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Abstract Canopy height is an important and dynamic site variable that affects the mass
and energy exchanges between vegetation and the atmosphere. We develop a method to
estimate canopy height routinely, using surface-layer theory and turbulence measurements
made from a collection of flux towers. This tool is based on connecting the logarithmic wind
profile generally expected in a neutral surface layer with direct measurements of friction
velocity and assumptions about canopy height’s relationships with zero-plane displacement
and aerodynamic roughness length. Tests over a broad range of canopy types and heights
find that calculated values are in good agreement with direct measurements of canopy height,
including in a heterogeneous landscape. Based on the various uncertainties associated with
our starting assumptions about canopy micrometeorology, we present a blueprint for future
work that is necessary for expanding and improving these initial calculations.

Keywords Canopy height · Eddy covariance · Lidar verification · Surface-layer theory

1 Introduction

Canopy height is an important attribute of a landscape that affects surface roughness and thus
wind profiles that relate to momentum transfer in the lower atmosphere (Shaw and Pereira
1982). It also affects vegetation albedo (Dickinson and Hanson 1984; Ni and Woodcock
2000) and scales with above-ground biomass (Lefsky et al. 2002; Drake et al. 2003; Lefsky
et al. 2005; Thomas et al. 2008). Lidar techniques have been used extensively in the past
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166 S. Pennypacker, D. Baldocchi

decade to measure forest canopy height from space (Lefsky et al. 2005; Simard et al. 2011),
from aircraft (Chen and Hay 2011; Saremi et al. 2014) and from ground-based instruments
(Lovell et al. 2003).

These methods require validation, however, because of uncertainties arising from spatial
resolution limits and variations in vegetation density and landscape topography (Mascaro
et al. 2011; Saremi et al. 2014). Additionally, vegetation height is an important metric of
crop response to climate change and can be used to estimate components of the water bal-
ance in agricultural regions (Devkota et al. 2013; Timm et al. 2014). Traditionally, canopy
height is determined manually either with rough estimates by eye or using devices such as
hypsometers. Additionally, field campaigns are labour and resource intensive and cannot
provide a continuous, long-term record of growth and change needed to apply knowledge
of canopy height in these kinds of studies. Given the importance of canopy height’s rela-
tion to biosphere-atmosphere interactions, it is necessary to develop quantitatively rigorous
techniques that can be applied cheaply using data available in a variety of climates and
ecosystems. This will allow for independent and accessible calculations of canopy height
that can be used to support lidar campaigns and the improvement of canopy models.

The advent of a global network of eddy-covariance towers has provided invaluable data
on turbulence in and around vegetation canopies worldwide. These data are critical for quan-
tifying fluxes between the atmosphere and biosphere, and we use them to develop and test
a method for calculating vegetation canopy height based on surface-layer theory. Section 3
presents time series and distributions of calculated canopy heights from short crops to tall
forest canopies; we then test the sensitivity of our method to different components of a
heterogeneous canopy with varying wind direction and flux footprints. This is important for
improving estimates of canopy height inmulti-species landscapes and determining the impact
of flux footprints on comparing calculated canopy height to lidar measurements. Section 4
includes discussion of the steps needed to improve upon this initial work given the uncertain-
ties associated with flux-tower measurements and filtering methodology. Wherever possible,
we compare estimates of canopy height taken from external sources to our calculations.

2 Methods

2.1 Theory

The foundation of our method is an application of the logarithmic wind profile based on
Monin–Obukhov similarity theory for a neutral surface layer (Garratt 1994). The equation in
gradient and integrated forms are shown below for reference, where u is the horizontal wind
speed at height z, u∗ is the friction velocity, k = 0.4 is the von Karman constant, z0 is the
aerodynamic roughness length and d is the zero-plane displacement.

