38) to (40) we arrive at modelling
R̂L
i j (k, τ ) as

R̂L
i j (k, τ ) =

∫ t

−∞
e− 1

2�2
L(k,τ ) Bim(k0, t − t0)Nmn(k0)Bjn(k0, t + τ − t0) dt0, (43)

where k0 is given by (17), however, contrary to the Eulerian expression in (38), �L(k, τ ) is
now given by

�L(k, τ ) =
∫ τ

0
sL(kτ ′) |k(τ ′)| dτ ′, (44)

where k
(
τ ′) =

(
k1, k2, k3 − dU1

dz τ ′ k1
)
and sL(k) is given by (42).

In termsof studying turbulence by trackingfluid particles and recording their instantaneous
velocities, the right-hand side of (43) is the sum of the energy from newborn eddies, Nmn(k0),
that have been subjected to eddy decay, Bi j (k0, t − t0) since their birth at t0.When attempting
tomake the observation, however, the tracked particles used for the observation have left their
original positions relative to their designated eddy, and, therefore, lost correlation according
to exp

(− 1
2�

2
L(k, τ )

)
.

2.5 Remaining Modelling Choices

In order to evaluate (41) and (43) numerically we need expressions both for the added energy
due to newborn eddies, Ni j (k0), and for the eddy lifetime, τe(k). With the first objective in
mind, we follow Kolmogorov (1968) and assume that the isotropic energy spectrum, E(|k|),
which is closely related to the isotropic spectral velocity tensor, is only a function of |k| and
the rate of dissipation of turbulent kinetic energy, ε, in the inertial subrange. Dimensional
analysis then leads to

E(|k|) ∝ |k|− 5
3 ε2/3. (45)

An isotropic energy spectrum with this property was suggested by von Kármán (1948) as

E
(
αKε2/3, LM , |k|) = αKε2/3

|k|4(
L−1
M + |k|2

)17/6 , (46)

where αK is the Kolmogorov constant. With (46) we can write the isotropic spectral velocity
tensor as

R̂ISO
i j

(
αKε2/3, LM , k

) = E
(
αKε2/3, LM , |k|)

4π |k|2
(

δi j |k|2 − ki k j
|k|2

)
. (47)

Now, if we attempt to evaluate (41), for dU1/dz = 0 and τ = 0, using (23) we obtain

R̂ISO
i j (k0, 0) =

∫ t

−∞

〈
ηi (k0, t0, t − t0)η j (k0, t0, t − t0) d

3k dt0
〉
dt0

=
∫ t

−∞
e− t−t0

τe(k)

〈
ηi (k0, t0, 0)η j (k0, t0, 0) d3k dt0

〉
dt0 = τe(k0)Ni j (k0).

(48)

Thus we have, for the isotropic case, quantified the added energy due to newborn eddies as

Ni j (k0) = R̂ISO
i j (k0)

τe(k0)
, (49)
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andwewill assume that (49) is approximately true also for the non-isotropic case. Equation 49
thus followsMann (1994) in that the eddies start out isotropic and become anisotropic through
rapid distortion.

Regarding the eddy lifetime, we can argue that, in the inertial subrange, τe(k) should
only be a function of |k| and the rate of dissipation of turbulent kinetic energy, ε, and use
dimensional analysis to arrive at

τe(k) ∝ |k|− 2
3 ε− 1

3 . (50)

Although somewhat simplistic, we will, going forward, assume

τe(k) = τe(|k|) = M√
αK

|k|− 2
3 ε− 1

3 , (51)

where the constant M is introduced, also outside the inertial subrange. The Kolmogorov
constant has been included in (51) because we find it convenient to keep the quantity αKε2/3

intact. We can now integrate (28) that, for dU1/dz > 0, gives us

	(k0, t − t0) =
(
−k30 + dU1

dz k1 (t − t0)
)

10M dU1
dz k1

∣∣∣∣
(
k1, k2, k30 − dU1

dz
k1 (t − t0)

)∣∣∣∣
2/3

⎛
⎜⎝3 + 2 2F1

⎛
⎜⎝5/6, 1, 3/2,−

(
k30 − dU1

dz k1 (t − t0)
)2

k21 + k22

⎞
⎟⎠
⎞
⎟⎠√

αKε1/3,

(52)

where 2F1 is the hypergeometric function. For dU1/dz → 0, we expect (52) to approach
t−t0

2τe(k0)
plus an integration constant.

