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Abstract Displacement height (d) is an important parameter in the simple modelling of
wind speed and vertical fluxes above vegetative canopies, such as forests. Here we show that,
aside from implicit definition through a (displaced) logarithmic profile, accepted formula-
tions for d do not consistently predict flow properties above a forest. Turbulent transport
can affect the displacement height, and is an integral part of what is called the roughness
sublayer. We develop a more general approach for estimation of d , through production of
turbulent kinetic energy and turbulent transport, and show how previous stress-based formu-
lations for displacement height can be seen as simplified cases of a more general definition
including turbulent transport. Further, we also give a simplified and practical form for d that
is in agreement with the general approach, exploiting the concept of vortex thickness scale
from mixing-layer theory. We assess the new and previous displacement height formulations
by using flow statistics derived from the atmospheric boundary-layer Reynolds-averaged
Navier–Stokes model SCADIS as well as from wind-tunnel observations, for different veg-
etation types and flow regimes in neutral conditions. The new formulations tend to produce
smaller d than stress-based forms, falling closer to the classic logarithmically-defined dis-
placement height. The new, more generally defined, displacement height appears to be more
compatible with profiles of components of the turbulent kinetic energy budget, accounting
for the combined effects of turbulent transport and shear production. The Coriolis force also
plays a role, introducing wind-speed dependence into the behaviour of the roughness sub-
layer; this affects the turbulent transport, shear production, stress, and wind speed, as well as
the displacement height, depending on the character of the forest. We further show how our
practical (‘mixing-layer’) form for d matches the new turbulence-based relation, as well as
correspondence to previous (stress-based) formulations.
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362 A. Sogachev, M. Kelly

1 Introduction

In order to simply describe the mean wind above a surface covered by vegetative canopy,
using similarity theory, a displacement height (d) is needed in addition to the effective
aerodynamic roughness length (z0) characterizing the vegetation. Applying surface-layer
theory to canopy flow implies that the flow should be “deflected” upward in such way that
the mean flow properties above a vegetative canopy (hereafter also referred to as forest),
beginning roughly from a height d within the forest, are similar to those above open flat
ground. The displacement height can first be defined ideally in neutral conditions (i.e. without
stability effects) over a flat surface through the logarithmic wind profile,

U (z) = u∗h
κ

ln

[
(z − d)

z0

]
, (1)

where z is height above the ground, u∗h is the friction velocity at the ‘virtual’ surface (gen-
erally the mean tree top height h), and κ is the von Kármán constant (usually accepted to be
0.4). Thus the mixing length and eddy diffusivity for momentum (and also for most scalars)
are proportional to the distance above d . Eddy diffusivities are typically also applied for the
prediction of vertical turbulent fluxes from vertical gradients of corresponding mean profiles,
via dimensionless stability profile functions (derived empirically from measurements over
uniform open terrain), i.e. Monin–Obukhov theory (Monin and Obukhov 1954; c.f. Foken
2004).

As stated by Simpson et al. (1998), “flux-gradient relationships based upon similarity the-
ory have been reported to severely underestimate scalar fluxes in the roughness sublayer above
forests, as compared to independent flux estimates (e.g. eddy-covariance or energy balance
measurements).” Raupach (1979) labelled this phenomenon ‘aerodynamic discrepancy,’ and
it has been noted more generally to occur in the atmospheric surface layer (ASL) when terms
such as turbulent transport become significant in the rate equations formomentumfluxes (e.g.
Zeman 1981; Wyngaard 2004).

Though uncertainty in the estimation of d was postulated to be one reason for such a
‘discrepancy’ (Thomet al. 1975;Hicks et al. 1979;Raupach1979), this reasoningwas rejected
after a short debate (Hicks et al. 1979; Raupach 1979; Garratt 1979). With eddy-covariance
measurements of stresses becoming common and the work of Thom (1971) connecting these
measurements with definitions of displacement height, such arguments disappeared from the
scientific literature. However, some studies found that d calculated frommicrometeorological
data was best fit via an assumption of a logarithmic wind profile (e.g. Bache 1986; Simpson
et al. 1998), suggesting that similarity theory can be usedwithin the roughness sublayer (RSL)
with greater confidence than previously believed. Because micrometeorologists are generally
constrained to work within the roughness sublayer above forests for practical reasons, the
issue of displacement height definition is still relevant; in the present studywe try to reconsider
it and re-open discussion about d .

Different interpretations of displacement-height formulations have beenmade (Hicks et al.
1979; Raupach 1979; Garratt 1979; Poggi et al. 2004), following the concept of Thom
(1971). However, they all aim to satisfy the ‘displaced logarithmic law’ (1) for the neu-
tral mean wind profile (or a surface-layer/similarity expression for non-neutral conditions),1

at least over some range of heights. But they can miss other (higher-order) effects on the
mean flow (they admit as much), which can also be approximated within the framework of

1 Some formulations for displacement height also attempt to describe mean scalar profiles (e.g. Thom et al.
1975).
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surface-layer theory, in part through d . The leading source of turbulent kinetic energy (TKE),
shear production (P), varies negligibly with height in the surface layer above open ground
when normalized by surface-layer scales (Wyngaard 2010). Above a forest, P (which is
− 〈

u′w′〉 dU/dz = u2∗dU/dz for horizontally homogeneous conditions2) should be roughly
equal to the dissipation rate of TKE, ε = u3∗/[κ(z − d)], when surface-layer theory applies.
That is, the ratio of these (φm = P/ε) should be constant and close to 1 in neutral conditions
over relatively homogeneous forest, as in the ASL; we remind the reader that the dimen-
sionless wind shear is also described by φm = κz(dU/dz)/u∗ for a given height z above a
uniform flat surface.