(
z − d

u∗

)
∂u

∂z
= 1

k
, (1)

u (z) =
(u∗
k

)
ln

(
z − d

z0

)
. (2)

A variety of observational work done to characterize the spectra of turbulence inside
and immediately above rough canopies has shown that this classic surface-layer formulation
fails close to the top of a canopy (Finnigan 2000). High shear at the vegetation–atmosphere
interface leads to wind profiles and turbulence statistics that are not predicted by Monin–
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Obukhov similarity theory inside the roughness sublayer (Raupach et al. 1996). The depth of
this roughness sublayer, and thus the depth over which wind speed diverges from Eq. 2, is not
completely constrained, but it has been estimated to extend no further than twice the canopy
height (Finnigan 2000). We assess parameters of the wind profile based on wind speed and
friction velocity measurements made near and above the edge of the roughness sublayer by
this definition. At these heights, we assume it is reasonable to extrapolate the effects of the
canopy onto a logarithmic profile.

In order to connect Eq. 2 to vegetation canopy height (h), we rely on estimates of the
ratios d/h and z0/h developed by Raupach (1994) for use in numerical climate models.
These parametrizations are functions of leaf area index (LAI), but we start with the typical
valuesd/h = 0.6 and z0/h = 0.1, and include an analysis of the validity of these assumptions
in the later discussion. Thus, we obtain an analytical equation for canopy height that uses
variables measured at most flux-tower sites,

h = z

0.6 + 0.1exp
(
ku
u ∗

) . (3)

2.2 Flux Measurements

All data are obtained from the eddy-covariance towers discussed below. Towers are equipped
with three-dimensional sonic anemometers for continuous, high frequency measurements of
the three wind velocity components (u, v and w) and typically have infrared gas analyzers to
measure water vapour and CO2 concentrations. The wind velocities are divided into a mean
flow component (ū, v̄ and w̄) and a fluctuation component (u′, v′ and w′). One of the most
important measurements needed for Eq. 3, u∗, is defined in terms of the air density ρ and
Reynolds shear stress τ ,

u2∗ = τ

ρ
=

∣∣∣u′w′
∣∣∣ . (4)

The sensible heat flux (H) is calculated using ρ, the specific heat capacity of air (cp),
and the covariance of acoustic virtual temperature fluctuations T ′ and fluctuations in vertical
wind speed w′,

H = ρcpw′T ′. (5)

Acoustic virtual temperature is calculated using wind speeds measured by the sonic
anemometer and their relationship to the speed of sound. This eliminates the need for thermo-
couples that can be easily broken and contribute error to measurements through their thermal
inertia. Generally, data are collected at 10–50 Hz and are reported on 30-min blocks.

2.3 Filtering

We first consider the static stability of the air surrounding the tower since Eq. 2 is only valid
in neutral conditions (Garratt 1994). We use the non-dimensional Obukhov length (z/L) as
the metric to define stability for each timestep that data are reported by the eddy-covariance
system,

z

L
= − zkgH

u3∗θρcp
, (6)

where g is the acceleration due to gravity and θ is potential temperature, and when z/L
approaches zero the atmosphere is neutrally buoyant. Monin–Obukhov similarity theory
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holds that non-dimensional descriptions of wind profiles in the surface layer (e.g., Eq. 1) can
be expressed as a function (φM ) of z/L alone (Garratt 1994). In neutral conditions φM = 1,
and Eq. 1 is recovered. Establishing the acceptable threshold for near-neutral conditions is
crucial, and we use φM to diagnose the impact of various cut-offs on the validity of applying
the logarithmic profile.We consider a balance between being close to near-neutral conditions
while maintaining a large enough sample size (N ) to calculate robust daily averages to be
very important. Both deviations from a logarithmic profile and inadequate values of N (daily
and yearly) can contribute errors in our canopy height calculations, and it is important to
determine which is most affected by the filtering criteria.

A variety of other work over the past several decades has defined near-neutral conditions
when |z/L| � 0.1 for practical purposes (Hogstrom 1988; Oncley et al. 1996; Marcolla
et al. 2005; Draxl et al. 2012). This assumption has been tested at field sites by comparing the
logarithmic profilewith observedwind profiles (Peña et al. 2014) and verifying that buoyancy
effects are in fact reduced by an order of magnitude with this condition for near-neutrality
(Metzger et al. 2007). We further test whether |z/L| < 0.1 is sufficient for our analysis by
considering the effects of setting the threshold for |z/L| at 0.03 and 0.1 on φM and total
sample size at our study sites. Wind-profile observations have suggested that φM can be
written as

φM =
(
1 − γ1

( z

L

))−1/4
, (7)