One way of determining the constant M would be to utilize that in the inertial subrange

χ13 (k1, 0) →
∫ ∫
κ1=k1

τe(κ)2

(
− 1

τe(κ)

d R̂ISO
13 (κ0(0))

dt0

+D
〈
η1(κ0, 0, 0) η3(κ0, 0, 0) d3κ dt0

〉
D t

)
d3κ

→
∫ ∫
κ1=k1

dU1

dz

5k21k
2
3 − 3k22 |k|2
12π |k|6 τe(κ)E(|κ |) d3κ

= − 33

1729

dU1

dz
τe(k1)E(k1), (53)

in which κ0(t − t0) =
(
κ1, κ2, κ3 + κ1

dU1
dz (t − t0)

)
. Inserting the asymptotic behaviour of

τe(k1) and E(k1)we see that the right-hand side of (53) scales as k
− 7

3
1 ε1/3, which is consistent

with observations (Wyngaard and Coté 1972). To remove its dependence on ε we can divide

the square of χ13 (k1, 0) with χ11(k1, 0), which correspondingly approaches 9
55k

− 5
3

1 αKε2/3.
In Sect. 4 we follow this line of reasoning and investigate

M∗(k1) =
√
k31 χ13(k1, 0)2

χ11(k1, 0)

1729

33

√
9

55

dU1

dz

−1

, (54)
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where M∗(k1) consequently should approach M in the inertial subrange. Equation 54 thus
indicates that studying the ratio between different components of the cross-spectra at known
shear could be interesting in terms of determining M .

This section introduced an expression for the added energydue to newborn eddies, Ni j (k0),
as well as an expression for the eddy lifetime, τe(k). It can be argued that these expressions
are on the simplistic side and that they should depend on, for example, Ri j . The counter
argument would be that coupling the building blocks of the model to the end result in such a
waywouldmake themodel significantly harder to evaluate. The section endedwith implicitly
suggesting an experiment for determining M (introduced in (51)), which is a key quantity of
the framework.

3 Practical Application of the Models

3.1 Implementing the Spectral Velocity Tensor for τ = 0

When implementing the spectral velocity tensor(s) it is convenient to introduce

G = M√
αKε1/3

dU1

dz
L2/3
M , (55)

which, for dU1/dz > 0, enables us to write (51) as

τe(k) = G
dU1

dz

−1

L
− 2

3
M |k|− 2

3 (56)

and (52) can then, for G > 0, be written as

	(LM ,G, k0, β) = (−k30 + k1β)

10Gk1
|(k1, k2, k30 − k1β)|2/3

L2/3
M

(
3 + 2 2F1

(
5/6, 1, 3/2,− (k30 − k1β)2

k21 + k22

))
(57)

with β = dU1
dz (t − t0). This in turn allows us to write (25) as

B(LM ,G, k0, β) = e−(	 (LM ,G,k0,β)−	(LM ,G,k0,0))

⎡
⎣1 0 ζ1(k0, β)

0 1 ζ2(k0, β)

0 0 |k|2/| (k1, k2, k30 − k1β) |2

⎤
⎦

(58)

with ζ1 and ζ1 still given by (26) and (27). We can now reformulate (41) for τ = 0 and
dU1/dz > 0 according to

R̂i j (k, 0) =
∫ t

−∞
Bim(k0, t − t0)

1

τe(k0)
R̂ISO
mn (k0)Bjn(k0, t − t0) dt0

=
∫ ∞

0
Bim(LM ,G, k0, β)

L2/3
M |k0|2/3

G
R̂ISO
mn

(
αKε2/3, LM , k

)
Bjn(LM ,G, k0, β) dβ

= R̂i j

(
αKε2/3, LM ,G, k0

)
, (59)

where k0 =
(
k1, k2, k3 + k1

dU1
dz (t − t0)

)
= (k1, k2, k3 + k1β). In the last step of (59)

we have introduced R̂i j
(
αKε2/3, LM ,G, k

)
for G > 0. For G = 0 (which corresponds to

dU1/dz = 0) we set
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R̂i j
(
αKε2/3, LM , 0, k

) = R̂ISO
i j

(
αKε2/3, LM , k

)
, (60)

with R̂ISO
i j given by (47). As RL

i j (x, 0) = Ri j (x, 0) it should come as no surprise that also

R̂L
i j can be simplified to R̂i j

(
αKε2/3, LM ,G, k

)
for τ = 0.

