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Abstract The terra incognita (TI) or grey zone arises in conventional planetary boundary-
layer parametrizations when the grid resolution of a numerical model is comparable to the
size of the energy-containing turbulent eddies ∼1 km or less. Here, we investigate a sim-
ple, plausible extension of the Mellor–Yamada (MY) level-3 scheme for TI-scale grid size
using a large-eddy simulation (LES) as a benchmark. Horizontal filtering of the benchmark
simulation data for the dry convective mixed layer in the free convection regime yields
subfilter-scale components whose statistics are then retrieved for various filter sizes. This
leads to a modified MY level-3 scheme for TI-scale grid sizes. The proposed TI scheme
incorporates: (1) modification of various length scales in the conventional MY scheme by
an empirical function that depends on the horizontal grid size normalized by the convective
boundary-layer height; (2) a new length scale for horizontal turbulent fluxes; and (3) a linear
relationship between the local dissipation length and subfilter-scale turbulent kinetic energy.
A posteriori tests of the proposed TI scheme show a much improved performance compared
with the conventional MY level-3 scheme. The ratio of the grid-scale to the subgrid-scale
turbulent intensity is comparable to that obtained from the filtered LES solutions. Sensitivity
tests show that the modification of the dissipation length scales has the largest impact, while
the new length scale for horizontal fluxes also proves important. A simulation that includes
all of the above modifications results in the optimum performance.
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1 Introduction

Turbulent eddies contribute significantly to the vertical exchanges of momentum, heat, and
moisture in the atmospheric boundary layer. These eddies are not typically resolved by
conventional numerical weather prediction (NWP) models, and so the net effects of the
eddies are usually parametrized using ensemble mean turbulence closure schemes. Stull
(1988) reviews various parametrization schemes for turbulent fluxes.

The Mellor–Yamada (MY) scheme (Mellor and Yamada 1982) is a widely used parame-
trization in NWP models with the advantage of its flexibility in systematically reducing the
number of prognostic variables in the set of second-moment equations. The full MY level-
4 scheme needs 11 prognostic second-moment variables (for a dry atmosphere), but only
two are retained in the level-3 scheme. Further simplification leads to a single prognostic
equation for turbulent kinetic energy (TKE) for level-2.5 and none for level-2. Because it is
theoretically based on the moment equations and has reduced computational cost, the MY
level-3 (or lower) scheme is often used to represent the planetary boundary layer (PBL) in
mesoscale and global-scale NWP models. For example, the Japan Meteorological Agency
(JMA) now employs a modified MY level-3 PBL scheme (Nakanishi and Niino 2006) for
their operational regional NWP model (JMA non-hydrostatic model; Saito et al. 2007).

Advances in computational power now enable NWP models to adopt horizontal grid
resolutions on the order of 1 km, which is comparable to the size of energy-containing
turbulent eddies in the atmospheric convective boundary layer (CBL). A finer grid resolution
is favourable because NWP models can better resolve complex terrain and hence improve
forecast skill (e.g., Leroyer et al. 2014); for example, a realistic formation of roll clouds in a
cold-air outbreak was simulated by the JMA non-hydrostatic model using a fine horizontal
grid size of 1 km (Eito et al. 2004). However, a new problem, termed the “terra incognita” (TI)
byWyngaard (2004) or grey zone, arises in turbulence parametrizations with finer horizontal
grid resolutions. With a TI grid resolution, turbulent transports are partly resolved, which
violates the basis of conventional (ensemble-mean) parametrizations.

A number of studies have focused on parametrizing turbulence for TI grid scales. For
example, a TI scheme has been developed and implemented in the regional model of the
UK Meteorological Office (Boutle et al. 2014) based on their non-local turbulence scheme;
Shin and Hong (2014) have also proposed an extension to the non-local YSU scheme (Hong
et al. 2006); Kitamura (2015) has proposed an extension to the Deardorff model (Deardorff
1980). For NWP models that are based on higher-order closure schemes, Ramachandran
and Wyngaard (2011) have proposed the use of a full set of second-moment conservation
equations, similar to the MY level-4 scheme, to resolve the TI problem. However, a large
increase in the number of prognosticmoment equations in the PBL scheme is computationally
expensive and hence not practical for NWP purposes.

The present study proposes a simple extension of the MY level-3 (or lower) scheme for
NWPmodels with a TI grid resolution. This extension adjusts the length scale, which is a free
parameter, as attempted in previous studies (Cuxart et al. 2000; Beare 2014). We consider
the case of a thermally unstable CBL in the free convection regime in which the transport of
momentum is insignificant for turbulence structures and moisture is absent. In this case, the
TI problem is more likely to arise because the energy-containing turbulent eddies are of the
size of the CBL depth (on the order of 1 km).