φM = 1 + β1

( z

L

)
, (8)

in unstable (−5 < z/L < 0) and stable (0 < z/L < 1) conditions, with the empirical
parameters γ1 and β1 taken to be 16 and 5, respectively (Dyer 1974; Garratt 1994). Initial
calculations indicate that the mean, median and mode wind profiles at all of our sites sit
close to logarithmic as φM = 1 to within about 5% on yearly time scales. Applying the
more stringent requirement that |z/L| < 0.03 reduces the sample size by between 40 and
65% for the time windows over which we calculate canopy height at each site. However, the
mean, median and mode of values of φM differ by a few percent when the different filters
are applied; using |z/L| < 0.03 brings the mean, median and mode wind profiles at each
site only slightly closer to logarithmic. At one standard deviation from the average z/L , φM

deviates from its neutral value by between 20 and 40%when using the |z/L| < 0.1 threshold
and by about 10% when using |z/L| < 0.03, depending on the site. Since the z/L threshold
has a larger relative impact on the available sample size than the statistics of φM , we elect to
exclude data when |z/L| > 0.1 in order to optimize the reduction in error. We will return to
the validity and importance of this decision in the later discussion.

We also apply friction velocity thresholds to ensure there is enough turbulence for eddy
covariance. Minimum friction velocity filters have been established by analysis of nighttime
CO2 flux data (Gu et al. 2005). These thresholds have often been determined by visual
inspection, though a more thorough analysis revealed that on average a minimum u∗ =
0.2m s−1 is important for robust eddy-covariance measurements (Papale et al. 2006). This
averagewas determined using scalar data from12flux tower sites, andwhile there is important
site-to-site variability, we will use the average as our minimum threshold.We also implement
an upper bound on u∗ in order to avoid extreme canopy conditions, as well. We want to be
cautious about using too high of u∗ values as they may cause deformation in the canopy, as
when plants bend over or experience waves and honami (Finnigan 1979; Gardiner 1994).
The upper bounds for the rice (0.4m s−1), alfalfa site (0.4m s−1), citrus grove (0.5m s−1),
evergreen broadleaf (0.8m s−1), evergreen conifer (0.6m s−1) and oak savannah (0.5m s−1)
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sites are all one standard deviation from the average u∗ value at that site. Since we are trying
to invert canopy structure from turbulence measurements we do not need data from all wind
conditions, just the best ones. The stability and u∗ thresholds give us a range of conditions
over which to estimate canopy height, and could be adjusted for future work. At the rice site,
we also only consider data from wind directions that passed over the vegetation of interest
due to the orientation of the tower with respect to the field.

2.4 Site Selection and Validation Measurements

Sites are selected in order to capture a full range of vegetation types and heights.Webeginwith
short crops, rice and alfalfa, in the Sacramento–San Joaquin Delta of California (Knox et al.
2014).We thenmove on to a citrus grove of intermediate height in Southern California (Fares
et al. 2012). We also use two evergreen forests that are part of the global FLUXNET system,
one inWashington State, USA (conifer evergreen) and one in Australia (broadleaf evergreen)
for the tall end of the height spectrum (Paw et al. 2004; Parker et al. 2004; Leuning et al. 2005).
These sites have been extensively studiedwith lidar and are thus ideal for testing ourmethod’s
ability to serve as a lidar verification tool (Kane et al. 2010; Hopkinson et al. 2013). These
studies provide a range of canopy height estimates used for verification, though we focus on
the average values since we are also calculating averages. Finally, we present results from an
oak savannah in Northern California, also managed by the Berkeley Biometeorology Group,
as an example of a heterogeneous canopy (Ma et al. 2007). Table 1 summarizes important
geographic and background information for each site.

2.5 Data Representation and Statistical Comparison to Reference Values

Results are separated into seasonal crops (rice and alfalfa), and non-seasonal trees, the
citrus grove, broadleaf (Tumbarumba), conifer (Wind River) and oak savannah (Tonzi).
This separation was motivated by the difference in the kinds of applications best suited
for each site. For the crop sites, we present time series of calculated daily average
height. A daily average is appropriate because canopy height does not measurably change
between 30-min eddy-covariance timesteps. Furthermore, considering a larger sample size
reduces the impact of random error in calculating average canopy height (Moncrieff
et al. 1996). For the tree-dominated sites, we create distributions of the daily-averaged
calculated canopy height. These canopies do not experience the same kind of sea-
sonal growth cycle as the rice and alfalfa. The probability distributions allow for the
analysis of a range of statistics for a given year or over multiple years. At the heteroge-
neous savannah site, we calculate height statistics in each Cartesian quadrant around the
tower.