The spectral velocity tensor defined in (59) is closely related to the Mann (1994) ten-
sor, which can similarly be written R̂i j

(
αKε2/3, LM , �, k

)
. The difference between the two

tensors lies in how τe(k), which in Mann (1994) is given by

τe(k) = �
dU1

dz

−1 |k|− 2
3 L

− 2
3

M√
2F1
(
1
3 ,

17
6 , 4

3 ,−|k|−2L−2
M

) (61)

instead of (56), is combined with the rapid distortion equation. As previously mentioned,
instead of decaying continuously, the eddies in Mann (1994) are subjected to rapid distortion
according to their current age, which is set to exactly τe(k). This way of assigning a typical
age to the eddies enables the Mann (1994) tensor to avoid the integration over eddy birth
times seen e.g. in (41). As has been shown before and will be demonstrated again in Sect. 4.1,
theMann (1994) tensor performs very well for the case τ = 0, despite its simplified approach
to eddy decay.

Next, we consider the case τ �= 0, a situation in which the Mann (1994) tensor is not
applicable.

3.2 Implementing the Spectral Velocity Tensor for τ �= 0

Using (29) and (59) we can simplify (41) to

R̂i j
(
αKε2/3, LM ,G, k, τ

) = e− 1
2�2(k,τ ) R̂im

(
αKε2/3, LM ,G, k

)

Bjm

(
LM ,G, k,

G
√

αKε1/3

ML2/3
M

τ

)
, (62)

where Bi j is given by (58), and where �(k, τ ) is defined in (38). Though not clear from the
notation, �(k, τ ) depends also on αKε2/3, LM and G.

Equation 43 can analogously be simplified to

R̂L
i j

(
αKε2/3, LM ,G, k, τ

) = e− 1
2�2

L(k,τ ) R̂im
(
αKε2/3, LM ,G, k

)

Bjm

(
LM ,G, k,

G
√

αKε1/3

ML2/3
M

τ

)
, (63)

with �L defined in (44).
Evaluating (62) or (63) for τ �= 0 can, however, be very computationally intensive.

The reason is that, in the process, we evaluate (38) or (44), and then integrate (34) and
(42), respectively, both of which in turn integrate (59). One solution to this problem is
to first evaluate χ̊i j

(
αKε2/3, LM ,G, |k|), defined in (5), for a range of |k| values and use

interpolation in the resulting look-up table when evaluating (34), or (42). The look-up table
can be calculated once and for all if the relationship

R̂i j (1, 1,G, LM k) = R̂i j
(
αKε2/3, LM ,G, k

)
αKε2/3L11/3

M

, (64)
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which leads to

χ̊i j
(
αKε2/3, LM ,G, |k|) = αKε2/3 L5/3

M χ̊i j (1, 1,G, LM |k|), (65)

is used and the look-up table is constructed in two dimensions, G and LM |k|.
Next, we discuss two different strategies for obtaining the necessary input information

required to evaluate the presented models, an objective that, assuming knowledge of the
constants αK and M , is equivalent to finding suitable values of the parameters αKε2/3 , LM

and G.

3.3 Deriving Parameter Values from ε, u∗ and dU1/dz

Assuming knowledge of the rate of dissipation of turbulent kinetic energy, ε, the friction
velocity, u∗, and the shear, dU1/dz, then clearly αKε2/3 is given directly by the rate of
dissipation, ε, and the Kolmogorov constant, αK. With the objective of deriving LM and G
from ε, u∗ and dU1/dz, we start by rearranging (55) to