In the present work we show that none of the extant stress-based expressions for d con-
sistently provides such a result—the mean flow is much more dependent upon the vegetation
structure and inflow conditions than the stress-based expressions allow. The surface-layer
framework (using such formulations of d) was extended for use above forests through RSL
theory, whereby the dimensionless wind-speed gradient (and thus the ratio of shear produc-
tion to dissipation of TKE), and consequently the form for the wind profile, are modified
to account for the mean effect of the forest, via introduction of an additional length scale
(Garratt 1978; Raupach et al. 1979; Harman and Finnigan 2007).

Without looking into RSL theory, we extend a formulation for d to improve its application
over forests, for both mean wind and dimensionless profiles of sources/sinks of TKE. We
derive a formulation for d congruent with second-order flow statistics, starting with a form
that is independent of atmospheric stratification and that satisfies surface-layer theory for both
wind speed and normalized TKE in neutral conditions. We show that previous stress-based
formulations can be seen as simplified cases of this new definition. Perhapsmore importantly,
we further offer a practical alternative that is readily obtained from typical measurements; it
is also related to the vorticity penetration depth exploited in RSL theory (e.g. Raupach et al.
1996; Harman and Finnigan 2007).

Examination and comparison of the extant and new displacement height formulations
are done using flow data from the wind-tunnel experiments of Brunet et al. (1994) and
from simulations of the atmospheric boundary-layer model SCADIS (Sogachev et al. 2002;
Sogachev and Panferov 2006), for various sets of canopy structure and inflow conditions. In
this study only neutrally stratified flow is considered.

2 Previous Formulations for Displacement Height

There are a number of formulations for displacement height and approaches for its estimation.
Beginning with the implicit functional definition of d through assumption of a logarithmic
profile of wind speedU above the canopy (1), using wind-speed measurements at two levels
z1 and z2, we may eliminate z0 and estimate the displacement height as

d = z2 − z1 exp [κ (U2 −U1) /u∗]
1 − exp [κ (U2 −U1) /u∗]

, (2)

where u∗ is typically taken to be u∗h . Alternately, the friction velocity can be eliminated to
give

d = z̄ + �z
Ū

�U
W

{
Ū/z0

�U/�z

}
= z̄

(
1 + 1

α
W

{
z̄/z0
α

})
, (3)

2 We introduce the friction velocity u∗ via the mean momentum flux
〈
u′w′〉 = −u2∗, where turbulent fluctu-

ations about the mean are denoted by primes.
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364 A. Sogachev, M. Kelly

with Ū ≡ (U1 + U2)/2, �U ≡ (U2 − U1), z̄ ≡ (z1 + z2)/2, �z ≡ (z2 − z1), expressible
via the shear exponent α � (z̄/Ū )�U/�z, and W is the Lambert–W function.3 However,
since the effective roughness over forest depends on the displacement height itself (e.g.
z0 = (z2 − d) exp(κU2/u∗h) following Eq. 1), and because the friction velocity u∗h is
typically measured, then (2) is used instead of (3); we hereafter refer to (2) as the ‘classical’
formulation for d . In caseswhere profilemeasurements are not available, simplified empirical
expressions are often applied in practice, such as d = 0.67h; many empirical forms can be
found in the literature (e.g. Raupach and Thom 1981; Shaw and Pereira 1982).

With the ability to measure fluxes via eddy covariance, stress-based prescriptions for
displacement height became popular in the 1970s. Based on flow measurements made above
and within a simply-structured artificial crop in a wind tunnel, Thom (1971) identified d as
the mean level of momentum absorption. Though Thom’s (most quoted) expression for d
depends on the momentum flux being expressed in terms of drag, it derives from the more
general form

d =
∫ h
0 z

(
d

〈
u′w′〉 /dz) dz∫ h

0

(
d 〈u′w′〉 /

dz
)
dz

, (4)

where again the (canopy-affected) mean momentum flux is
〈
u′w′〉; here we denote turbu-

lent fluctuations about the mean by primes, and note that the friction velocity u∗ is equal
to

√−〈u′w′〉. The form (4) gained support from experimentalists (e.g. Landsberg and Jarvis
1973) and became popular with researchers using eddy-covariance measurements. Analysis
of Thom’s (1971) concept by Jackson (1981) placed d on a more secure theoretical foun-
dation, but, as noted Raupach and Thom (1981), the concept “does not ease the problem of
measuring it unless an accurate drag profile within the canopy can be deduced.”

Thom’s relation (4) can in turn be considered as a relative of the Poggi et al. (2004)
expression

d =
∫ h
0 zFd(z)dz∫ h
0 Fd(z)dz

, (5)

which gives the mean level of drag force Fd(z)—generally prescribed in terms of the drag
coefficientCd and leaf-area density A (as Fd = Cd AU |U |), whereCd and A can be functions
of height z. When the stress divergence d

〈
u′w′〉/dz is balanced solely by Fd(z) in the mean

momentum conservation equation, then (4) follows from (5). If one further assumes that
the drag coefficient and leaf-area density are independent of height (in addition to form drag
dictating the stress, so that (4) and (5) are equivalent), then d can be reduced to the yet simpler
form (e.g. Raupach et al. 1986)

d =
∫ h
0 z [U (z)]2 dz∫ h
0 [U (z)]2 dz

(6)

Alternately, multiplying (4) by a factor of
[
1 − 〈

u′w′〉
0/

〈
u′w′〉

h

]
(where subscripts 0 and h

refer to near-ground and canopy-top values respectively) to correct for the surface-induced
drag (Jackson 1981; Shaw and Pereira 1982), or using the less restrictive assumption

3 The Lambert-W function is sometimes labelled the ‘product-log’ function; see e.g. Warburton and Wang
(2004).
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z0,sfc
〈
u′w′〉

0 	 h
〈
u′w′〉

h, yields
4

d = h −
∫ h
0

〈
u′w′〉 dz

〈u′w′〉h
. (7)

Thus the commonly-accepted ‘surface-corrected’ form (7) implies that the effective zero-
plane or virtual surface is located a distance (h – d) below mean tree height h, with this
distance being a fraction of h that is equal to the ratio of canopy-averaged stress to canopy-
top stress.