In order to quantitatively assess the accuracy of our calculations, we compute the mean
absolute error (MAE) of a one-to-one comparison between the calculated heights and previ-
ously estimated reference heights,

MAE =
∑ |hmodel − hcalc|

N
, (9)

where hcalc is the calculated height, and hmodel is the predicted value of h, taken to be the
previous estimate. The value ofMAE is a measure of the average error for a particular model,
which is a one-to-one line between calculated and reference heights in the present study. For
the crops, we compare the measured daily averages against daily average calculations and for
the forest sites we compare estimated and calculated yearly averages. We can also calculate
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Fig. 1 a Daily-averaged rice height with stability filter applied and friction velocity colour bar, b daily-
averaged rice height with stability filter applied and drag coefficient colour bar, c daily-averaged rice height
with all filters

the so-called mean bias error (Willmott and Matsuura 2005), which indicates whether the
calculated canopy heights tend to be less than or greater than the previous estimates,

MBE =
∑ hmodel − hcalc

N
. (10)

IfMBE > 0, our daily average calculations tend to be smaller than the previously estimated
reference values. These statistics allow for comparison across a variety of canopy types and
provide quantitative information about the performance of calculated values against other
estimates of canopy height.

3 Results

3.1 Rice and Alfalfa (Short Height)

We first use data for the rice site over five years of growing seasons. Concurrent field data are
marked in red in Fig. 1c along with our calculations. Figure 1a, b show height calculations
with corresponding daily average friction velocity and drag coefficient (u/u∗)2 in colour.
The calculations capture a consistent pattern of seasonal growth, but there are outliers with
heights up to approximately 5m. Figure 1a highlights how critical the u∗ filter is for obtaining
the final results shown in Fig. 1c; the filtering clearly reduces the spread in our calculated
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Fig. 3 Measured versus calculated averages for both crop sites with a 1–1 line. Vertical error bars are one
standard deviation around the daily average. Horizontal error bars are one standard deviation around average
field measurements

estimates of rice height. Furthermore, we can use Fig. 1b to examine connections between
the drag coefficient and outliers in calculated canopy height. Figure 2 shows daily-averaged
heights calculated from two years of available data from the growing season at the alfalfa site.
Field measurements are again included in red for comparison. The calculations clearly reflect
the abrupt changes in height caused by periodic summermowing and the subsequent regrowth
shown by the field measurements. The alfalfa exhibits fewer outlier calculations than the rice,
and we examine possible explanations in Sect. 4. Using days where field measurements are
available, Fig. 3 shows how well the daily average calculations fall along a one-to-one line
for both crop sites. The MAE value for the one-to-one line and the calculated averages is
0.087 andMBE = 0.008. In general, this indicates low error about the one-to-one line, with
our calculated values tending to be slightly lower than field measurements.

3.2 Citrus Grove (Intermediate Height)

We now test our method with vegetation of intermediate height with one year of data (2010)
from the citrus grove. The mean heights from 2010 are similar from both tower heights.
However, the canopy height distributions from each tower height are not identical, as seen
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Fig. 4 Distributions of calculated canopy height from a 7.11-m level and b 9.18-m level with previous
averages for reference from Fares et al. (2012)

Table 2 Yearly average, median and standard deviations for heights calculated at the two citrus grove tower
levels

Tower level (m) 2010 yearly average (m) 2010 yearly standard deviation (m) 2010 yearly median (m)

7.11 5.3 1.2 5.1

9.18 5.2 2.0 4.4

in Fig. 4. This is also reflected in the statistics of Table 2. The calculations from the 9.18-m
level measurements yielded a higher standard deviation than the 7.11-m level calculations.
Figure 4a shows calculated daily average heights up to approximately 12 m from the higher
tower level, and the wider distribution is likely biasing our average. On the other hand, the
median height from the 9.18-m level data is closer in line with the previous estimate of
4.2 ± 0.2m (Fares et al. 2012).