M = G
√

αKε1/3

dU1
dz L2/3

M

(66)

and multiplying both sides by
u2∗

dU1
dz

α
3/2
K ε

to obtain

M
u2∗

dU1
dz

α
3/2
K ε

= G
√

αKε1/3

dU1
dz L2/3

M

u2∗
dU1
dz

α
3/2
K ε

= Gu2∗
αKε2/3L2/3

M

= −G
∫∫∫

R̂13(1, 1,G, ξ) d3ξ , (67)

where in the last step we have used (64). We note that the right-hand side of (67) is a function
of G only. In Fig. 4, this quantity is displayed for a typical range of G. The left-hand side of
(67) can be interpreted as the ratio between the shear production of turbulent kinetic energy,

u2∗dU1/dz, and the rate of dissipation of turbulent kinetic energy, ε, multiplied by a constant.
As seen in Fig. 4, this ratio determines G uniquely.
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Fig. 4 To the left, the left-hand side of (67) versus G shows that G is uniquely determined by the ratio between
the turbulent energy production from the shear gradient and the rate of dissipation of turbulent kinetic energy.
To the right, the left-hand side of (69) divided by M shows that the ratio lmix/LM depends on G and thereby,
also this quantity depends on the ratio between the turbulent energy produced from the shear gradient and the
rate of dissipation
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Having determined G, then LM is given by (55) as

LM = G3/2α
3/4
K ε1/2

dU1
dz

3/2
M3/2

. (68)

Digressing slightly, we divide the definition of the mixing length, lmix = u∗/ dU1
dz , with (68)

and obtain

lmix

LM
= u∗/ dU1

dz(
G3/2α

3/4
K ε1/2

dU1
dz

3/2
M3/2

) = M

G

√√√√u2∗
dU1
dz M

Gα
3/2
K ε

= M

G

√
−
∫∫∫

R̂13(1, 1,G, ξ) d3ξ , (69)

where in the last step we have used (67). In the right-hand graph of Fig. 4 we see how lmix
LM

/M
depends on G.

In this section we have shown that knowledge of ε, u∗ and dU1/dz is sufficient to derive
the necessary input information for the spectral velocity tensor. In the process we have also
shown that both G and the ratio lmix/LM are given uniquely by the ratio between the shear
production of turbulent kinetic energy, u2∗dU1/dz, and the rate of dissipation of turbulent
kinetic energy, ε.

3.4 Determining Parameter Values from Measured Spectra

For many applications the physical properties ε, u∗ and dU1/dz are not known, and it can be
advantageous to use the alternative strategy outlined in Mann (1994), of measuring spectra
and determining which set of tensor parameter values best reproduces the measured spectra.

Finding tensor parameters in this way requires repeated evaluation of (4), and with this in
mind itmay be beneficial to first produce a look-up table ofχi j (1, 1,G, LMk1) and interpolate
to find

χi j
(
αKε2/3, LM ,G, k1

) = αKε2/3 L5/3
M χi j (1, 1,G, LMk1). (70)

In Fig. 5 this method is applied to spectra obtained at 80-m height and a wind speed
of 16m s−1 at Høvøre, Denmark, for neutral atmospheric stability. The resulting values of
αKε2/3, LM and G are not identical to the closely related parameters of the Mann (1994)
tensor αKε2/3, LM and �. However, the differences between the resulting parameter values
of the two tensors are dwarfed by the uncertainty owing to the choices made in the fitting
procedure, i.e. a small change in the fitting procedure would change the comparison result.
The spectral velocity tensor fits the components of the measured spectra at least as well as
the Mann (1994) tensor. We note that the spectral velocity tensor does not, at least in this
example, over-predict the u1u3 cross-spectrum as is apparently the case using the Mann
(1994) tensor, see Peña et al. (2010).

We have not taken into consideration the fact that the measured spectra in this case
were not truly spatial spectra, but obtained using a stationary anemometer. The spectra
corresponding to a stationary anemometer can be derived from R̂(k, τ ) by first calculat-
ing R(x − (U0 + U(x)) τ, τ ). This avenue is, however, not pursued here because it appears
quite computationally intensive. When attempting this, one may keep in mind that x1 of the
spectral velocity tensor is not defined as aligned with the mean wind, U0 + U(x), but with
the direction of the shear, dU/dz.
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Fig. 5 Comparison of spatial spectra from the spectral velocity tensor (left) and the Mann (1994) tensor
(right) for neutral stratification at 16ms−1. The spectral velocity tensor fits the components of the measured
spectra at least as well as theMann (1994) tensor, and it does not, at least in this example, over-predict the u1u3
cross-spectrum asMann (1994) has been reported to do. The resulting parameters of the spectral velocity tensor
versus the Mann (1994) tensor are αKε2/3 = 0.070 m4/3s−2 versus αKε2/3 = 0.085 m4/3s−2, LM = 63.3
m vs. LM = 51.2 m and G = 3.46 vs. � = 3.49. The experience so far is that the difference in the resulting
parameters is smaller than the uncertainty incurred by the choices made when designing the fitting procedure