Equations 4 and 6–7 allow d to be estimated fromdirect fieldmeasurements and arewidely
used by experimentalists, while (5) requires knowledge of the drag force via parameters
related to both the vegetation and flow; the latter may be available from specially designed
observations or model simulations.

3 New Formulations for Displacement Height

3.1 Formulation Considering Turbulent Transport

Sogachev et al. (2005) found that integralmethods based on themomentumflux (i.e. Eqs. 4, 6–
7) provide similar results for d over a spatially homogeneous forest, with approach (7) also
providing reasonable results in the vicinity of forest edges and behaviour closer to that
of (2). Equation 7, which is the only method attempting to account for the ground-induced
drag (Shaw and Pereira 1982), can, particularly considering its ad hoc correction factor,
also be interpreted as a slightly different conceptual definition of displacement height: d
is simply the mean canopy depth, reduced by a factor equal to the ratio of the canopy-

averaged stress and (mean) canopy-top stress, d = h
(
1 − h−1

∫ h
0

〈
u′w′〉 dz/〈u′w′〉

h

)
. Here

we build upon this definition, which gives in effect the level of canopy-mean momentum flux〈
u′w′〉

0...h ≡ h−1
∫ h
0

〈
u′w′〉 dz.

In Eqs. 4–7, the displacement height is based on the momentum flux, which had been
assumed to follow from the balance between shear production and dissipation of TKE. In
contrast to this assumption and the forms (4–7), we argue that a useful definition of d can
include the impact of other significant contributions to theTKEbalance in the canopy (e.g. tur-
bulent transport), information that might not be uniquely reflected in the profile of

〈
u′w′〉,

and which is not included in such forms. Shaw and Pereira (1982) concluded that d is the
level at which the above-canopymixing length (for momentum) would be zero, extrapolating
downward into the canopy. For flux-gradient relations, then d , as well as the mixing length
� (or diffusivity) in the RSL, should depend upon contributions to the TKE budget; basic
turbulence theory (Kolmogorov 1941) gives � ∝ E3/2/ε, and e.g. two-equation turbulence
closures are driven by TKE and dissipation budgets (dE/dt, dε/dt), from which mixing
length is derived (again as E3/2/ε). In order to properly characterize the similarity (RSL)
behaviour of the various components that contribute to TKE, we suggest a displacement
height amenable to the TKE budget. We thus advance the definition of d , using the level of
canopy-mean production of TKE instead of canopy-mean stress.

4 z0,s f c
〈
u′w′〉

0 	 h
〈
u′w′〉

h is valid in the mean, since Brunet et al. (1994) confirmed that
〈
u′w′〉

0 	 〈
u′w′〉

h
experimentally, and the roughness length z0,s f c is much smaller than the canopy height h.
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Beginning with the simplest TKE-based form analogous to (7), one may write

d = h −
∫ h
0 P(z)dz

Ph
= h −

∫ h
0 − 〈

u′w′〉 (dU/dz) dz

[−〈u′w′〉 (dU/dz)]|h
, (8)

i.e. for an implied equilibrium between shear production and dissipation (P = ε). This can
be re-written as

d = h −
∫ h
0 u2∗(z)dUdz

∣∣∣
h

[
1 + s′(z)

]
dz

Ph
= h −

∫ h

0
u2∗(z)

[
1 + s′(z)

]
dz

/
u2∗h, (9)

where s′(z) ≡
(

dU
dz

∣∣
z
/ dU

dz

∣∣
h

− 1
)
is the local normalized shear exceedance relative to canopy

top, and u2∗(z) = − 〈
u′w′〉 for height z. Thus one can see that when ∫ h

0 u2∗(z)s′(z)dz is much

smaller than
∫ h
0 u2∗(z)dz, or more simply in the limit that s′	1, i.e. the mean shear in the

canopy does not differ substantially from the (mean) shear at canopy top, then the energy-
based expression (9) simplifies to (7). That is, Eq. 7 can be seen as a particular case of (9).
However, this correction is not quite enough to provide consistency between d and the TKE
budget in neutral conditions, when the TKE is affected significantly by turbulent transport.

Including turbulent transport in the TKE budget, then (8) can be extended to

d = h −
∫ h
0 [P(z) + T (z)] dz

[P + T ]|h , (10)

where for modelling convenience we include both pressure-transport and turbulent transport
in the total transport (T ) of TKE (see e.g. Pope 2000; Wilcox 2002). Then (9) becomes

d = h −
∫ h
0

{
dU
dz

∣∣∣
h
u2∗(z)

[
1 + s′(z)

] + T (z)
}
dz

[P + T ]
∣∣
h

, (11)

which for T/P at canopy top significantly smaller than 1, can be cast again as a perturbation
of the stress-based forms, or vice versa,

d ≈ h − (1 − Th/Ph)

u2∗h

∫ h

0

{
u2∗(z)

[
1 + s′(z)

] + T (z)

(dU /dz)|h

}
dz (12)

For negligible canopy-top transport (Th/Ph → 0), in neutral conditions the expressions (10–
12) are seen to simply revert to (9). For near-uniform shear through the canopy (s′ 	 1)
then

d ≈ h − u3∗h/κ
Ph

, (13)

consistent with similarity forms for dissipation in the equilibrium limit (Ph = εh =
u3∗h/[κ(h − d)]

)
; this is expected to be the case for higher wind speeds, as shown below.