3.3 Forest Canopies (Tall Height)

Figure 5 shows the distributions at a broadleaf evergreen (Tumbarumba) and conifer evergreen
(Wind River) sites. Table 3 details the statistics for the years considered at both sites. The pre-
viously determined average estimates are allwithin 4m (≈40%of yearly standard deviations)
of our calculations at the broadleaf evergreen and 7 m (≈70% of yearly standard deviations).
We also see that the standard deviation around our overall, multi-year average is small, indi-
cating low inter-annual variability in our calculations. Small variations in meteorological
conditions, flux footprint and canopy phenology are smoothed out of the yearly averages.

3.4 Heterogeneous Canopy

The heterogeneity of the oak-savannah (Tonzi) site is clear in the airborne lidar scan (Fig. 6) of
the area taken in 2009 (Chen et al. 2006; Baldocchi et al. 2010). Height roses with calculated
canopy height binned by wind direction are shown in Fig. 7. Qualitatively, we see from the
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Fig. 5 Distributions of daily-averaged canopy height at a broadleaf evergreen site and b conifer evergreen
site

Table 3 Statistics for multiple years at the forest sites for comparisons to previous estimates

Year (broadleaf) Average calculated
height (m)

SD Year (conifer) Average calculated
height (m)

SD

2001 37.8 10.4 1999 63.6 10.6

2002 37.4 10.4 2000 60.9 11.8

2003 36.04 10.8 2001 62.6 11.9

2004 36.8 10.4 2002 63.2 12.9

2005 36.0 9.9 2004 62.3 9.2

2006 36.2 8.8

Multi-year 36.7 0.75 Multi-year 62.6 0.94

Previous estimate of broadleaf average is 40 m (Table 1); previous estimate of conifer average is 56.3 m
(Table 1)

height roses that Eq. 3 is sensitive to variations in canopy structure around the tower. For
example, a pocket of increased canopy height corresponds to an area dominated by taller
pines to the north-east of the tower. Probability distributions of daily average canopy height
calculated during 2009 are compared to lidar statistics for each Cartesian quadrant in Fig. 8.
Our average calculations in all quadrants arewithin one standard deviation of the lidar average
heights, but there are clear differences between the distributions of lidar and calculated height
(Fig. 8). In quadrant I, for example, we see taller heights expected in the region of tall pines,
but the distribution does not capture the full range of heights seen with lidar. In quadrant IV,
there is a general overestimation of the canopy height by Eq. 3.

3.5 Summary of Forest Canopy Results

Canopyheights, both calculated and reference, for the citrus grove, broadleaf, conifer andoak-
savannah sites are compared in Fig. 9. We use the 2010 median calculation for the orchard,
multi-year averages (see Table 4) for the evergreens and the four-quadrant average at the
oak savannah. This allows us to see the results across multiple sites with different canopy
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Fig. 7 Height roses show distribution of calculated heights for three representative years (a, b, c) as a function
of wind direction around the tower
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Fig. 8 Distributions of canopy height from the lidar snapshot in 2009 and the calculated daily-averaged
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Averages for all distributions are shown with ±1 SD
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structures in one place. Again, we include vertical error bars representing one standard
deviation around average calculations and horizontal error bars for the uncertainty in our
reference measurement (see Sect. 2.4). The value of MAE for the calculations compared to
the one-to-one line is 2.6 while MBE = −0.9, indicating these results tend to be slightly
higher than previous estimates on average.