4 Validation

4.1 Lateral and Longitudinal Coherence

To investigate the spectral velocity tensor’s ability to predict coherences, we turn to data from
LES performed on a 600 × 600 × 400 cell mesh with a resolution of 4 × 4 × 2.5 m. We
choose data from a height of 100 m of a neutrally stratified simulation, and here we define
x1 as being parallel to dU/dz. For more information regarding the LES, see Sullivan and
Patton (2011) and Berg et al. (2013).

Given that we have access to whole planes of data we can calculate spatial spectra,
and in Fig. 6 we have determined the parameter values of the spectral velocity tensor that
best reproduces the LES spatial spectra. The resulting values, αKε2/3 = 0.0085 m4/3s−2,
LM = 57.7 m and G = 3.23, together with dU1/dz = 0.0083 s−1 correspond to M = 2.40.
Determining M from the parameters resulting from the fitting of measured spectra was
attempted in de Maré and Mann (2014) in which the value M = 3 was proposed, however,
the uncertainty using this methodology is considerable. Perhaps a better way of deter-
mining M is to use (54), and this method is demonstrated in the right-hand frame of
Fig. 6 where the LES results indicate a higher value than the afore-mentioned M value
of 2.40. Using LES to determine M in this way is, however, not ideal owing to the finite
resolution of the calculation grid. Therefore, we recommend using M = 3 for now; how-
ever, based on the above considerations the uncertainty in this value is currently 20 % or
more.

It is worth mentioning that, with the look-up table of χi j (1, 1,G, LMk1) mentioned in
Sect. 3.4, it is straightforward to verify the formalmanipulations of (53) (which is the basis for
(54)). If the derivation is correct then the quantity G−1k7/31 L7/3

M χ13(1, 1,G, LMk1) should,
according to (53) combined with (51), (66) and (70), approach −33/1729 in the inertial
sub-range.
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Fig. 6 To the left, fitting the spectral velocity tensor to LES spatial spectra, resulting in parameter values:
αKε2/3 = 0.0085 m4/3s−2, LM = 57.7 m and G = 3.23. To the right, an attempt to determine M using (54),
where, as we recall, the quantity, M∗, is expected to approach M asymptotically in the inertial subrange. The
solid line shows the quantity in question using the spectral velocity tensor with the set of parameter values
resulting from the afore-mentioned spectral fitting. As expected, the curve approaches the value given by (66)
for high values of k1. The corresponding LES results indicates a higher trajectory than the solid line, before
trailing off, presumably due to the finite resolution of the calculation grid
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Fig. 7 To the left, lateral coherence, cohi j (k1, r, 0) for r = (0, 14.2m, 0). Both the spectral velocity tensor
(solid lines) and theMann (1994) tensor (dashed) performwell for this distance. To the right, the same quantity
for r = (0, 44.9m, 0). TheMann (1994) tensor performs better for the streamwise component (blue), whereas
the situation is reversed for the transversal component (green). Both tensors overpredict the vertical component
(red)

In Fig. 7, to the left, we compare lateral coherence, cohi j (k1, r, 0), for r = (0, 14.2 m, 0)
derived from the spectral velocity tensor with the same quantity extracted from the LES
data. The right-hand graph of Fig. 7 shows the same quantities for r = (0, 44.9 m, 0). In
the graphs of Fig. 7, lateral coherence derived from the Mann (1994) tensor is shown for
comparison, and it is found that the new spectral velocity tensor performs on par with the
Mann (1994) tensor. Both tensors overpredict coherence for the vertical component at sep-
arations larger than 0.5LM in the lateral direction. Coherence in the vertical direction is
not addressed at this point, as the lack of homogeneity makes this direction less straightfor-
ward. When addressing such coherences, the methodology of Mann (1994) can be used as
inspiration.
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Fig. 8 To the left, longitudinal coherence derived from the spectral velocity tensor (solid lines) for k1 =
0.33/ lmix = 0.71/LM is compared to the same quantity extracted from the LES data. To the right, an integral
time scale constructed from the longitudinal coherence. The value of k1 in the left-hand frame corresponds to
the left-most dot(s) in the right-hand frame
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Fig. 9 Sum of covariances for all three components derived from the spectral velocity tensor (solid lines)
compared to measured results for isotropic turbulence presented in Ott and Mann (2005). To the left, Eulerian
covariance for various separations in space and time. To the right, a comparison between the Eulerian and the
Lagrangian covariance for r = 0. We see that our model reproduces the crossover of RL

i i (0, τ ) and Rii (0, τ )

at approximately half the maximum value, a behaviour also reported in Fung et al. (1992)