3.2 Practical Formulation Considering Vortex Penetration Depth

From mixing-layer theory, the concept of vortex penetration depth (Raupach et al. 1996;
Harman and Finnigan 2007) can be exploited to estimate d , roughly along the lines of (8–13);
we take the distance that motions penetrate below into the canopy to be the mean penetration
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depth,5 δω. In the flow around the mean canopy ‘top’, the magnitude of mean vorticity is
dominated by the vertical gradient: |ω|h ≈ (dU/dz)h . This leads to a displacement height
approximation of

d ≈ (h − δω) = h − cωUh∣∣〈ω〉h
∣∣ ≈ h − cωUh

(dU/dz)h
. (14)

The coefficient cω can be estimated by comparing (13) and (14); for Ph = u2∗h (dU/dz)h one
obtains

cω ≈ u∗h
κUh

, (15)

exhibiting a clear dependence upon the ratio Uh/u∗h , and as such, upon the struc-
ture of vegetation and surrounding flow conditions. For engineering use, the con-
stant cω can also be re-written simply in terms of the shear exponent; e.g. cω =
u∗h/(κUh) = 1/ln [(h − d)/z0] ≈ αh (c.f. Kelly et al. 2014). The ratio Uh/u∗h typically
varies from 3–5 (e.g. Bache 1986; Finnigan and Brunet 1995), which is consistent with shear
exponents measured above forests, i.e. cω ≈ αh is roughly 0.5–0.8. Note that cω found from
measurements using (15) can satisfy u3∗h/[κ(z − d)] = 1; however, estimating it (and thus δω)
without consideration of transport can be problematic, especially at lowwind speeds. Further
consideration of cω, its evaluation, and equivalent values to match other d formulations are
given below.

4 Data: Flow Modelling and Wind-Tunnel Observations

4.1 SCADIS Model

Allflowstatistics used to test the suggestedmethodwere calculatedusing the one-dimensional
version of the (SCAlar DIStribution) SCADIS model (Sogachev et al. 2002). This RANS
model of the atmospheric boundary layer (ABL) with two-equation turbulence closure is
well-documented, and verified against many datasets pertaining to canopy flow (including
vertical profiles of

〈
u′w′〉 andU ) over the last decade (Sogachev and Panferov 2006; Panferov

and Sogachev 2008; Boy et al. 2011). Several numerical experiments are presented below for
illustrative purposes, to demonstrate the theories given here as well as subsequent implica-
tions. Using flow statistics from ABL simulations, d was estimated using the four previously
established, commonly-used forms (Eqs. 2, 4, 6 and 7), along with the new formulations (10)
and (14).

4.2 Reynolds Number-Independent and ABL Flows

We used the one-dimensional version of the SCADIS model, with a vertical ‘grid’ consisting
of 250 levels of variable spacing; this ranged from about 0.04 m near the ground, growing
to 130 m near the top of the domain at z = 4 km. The flow statistics were calculated for
canopies having different structures, and also for two sets ofmodel cases. First, in an idealized
‘engineering’ flow, without the Coriolis force nor a length-scale limiter in the turbulence
closure, and thus independent of Reynolds number (Re), the model reproduces the “classical”
constant-flux layer through the whole model domain (insets of Fig. 1a, c), just as in other

5 RSL theory uses a ‘vorticity thickness’ scale to modify the form of vertical profiles, but does not typically
modify the displacement height d (e.g. Arnqvist and Bergstrom 2015). However, RSL theory does allow for
a variation of d with stability, but uses a stress-based form such (as in Eqs. 4–7).
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368 A. Sogachev, M. Kelly

Fig. 1 (a, c): logarithmic ‘displaced’ wind profiles and ‘observed’ (fully modelled by SCADIS) U (z) for
two different forest types in idealized flow, using Eq. 1 with d calculated using the logarithmic law Eq. (2),
from stress-based forms (4, 6–7) and the new form (10); note Eq. 5 is identical to Eq. 4 in this flow case.
Dotted line shows ‘observed’ stress. All values are normalized by respective SCADIS value at the canopy top.
Inset shows U (z) and the stress profile through/beyond the ASL. Right panels (b, d): normalized profiles of
u3∗h/[κ(z − d)] using different formulations for d (solid, colour), as well as simulated P , dissipation ε, and
transport T ; shaded areas indicate normalized leaf area density (LAD). Data for (14) are not shown, because
for specific values of cω , they match the plotted formulations (see text for detail)

RANS schemes lacking these twomodel parts (c.f. Apsley and Castro 1997). Then, including
the Coriolis force and turbulence length scale limiter (as in typical ABL simulations, c.f.
Sogachev and Panferov 2006), the model approximates the vertical structure of a neutrally-
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stratified ABL (insets of Fig. 5a, c). The driving force in the model was a geostrophic wind of
varyingmagnitudeUg , and calculations includingCoriolis forcewere done at a latitude of 50◦.
Two different leaf area density (LAD) profiles, having pre-defined constant aerodynamic drag
coefficients (Cd = 0.2),were used for canopy-flowcalculations: thefirst approximates forest-
like vegetation (h = 20 m, leaf area index LAI = 3, LAD distribution shown in Fig. 1b) and the
second represents bush-like vegetation (h = 15 m, LAI = 1, LAD distribution in Fig. 1d). The
vertical foliage distribution uses beta distribution (e.g. Meyers and Paw-U 1986; Sogachev
et al. 2008). Two parameters, α and β, determine the shape of the distribution. When α > β,
the maximum value occurs at z/h > 0.5, thus representing a region of maximum foliage
concentrated in the upper part of the canopy. The parameters {α, β} were specified as {7, 3}
for forest-like vegetation and as {1, 3} for bush-like vegetation. For both cases Ug was set
to 10 m s−1, and the aerodynamic (surface) roughness length in all experiments was set to
0.03 m.

4.3 Wind-Tunnel Flow Simulations

The SCADIS model was also used to reproduce data from the experiment carried out in the
CSIRO Pye Laboratory wind tunnel (Wooding 1968) by Brunet et al. (1994) to study flow
over a modelled aeroelastic canopy with h = 0.047 m (LAI = 0.47, Cd = 0.68). Sogachev
and Panferov (2006) demonstrated how the SCADIS model can reproduce the flow for such
conditions, using two different approaches to drive the flow:

(i) based on a driving pressure gradient that simulates a vertical gradient in Reynolds stress
above the canopy (Wilson et al. 1998); and

(ii) based on surface-layer assumptions without such a gradient.