4 Discussion

4.1 Accuracy, Precision and Applications

For the crop sites, our calculations successfully reproduce abrupt changes in canopy height
caused by seasonal field maintenance and the growing season. Both the rice and alfalfa sites
have roughly the same distributions of friction velocity and seem to experience the same
average wind conditions. Furthermore, Fig. 1a shows that the anomalously high rice height
(e.g., 4 m) does not correspond to u∗ values outside the thresholds we set to remove the
influence of extreme conditions. Figure 1b does not reveal any anomalous (u/u∗)2 values
either. Since these data are already filtered by both friction velocity and stability, there does
not appear to be any obvious physical justification for removing them. However, it is worth
noting that Eq. 3 still captures a robust signal of seasonal growthwith the rice overmany years,
despite the outliers. We see both positive and negative bias errors for a one-to-one model,
indicating Eq. 3 does not consistently overestimate or underestimate canopy height. In the
heterogeneous canopy, our method reproduces the quadrant distributions and statistics seen
in lidar snapshots with mixed success. The calculated statistics are in reasonable agreement
with the lidar statistics in all quadrants, but differences in the shapes of the height distributions
(Fig. 8) are clear. A rough calculation using a two-dimensional footprint model (Hsieh et al.
2000) and average 2009 data reveals the average footprint of the tower to be about 400
m. Along with the fact that the average wind direction is approximately northerly to north-
easterly (Fig. 7), this suggests the tower may not be sampling the same distribution of trees as
the lidar instrument, especially in quadrants with larger discrepancies in height distribution
shape. However, averaging all four quadrants together yields statistics consistent with the
lidar measurements (Fig. 9). All of this indicates that using daily averages of Eq. 3 for
estimating canopy height is generally accurate. Figures 3 and 9 also suggest that the precision
indicated by the error bars is low, especially in the tall forest canopies. However, accounting
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b conifer site. Results for z0/h included in text

for imprecision in the validation averages, our calculations are in good agreement with all
prior canopy height estimates over a range of canopy types (Fig. 9).

Phenology determined from continuous calculations of crop height can be used as an
independent validation of model calculations of seasonal growth rate, maximum vegetation
height and the timing of growth cycles (Osborne et al. 2007; Devkota et al. 2013). Further-
more, Timm et al. (2014) found that canopy height, along with LAI, can be used as a proxy
for evapotranspiration from rice fields through the Penman–Monteith equation (Allen 1986).
Because our method is sensitive to abrupt changes in crop height and can provide a contin-
uous, accurate record without the need for field campaigns, calculated estimates should be
considered in the context of energy and water balances to provide insight into crop-climate
interactions.

The non-seasonal and forest site averages, which we show to be consistent over multi-
ple years, can be independent metrics used for lidar validation. Lidar campaigns often use
FLUXNET sites for validation points because of their global coverage and biome diversity
(Simard et al. 2011),making it practical to apply ourmethod as part of the verification process.
We show that our calculations are already well within (Fig. 9) the range of lidar-estimated
canopy heights at the broadleaf evergreen site (Hopkinson et al. 2013).

4.2 Next Steps

This study is intended to provide a first glimpse into the strengths and uncertainties of a
routine technique for estimating canopy height using flux-tower data. We began with a series
of assumptions about the utility of data from flux towers and canopy micrometeorology that
have important implications for the accuracy of our canopy-height calculations. Addressing
the error and uncertainty associatedwith each of these assumptions is necessary for improving
the utility of Eq. 3 as a viable tool for estimating canopy height.

4.2.1 Eddy-Covariance Error

Measurements from sonic anemometers are the observational foundation of the eddy-
covariance technique and are subject to instrumental error. For example, the design and
positioning of sonic anemometer instrumentation has been found to force corrections to
wind-speed measurements of −5 to 37%, resulting in flux errors of about 11% (Kochen-
dorfer et al. 2012), though further work showed errors of this magnitude to be less likely
(Mauder 2013). A variety of methods have been proposed based on analysis of FLUXNET
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time series to identify these and other sources of error (Hollinger and Richardson 2005).
Researchers at many flux sites have sought to minimize so-called ‘transducer-shadow’ and
‘angle-of-attack’ effects based on other work (Gash andDolman 2003). Lowwind speeds and
damped turbulent mixing are known to negatively bias flux measurements and increase the
spread associated with meteorological measurements (Dyer and Hicks 1972; Gu et al. 2005)
Because we consider data from only near-neutral conditions, we avoid the problem of flux
underestimation in a stable nocturnal boundary layer. Our friction velocity filtering further
ensures that there are sufficiently high turbulence levels for eddy-covariance measurements
to be considered robust (Papale et al. 2006) and that the sampled canopy is not significantly
deformed by high wind stress. Further improvements to the design of eddy-covariance towers
and advances in the ability to filter erroneous flux data will strengthen the implementation
of flux-tower data for estimating canopy height.