In Fig. 8, to the left, we compare the longitudinal coherence, cohi j (k1, 0, τ ), derived
from the spectral velocity tensor with the same quantity extracted from the LES data, for
k1 = 0.33/ lmix = 0.71/LM . The Mann (1994) tensor is not included in the graphs because,
combinedwith the Taylor assumption of frozen turbulence, it would predict cohi j (k1, 0, τ ) =
1 for all time lags. The right-hand graph of Fig. 8 shows an integral time scale constructed
as
∫∞
0

√
cohi j (k1, 0, τ ) dτ .

4.2 Eulerian and Lagrangian Two-Point Correlations in Isotropic Turbulence

We also compare the performance of the spectral velocity tensor and its Lagrangian counter-
part perform relative to measured results for isotropic turbulence presented in Ott and Mann
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(2005). In Fig. 9, we see the Eulerian covariance, Rii (r, τ ), for different separations r and
τ , as well as the Lagrangian covariance, RL

i i (0, τ ), and the Eulerian covariance, Rii (0, τ ).
Both quantities are predicted significantly better than by any of the models presented in Ott
and Mann (2005).

The cross-over point of the Eulerian and Lagrangian covariances, seen in the right-hand
graph of Fig. 9, is sensitive to the choice of expression for Rk , see (33). As seen in the Figure,
the chosen expression predicts a cross-over at approximately half the maximum value, a
behaviour reported in e.g Fung et al. (1992) and Ott and Mann (2005). For comparison, no
cross-over point is predicted if one of the alternative expressions mentioned in Sect. 2.3, is
used instead. In the evaluation of the models we have used dU1/dz = 0, αKε2/3 = 0.00622
m4/3s−2, LM = 0.0273 m and M = 3.

5 Conclusions

A spectral velocity tensor has been developed to predict all two-point correlations in
space and time in sheared homogeneous turbulence. This was accomplished by com-
bining the design philosophies behind two existing models, the Mann spectral velocity
tensor, in which isotropic turbulence is distorted according to rapid distortion the-
ory, and Kristensen’s longitudinal coherence model, in which eddies are simultaneously
advected by larger eddies as well as decaying. The model is built on simplified physics
and assumptions such as that eddies created at different times are uncorrelated, and
that larger eddies displace smaller eddies as if the smaller eddies were shaped like
spheres. Assumptions such as these can be challenging to validate directly, and are
here instead seen as indirectly validated by the prediction capabilities of the resulting
model.

The model requires values of three parameters, αKε2/3, LM and G, as input. It was shown
that these values can be derived from the following physical properties of the flow: the rate
of dissipation of turbulent kinetic energy, ε, the friction velocity, u∗, and the shear, dU1/dz.
Alternatively, the values of the input parameters can, as with the closely related parameters
of the Mann (1994) tensor, be derived from measured spectra.

The resultingmodel predicts spatial correlations comparable to theMann (1994) tensor and
temporal coherence better than any of themodels evaluated inOtt andMann (2005).As part of
the framework, a spectral velocity tensor for Lagrangian correlations in space and time is also
developed and validated versus measurements of isotropic turbulence. Combined, themodels
reproduce the cross-over point between Eulerian and Lagrangian temporal covariances. As
per the scopeof the validation, the developedmodels canbeused, for example, inwind-turbine
engineering applications such as lidar-assisted feed forward control and wind-turbine wake
modelling.

Future work might include experiments to better determine the introduced quantity M . An
experiment with this objective, studying the ratio between different components of the cross-
spectra at known shear, is implicitly proposed in Sect. 2.5. Other developments could include
investigating the implications of using a rapid distortion formulation that also includes, e.g.,
buoyancy effects.
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