In both approaches the vertical dimension of the model domain (Ht = 0.65 m) was divided
into a grid of 550 nodes, with constant grid spacing of h/40. Additionally, for the tunnel
simulations the Coriolis force is neglected, the aerodynamic roughness length of the tunnel
walls is 0.0007 m, the turbulence length scale limiter was fitted as 0.08Ht , and a no-slip
condition was taken at the bottom. For approach (i) the wind speed at tunnel top was taken
to be zero, with a driving kinematic pressure gradient set by ρ−1∂ 〈p〉/∂x = −2u2∗h/h. For
approach (ii), the forcing of the airflow was provided by setting the wind speed to 16 m s−1

at the upper boundary. The boundary conditions for other parameters were also adapted for
different cases according to Sogachev and Panferov (2006). Both approaches were used,
because experimental data show that directly above the vegetation canopy the shear stress is
almost constant with height up to roughly 2h.

5 Comparison and Behaviour of Displacement Height Formulations

5.1 Re-Independent Flow

Figure 1 shows normalized profiles of wind speed, momentum flux, shear production, trans-
port, and dissipation of TKE, for the first (ideal) set of cases, i.e. flow independent of Reynolds
number (Re). These results are generated for two different leaf-area density profiles, with
the flow above the canopy experiencing the constant-flux layer conditions under which the
theory and definition (1–2) of d was created (i.e. surface-layer theory). For finding d in prac-
tice, wind speeds from all existing (or arbitrary) measurement levels are typically used. For a
purely logarithmic profile, ideally the number of observational heights does not matter: two
is sufficient (as in Eq. 2), and under such ideal conditions it is irrelevant which levels are
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chosen for estimation of d . This is in contrast to most real-world situations, as will be shown
below.

Figure 1 also demostrates an advantage of the new d formulation (10): the mean wind
profile practically coincides with both the analytical solution (1) and the model result above
the canopy. Equations 4–7 give d values that are close to each other, but fail to reproduce
the wind profile and dimensionless wind shear (shear production) φm . In the absence of the
Coriolis force, and in the case of small surface stress, the stress- anddrag-based approaches are
essentially identical and overpredict d . This is consistent with Garratt’s (1978) suggestion
that overpredicted d is a possible cause for the underestimation of φm . Equation 14 is a
simplified approach for estimation of d , and it can be matched to old or new formulations,
depending on the choice of cω. Setting cω to 0.41 and 0.32 in the case of forest and bush-like
vegetation, respectively, results in values of d estimated by (14) that are the same as those
defined by the stress-based Eq. 7. Values for cω of 0.63 and 0.56 (respectively) provide a
match to the new formulation (10). Note that the bush-like canopy probably represents a
worst-case scenario for both measurements and modelling of vegetation, and the values of
cω for this case define some limit. Thus for practical application, as a first estimate of cω a
constant value for a more typical forest type should be used: 0.41 to match (7) and 0.63 to
match (10). Analogous to the geometric interpretation of the von Kármán constant κ (Monin
and Yaglom 1971), we postulate cω to be a ratio of dominant vertical and streamwise length
scales for the mean flux-containing eddies interacting with the canopy (e.g. Raupach et al.
1996). Interesting to note is that to force (14) to match (7) one must set cω ≈ κ , while
(14) gives the same results as (10) for cω = 0.632 ≈ √

κ . The latter might be interpreted
dimensionally, regarding turbulent transport versus stress; showing this, however, follows
from (more) formal connection between (10) and (14), which is beyond the scope of the
present work. At any rate, cω = 0.632 is our first estimate for use in (14–15).

Figure 2 shows how the profile of shear production and the subsequent profile of (P + T )

differ from that of the shear stress, demonstrating how their vertically integrated values give
smaller d in the new formulation. One can see in the figure that the (orange) ‘area’ implied by
the normalized integration of P+T as in (10) has a relatively greater contribution from farther
below the canopy top than the analogous (blue) area of normalized stress corresponding to (7),
leading to a smaller displacement height. Because contemporary flux-based approaches for
d follow from the original suggestion of Thom (1971), it is worth noting that Thom only
proposed some “identity of the levels z = d and z = c”, where in his case the level c (the
level of action of the drag force) was estimated using an expression similar to Eq. 4 but
with integration only up to an “adjusted crop height” that was set as 0.825h. Because such an
“adjusted height” can be varied (reduced) depending on flow conditions and canopy structure,
it seems this point was ignored in further use; in the following paragraphs we continue to
demonstrate why such a reduction in stress-based height is needed.

5.2 Wind-Tunnel Flow

The experimental data of Brunet et al. (1994) allows some scrutiny on how observations
can be used for d estimation, and we consider the consequences of such. Data presented
in Fig. 3 indicate that the SCADIS model simulates well the wind-tunnel flow of Brunet
et al. (1994). Two approaches are used in the simulation (see Sect. 4.3): (i) driving the flow
with an effective pressure gradient, and (ii) one based on a constant-flux layer assumption.
The first is more natural because it allows a no-slip condition at the walls (Figs. 3b, e),
though this approach is not able to model the constant shear-stress layer above the canopy
(Fig. 3a, d), which, together with the shift of observed maximum dissipations to the height
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Fig. 2 Vertical profiles of − 〈
u′w′〉, P and P + T , normalized by their respective values at canopy top, for

forest-like and bush-like canopies. Shaded areas indicate the integral values arising from common stress-based
expressions (blue, cf. Eq. 7) and new TKE-based form including transport (orange, Eq. 10)

of 1.5h (c.f. Fig. 7 in Brunet et al. 1994), can be attributed to wind-tunnel issues unrelated
to the canopy (Seginer et al. 1976). The approach based on a constant-flux layer assumption
reproduces the constant-flux layer not only at heights close to the canopy, but over most of
the domain (Fig. 3a, d); as such, it provides unrealistic and unphysical wind-speed profiles
for a wind tunnel (Fig. 3b). Though each approach has its own weaknesses, together they
allow us to reproduce very well the experimental data, and also extend these data in a way
that allows reliable calculation of P, T, dU/dz, and turbulent diffusivities with some degree
of accuracy.