4.2.2 Parametrization Error

Equation 3 is also sensitive to the assumption of simple relationships between canopy height
and zero plane displacement and roughness length, respectively. These parametrizations are
functions of LAI, an important site variable often measured at flux towers (Raupach 1994).
LAI varies widely both in space and time, particularly in tall forests that undergo ecological
change (Aber 1979; Parker et al. 2004). In Fig. 10 we show the results of simple sensitivity
tests to determine what range of canopy heights would be obtained from varying d/h and
z0/h at the broadleaf (Tumbarumba) and conifer (Wind River) sites.

These initial sensitivity tests reveal that yearly average canopy heights at both the broadleaf
and conifer can change significantly depending on the choice of d/h; z0/h also varies by
about 50%with a range of z0/h ratios from 0.05 to 0.2. Further analysis is needed, especially
at forest sites subject to ecological variability, to determine the appropriate values of d/h
and z0/h for use in Eq. 3. Recent work has made it possible to estimate roughness length
and zero-plane displacement from space, opening up the possibility of validating our choice
using external measurements (Tian et al. 2011).

4.2.3 Tower Footprint

One of the strengths of our method is the ability to sample variability in heterogeneous
canopy structure around a tower using wind direction. At the oak-savannah site (Tonzi) we
use airborne lidar as validation, and we propose using our technique for lidar verification.
Both tower measurements (Kim et al. 2006; Chen et al. 2009) and lidar (Dubayah and Drake
2000; Drake et al. 2002) are only valid over a certain footprint that affects interpretation
of any results. Understanding the tower footprint can be challenging (Finnigan 2004), but
models such as the one used here for a rough estimate at the oak savannah (Hsieh et al.
2000) can provide useful insight. Future work will focus on calculating a footprint-weighted
canopy height to ensure that any comparisons to lidar use consistent footprints.

4.2.4 The Roughness Sublayer

At the citrus grove site, Eq. 3 is applied to measurements taken at two different tower heights.
One of the tower heights (7.11 m) was likely within the roughness sublayer because it was
at less than twice the canopy height, while the other (9.18 m) was above the 2h threshold.
Average canopy heights from both tower heights are roughly the same, but the median height
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calculated from the 9.18-m level is in better agreement with the previous estimates of Fares
et al. (2012). Perhaps unsurprisingly, this indicates our method provides the best results when
using wind and turbulence measurements taken at heights where Monin–Obukhov similarity
theory is robust. Sites with tower instruments firmly within 2h are likely poor choices for
future applications. New theories for wind profiles very close to the canopy could improve
the viability of our approach at these sites (Harman and Finnigan 2007).

4.2.5 Choice of z/L Threshold

Excluding data using a |z/L| threshold has important ramifications for estimating canopy
height with our method because of the impact of non-neutral conditions on the logarithmic
profile. At our sites, the choice of |z/L| filter has a larger impact on sample size, and thus
sampling error in our calculations (Moncrieff et al. 1996; Hollinger and Richardson 2005),
than it does on deviations from an exact logarithmic profile as determined by φM . The
development of a quantitative and site-specific methodology for determining near-neutral
|z/L| thresholds that maintains an appropriate amount of data with which to calculate both
daily and yearly averages should guide future analysis.

5 Conclusions

Using surface-layer theory and observations of wind speed made when |z/L| < 0.1, and
within a set range of friction velocities, we have calculated average vegetation height in
short, intermediate and tall canopies with validation by field measurements and lidar. Daily-
averaged height calculations capture seasonal crop development at both rice and alfalfa sites,
while yearly and multi-year averages are most reliable at intermediate and tall forest sites. At
the heterogeneous oak savannah, differences in tower and lidar footprint likely contribute to
more variability in the agreement of calculated heights with lidar references on a quadrant-
by-quadrant basis. Overall site statistics are still robust, however. All of the calculations
from these preliminary, but diverse, case studies show that our method provides accurate but
imprecise daily heights in crops and yearly and multi-year averages at forest sites. Future
investigations will focus on the development of site-specific filtering criteria and values of
d/h and z0/h to improve calculation accuracy and precision.
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