According to the approaches used, the SCADIS model calculated two different profiles
of eddy diffusivity (Fig. 3c). Approach (i) provides physically representative turbulent diffu-
sivity K over the whole domain, but (due to the lack of constant-flux layer discussed above)
provides a worse result for K near the canopy than demonstrated by approach (ii). In general,
both profiles are close to each other, and match experimental data up to heights of 2h. Iner-
tial sublayer diffusivities calculated by using different formulations for d , plotted in Fig. 3f,
clearly give support to our new formulation (14).

Data presented in Fig. 4 support our formulation further: it is clear that different modelling
approaches provide different production profiles inside the domain, and Fig. 4a reminds us
that the constant-flux assumption (ii) provides better agreement with measured production
above the canopy, but approach (i) does so higher up. But what is more remarkable from
Fig. 4 is that the old formulations provide neither a value near 1 for u3∗/[κ(z − d)], nor more
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Fig. 3 Comparison between measured and modelled flow statistics for the wind-tunnel experiment of Brunet
et al. (1994). Points denote observations (bars denote standard deviations); red lines model driven with an
effective pressure gradient; blue linesmodel driven with assumption of constant-flux layer above canopy. The
black lines in f represent the surface-layer (inertial sublayer) diffusivity K0 = κu∗(z − d), with differently
defined d: solid with d by (7), as in Brunet et al. (1994); dotted via (14) with cω = 0.632; and dashed via
(14) with cω = 0.716

realistic wind profiles at greater heights. Brunet et al. (1994) discussed the presence of a thin
inertial layer between dimensionless heights z/h of roughly 1.7 and 2.4, and the displaced
logarithmic wind profile with the ‘old’ d values (which they defined using Eq. 7) matches
measurements in this layer (Fig. 4b). The new formulation (14) matches measurements in
a layer from z ≈ d to z ≈ 2h, where u3∗/[κ(z − d)] ≈ P as well. Moreover we can see
that a small adjustment of cω provides a better agreement with both normalized Ph and
wind speed. The adjustment is made using data from Brunet et al. (1994) via the single-
point Eulerian (integral) length scales Lu/h = 1.35 and Lw/h = 0.38 at z = h; thus
cω = √

1.35 × 0.38 = 0.716 instead of 0.632. We postulate that cω depends on the sizes of
the large (mean) turbulent structures in the streamwise and vertical directions, but without
knowledge or specific information, we suggest a ratio of 2.5:1 for such structures (resulting
in cω = √

κ , as postulated in Sect. 5.1).

5.3 ABL Flow Cases

Figure 5 shows themeanwind andTKE component profiles as in Fig. 1, except for calculation
conditions intrinsic to the ABL: the Coriolis force is included, along with a finite ABL depth
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Fig. 4 Comparison between measured and modelled shear production P and wind speed U , for the wind-
tunnel experiment of Brunet et al. (1994). Points denote observations (bars denote standard deviations); red
lines model driven with an effective pressure gradient; blue lines model driven with assumption of constant
flux layer above canopy. Black lines represent profile of (a) u3∗h/[κ(z − d)] and (b) logarithmic ‘displaced’
wind profiles (Eq. 1), using different formulations for d, as in Fig. 3

and subsequent length-scale limitation (c.f. Apsley and Castro 1997; Sogachev et al. 2012).
Comparing Figs. 1a, c and 5a, c we can see that momentum flux is not constant above the
canopy layer (though its divergence is), and that a wind-speed maximum occurs in the trunk
space of the crown-dominated forest (Fig. 5a), which results in additional production of TKE
in this area (Fig. 5b). Significant changes in turbulence statistics affect the new d defined
as in (10), but differently than the stress-based forms (4, 6 and 7). We can see that the old
formulations still result in higher d values than implied by the model output or from both the
classical definition (2) and new formulation (10); however, when implemented in Eq. 1 they
provide a better match with ‘observed’ SCADIS model wind profiles far above the forest.
The d values defined by the classical (2) and new formulation (10) provide a better match to
U (z) in the RSL near the mean vegetation top. Note that d defined through the logarithmic
law as in (2) now strongly depends on the particular height levels chosen for its estimation.
In the plots here we used z1 = h and z2 = 1.5h, and the estimated wind profile coincides
with the ‘observed’ one at these levels. Nevertheless, only the new d formulations (10, 14)
and logarithmically defined d (2) predict the normalized total TKE production profiles, i.e.
u3∗h/[κ(z − d)] ≈ P ≈ (ε − T ). The fact that formulations (4, 6 and 7), i.e. those stemming
from the Thom (1971) idea of d based on momentum flux, provide a good match to wind
speed above the RSL (supported by observation), can explain their wide use and consequent
neglect of the existing inconsistency between TKE components and the flux formulation.

Due to the effect of the Coriolis force, we expect a wind-speed dependence in the TKE,
stresses, and possibly displacement height; in the mean, the Coriolis force still leads to modi-
fied stresses and vertical transport [e.g. Grønnegaard et al. (2014)]. To show this effect, and to
further demonstrate the role of turbulent transport in (reduction of) the displacement height,
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Fig. 5 The same as in Fig. 1, but for finite ABL conditions including Coriolis force (see text for details)

Fig. 6a displays the ratio of the vertically-integrated transport
∫ h
0 T dz and shear production∫ h

0 Pdz as a function of wind speed for the two types of vegetation considered, showing
that the contribution of transport increases to an asymptotic value for strong winds. Fig-
ure 6b shows normalized canopy-top shear production Ph/

[
u3∗h/(κ(h − d))

]
(equivalently

φm(h; d)) versus geostrophic wind speed and canopy-top friction velocity. It implies the
logarithmic law formulation (2) gives d similar to the simplified stress formulations (4–7)
at low wind speeds, though the wind-speed dependence of the results from (2) are differ-
ent than when using the other forms for d . We do note that all formulations give constant
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φm(h; d) at higher wind speeds. The stress-based models produce φm(h; d) of ≈ 0.6 − 0.7
in high winds, while the log-based form converges to a value slightly greater than 1. The
new formulation (10) gives larger canopy-top φm(h; d) with decreasing wind speeds, due to
the diminishing effect of transport on d , also converging in high winds to a value just above
1. This is as it should be in horizontally homogeneous conditions: the negative transport at
canopy top causes φm +φT → 1 (see Fig. 5b, d), with the dimensionless transport defined by
φT ≡ T/

{
u3∗h/[κ(h − d)]

}
; the corresponding model (8–9) without transport gives φm → 1

(not shown). The formulation (14) with cω = 0.632 provides practically the same results as
formulation (10), with only a small deviation for forest-like vegetation.

As for the actual displacement height d , its behaviour as a function of wind speed is shown
in Fig. 7, along with the subsequent roughness implied by its functional definition (e.g.
z0 = (z2 − d) exp (κU2/u∗h) from Eq. 1). The new forms (10) and (14) give lower d
values than the other formulations; the logarithmically defined-model (2) gives larger values
of d for low winds, similar to the simplified stress/drag-based formulations (4–7), though it
gives d values comparable to the new models at high wind speeds for the top-crown forest
case. The smaller d from the new models is consistent with the shift of spectral peaks of
vertical velocity to larger scales observed by Mammarella et al. (2008), i.e. lower values of d
imply a greater distance from above-canopy measurement heights to the virtual ‘surface’.
The new formulations remain relatively insensitive to wind speed for the ‘top-heavy’ forest-
crown case—with more speed dependence for the sparser low-vegetation case—due to the
relatively more severe decrease in transport at small wind speeds (see Fig. 6a). However, the
effective roughness increases with wind speed for all models and all cases, consistent with
measurements (Raupach et al. 1996; Dellwik and Jensen 2005).

Figure 8 demonstrates the limit of the use of displacement height for the case of very low
wind speeds, here Ug = 2 m s−1 (u∗h ≈ 0.1m s−1). Results presented in Fig. 8 reveal that
for low Ug , the log-law layer (if it exists) is very shallow, because the real boundary layer
has a limited depth. This will dictate the behaviour of the mixing length, with its vertical
derivative corresponding to the classical value of κ (accepted as 0.4) over only a limited range
of heights; for low speed conditions, this is one reason the choice of z1 and z2 is important
when using (2). Choosing z2 = 1.1h causes φm resulting from (2) to become closer to 1 (as
shown in Fig. 6b). A shallower ABL, i.e. not much deeper than the mean canopy depth, tends
to ‘shrink’ the logarithmic layer, and demand measurements closer to the canopy, which
increases the uncertainty in estimating d .

6 Discussion and Conclusions

Over the last half-century, the validity of similarity theory and applicability of flux-gradient
measurements above forests was shown to be limited (e.g. Raupach 1979; Högström 1996;
Simpson et al. 1998; Nakamura and Mahrt 2001). The difference between measured flow
properties and those estimated using surface-layer formulations led to the development of
the RSL concept (Thom et al. 1975; Garratt 1978; Raupach et al. 1979; Harman and Finnigan
2007). We note that differences in estimation of the displacement height d can significantly
alter observation-based predictions of vertical profiles for both fluxes and (mean) wind speed.
Along those lines, we argue that d estimated from its ‘classical’ logarithmic definition can
better capture the mean wind profile within the RSL, down to the mean canopy top, and thus
demanding measurements there; our ABL simulations support this (e.g. Fig. 5). The choice
of observational heights can affect estimates of d , with increased impact for a shallower
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Fig. 6 a ratio of canopy-integrated transport to canopy-integrated shear-production, as seen in (10–12), as
a function of geostrophic wind speed (and approximate canopy-top friction velocity u∗h). b wind speed
dependence of canopy-top TKE production rate normalized by displacement–height adjusted surface-layer
power scale u3∗h/[κ(z − d)]. Solid lines for forest-like and dotted for bush-like vegetation types; LAD profiles
for these types shown in Fig. 1b, d

ABL and lower wind speeds; there is a compromise between measuring at ‘low enough’
heights above the canopy, versus taking measurements with sufficient vertical separation to
minimize uncertainty. This classic “logarithmic law” d is in contrast to the oft-used stress-
based formulations (Thom 1971; Shaw and Pereira 1982; Raupach et al. 1986) that improve
meanwind profiles above the RSL. But for these accepted stress-based forms for d (Eqs. 4, 6–
7), another, paradoxical compromise arises: useful measurements for stress-based d need to
be taken above the RSL, but the constant-flux assumption and similarity theory both become
less valid with increasing height above the canopy.
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Fig. 7 Displacement height (a) and roughness length (b) for two vegetation types (solid for forest-like and
dotted for bush-like; LAD profiles shown in Fig. 1b, d), as a function of geostrophic wind speed. Range of
friction velocity values at canopy tops is also given, as in Fig. 6

To address these paradoxical aspects,we developed aTKE-influenced displacement height
concept, which had yet to be considered within the context of consistency with the turbulent
kinetic energy (TKE) budget. We are reminded that above forests, any TKE ‘imbalance’
(i.e. dE/dt involving terms other than shear production P and viscous dissipation ε), or
deviations from similarity theory (e.g. Monin–Obukhov theory, where only buoyant produc-
tion/destruction balances P and ε), have come to be accepted as properties of the RSL.While
RSL theory (Harman and Finnigan 2007) extends surface-layer theory to account for the for-
est’s effect upon the dimensionless wind-speed profile φm , i.e. allowing for varying ratios of
P to ε (and thus non-constant φm), RSL theory does not include such effects on the displace-
ment height (though it can include stability). Our original motivation also included a desire
for consistency between the displacement height and Monin-Obukhov similarity theory, so
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Fig. 8 Normalized “observed” (fully modelled by SCADIS) and logarithmic ‘displaced’ wind profiles for
forest-like canopy using (1), with d from the older expressions (2, 4, 6 and 7) and from the new form (10), for
two different geostrophic wind speeds Ug (solid, dashed). Inset shows U (z)/Ug through/beyond the ABL

that the components of the dimensionless TKE budget (e.g. shear production φm , buoyant
production φB , and dissipation φε) above a canopy behave predictably with atmospheric
stability, i.e. as a function of (z − d)/L where L is the Obukhov length (Monin and Obukhov
1954).

Herewe have adopted amore general definition of d , in analogywith the flexible Shaw and
Pereira (1982) formulation.Whereas the latter prescribes d as the level of mean stress relative
to that at canopy top, we estimate d defined through the relative canopy-mean production
of TKE, not only to account for a logarithmic mean wind-speed profile (approximately,
in neutral conditions), but to also treat the (integrated) height-dependent contributions to
TKE that affect the flow above vegetative canopies. We show that the stress- and drag-based
formulations (4–7) can be seen as simplified cases of a more general definition via our new
TKE-based form (8–9), andwe extend the latter to include turbulent transport (Eq. 10), which
is an integral part of the RSL.

The new theory indeed shows improvements in prediction of simple flow properties in
neutral conditions (alsowith preliminarily success including buoyancy effects, not shown); in
the present article we focus on the neutral case and the generalized definition of d, reserving
stability-dependent results for a later study. Though the expressions considered here are not
limited to neutrally-stratified flow, it is relevant to have validated their performance first in
neutral conditions, before further application to stable or unstable regimes. Applying the
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generalized expressions here in other stability regimes can have serious consequences on
interpretation of measurements above the forest under real flow conditions, where surface-
layer theory is often applied for analysis.

Using observations from multiple heights, the new approach tends to give smaller (gener-
ally more realistic) d than previous stress-based formulations, and slightly larger than d from
the classic logarithmic definition (2). The new ‘extended’ definitions of d give better esti-
mates of the combined effect of turbulent transport and shear production than the classic and
stress-based formulations (Fig. 5b, d), leading to better predictions of the mean wind speed
within the RSL (Fig. 5a, c). The improved behaviour of the new approach over stress-based
forms is yet more pronounced in ‘real-world’ conditions, which include the Coriolis force
and a finite atmospheric boundary-layer depth, and also depends on the character of the for-
est. The Coriolis force affects the balance between (canopy-affected) production, transport,
and dissipation, and this introduces a wind-speed (Reynolds number) dependence into flow
statistics in the RSL. It also mitigates the integrated effect of transport relative to shear pro-
duction, which acts to reduce the overall Reynolds-number dependence of the displacement
height (Fig. 7a).

Again one might argue that in reality, the wind profile is not often observed to be logarith-
mic near the canopy top (as in Fig. 1a); however, for horizontally homogeneous conditions,
as in our simulations, one can expect an approximately logarithmic profile above the canopy,
with some caution (the results in Fig. 8 are a good example of this).We recognize that the flow
statistics involved in estimation of P and T (particularly highermoments of wind fluctuations
such as turbulent transport) are difficult to measure, especially in stratified cases. But in an
ideally defined framework (just as with previous definitions of d), using a well-validated
model (e.g. SCADIS) in the consistency-testing process is not presently an issue, because
there are few measured statistics available. Further, we note that although the representation
of third-order moments in SCADIS is limited (turbulent transport and pressure transport are
parametrized together in a diffusive manner), the results we present were insensitive to use of
an enhanced turbulent transport model including the parametrization of pressure transport.

Along with the TKE-related form for d , we also applied the mixing-layer concept of
vortex penetration depth to displacement height (14), using a mean vorticity magnitude with
canopy-top wind speed. This includes a constant (cω) approximately equal to the local shear
exponent (α), but that also appears to have a geometrical interpretation (Sect. 5.2); further
exploration of this, through theoretical connection of turbulent transport to penetration depth,
is also the subject of ongoing investigation. The practical form (14) facilitates estimation of d
frommeasurements of shear andwind speed in the RSL, andwe show how it can approximate
the turbulent transport form (10) for d that we had derived earlier.

Though it does not appear to affect the wind profile dramatically in all cases, more precise
estimation of d also helps to improve not only predictions of energy fluxes, but can also
improve scalar flux predictions above forests. Further, though improved estimates of d may
still involve an uncertainty that is comparable to that inherent in characterizing the mean
canopy height, we note that our improvements appear to rectify a bias in estimation of d
that was present in the popular stress-based formulations. Along these lines, the vortex-
penetration form (14) is convenient and practical, allowing estimation of d via mean wind
speed observed at two heights, as is commonly measured.

While we have not (yet) used the new formulations for displacement height in combination
with RSL theory, we do note that d cannot alone give proper improvement of dimension-
less wind speed or scalar profiles. However, via the present study we re-open a discussion
about such: the use of these together, along with refinement of RSL theory for consistency
with turbulent transport, is perhaps worthy of further consideration. Without reconsidering
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RSL theory, since the new formulation works optimally around the canopy top and in the
RSL, some existing flux datasets can be reconsidered using the newly derived forms for dis-
placement height. Overall, the new forms for the displacement height d , based on TKE and
mixing-layer (vortex penetration) considerations, give generally improved results compared
to stress-based forms.
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