Here, we use a large-eddy simulation (LES) as a benchmark, as in previous studies (Hon-
nert et al. 2011; Shin and Hong 2013; Zhou et al. 2014), to investigate the representation of
CBL turbulence in NWP models with a TI-zone grid mesh. We apply horizontal filtering to
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the benchmark simulations using filter scales that correspond to various TI scales to separate
the LES flow fields into resolvable and subgrid-scale (SGS) components. The SGS statistics
are then analyzed to examine their dependence on the TI scale.

The remainder of the paper is organized as follows: Sect. 2 describes the benchmark
LES and post-processing methodology, and briefly reviews the MY PBL scheme. Section 3
presents the a priori analysis for the TI scale based on the benchmark LES, and proposed
modifications are tested (i.e. a posteriori test) and discussed in Sect. 4. Section 5 presents our
conclusions.

2 Large-Eddy Simulations and Post-processing Methodology

2.1 Large-Eddy Simulations

The three-dimensional LESmodel employed in the present study has been used by Nakanishi
and Niino (2004) and Ito et al. (2013), and employs the Boussinesq approximation and
Smagorinsky’s SGS model on the Arakawa C-grid. A uniform grid size of 25 m in all
three dimensions is used, where the horizontal domain is 18 km × 18 km, and the vertical
extent is 5 km. The top boundary is free-slip and adiabatic, while the lateral boundaries are
cyclic. No ambient wind is included in the control runs. The initial potential temperature
increases linearly with height from a surface value of 299 K and with a vertical gradient, Γ ,
of 4 K km−1. We performed two LES control runs with constant kinematic heat fluxes of
Q = 0.2 and 0.1 K m s−1 imposed at the surface. The surface stress is calculated using a
bulk method based on theMonin–Obukhov similarity law with the non-dimensional gradient
functions of Businger et al. (1971). White noise of small amplitude is added to the entire
calculation domain to initiate convection. Time integration is performed with a timestep of
0.2 s for a 20-h period.

The CBL grows continuously owing to the positive surface heat flux Q, and the time evo-
lution of the CBL height h, convective velocity scale w∗ and temperature scale θ∗ are shown
in Fig. 1a–c, where h is determined from the maximum gradient of potential temperature θ ,
w∗ ≡ (ghQ/θ0)

1/3, θ0 is the reference potential temperature and θ∗ = Q/w∗. Figure 1d
shows a horizontal (x- and y-) cross-section of the simulated vertical velocity field at a height
z = 0.5h at t = 5 h. The structure of convection is similar to that described in the literature,
and various statistics scale well with the free convection scales (Deardorff 1970) h, w∗, θ∗,
and the eddy turnover time h/w∗.

Figure 1e shows the vertical profiles of production, dissipation, and turbulent and pressure
transport from the LES, averaged over the whole numerical domain and normalized by free
convection scaling at t = 5 h. These profiles quantitatively agree with the results of other
LES studies (e.g., Moeng and Sullivan 1994).

2.2 Horizontal Filtering and Scaling

The grid-point values in the LES solutions are filtered and decomposed into filter scale (FS)
and sub-filter scale (SFS) components with respect to a filter size ΔH . The filter-scale value
of a variable φ is defined as
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Fig. 1 Results of the benchmark LES: a–c time series of h,w∗ and θ∗, respectively; d horizontal cross-section
of vertical velocity at z = 0.5h and t = 5 h; e vertical profiles of horizontally-averaged production, dissipation,
and turbulent and pressure transport of TKE at t = 5 h

φ̄(x′) = 1

ΔH
2

∫ y+ΔH /2

y−ΔH /2

∫ x+ΔH /2

x−ΔH /2
φ(x′)dx ′dy′, (1)

where the overbar denotes a spatial top-hat filter in the x and y directions. Figure 2a demon-
strates the filtering operation forΔH = 125mas an example. The SFS is defined as deviations
from the filter-scale value at the centre of that filter box; i.e., φ′(x, y) = φ(x, y) − φ̄(x, y).
For convenience, we omit the prime in the symbols for SFS representation hereafter. We
have ignored the LES SGS contribution because it is much smaller than that of the scales
resolved by the LES in the TI zone. Accordingly, the SFS horizontal heat flux, for example,
is computed as fx = uθ − ūθ̄ where θ is the potential temperature deviation from θ0.

In addition to the free convection scaling, we also introduce a non-dimensional filter scale
Δ∗

H (≡ ΔH/h); note that Δ∗
H ∼ 1 corresponds to the TI scale, i.e., the filter size is on the

order of the PBL depth.
The horizontal average (represented by angle brackets) of the magnitude of the SFS

horizontal heat fluxes 〈| fx |〉 for variousΔ∗
H at three heights is shown in Fig. 2b; for moderate

Δ∗
H ∼ 1, 〈| fx |〉 is a decreasing function of Δ∗

H and becomes small for larger Δ∗
H and

consistent with field observations (Wyngaard et al. 1971), because there is no mean gradient
of temperature in the x or y directions (mesoscale limit). For small Δ∗

H , on the other hand,
〈| fx |〉 decreases with decreasing Δ∗

H because most turbulent transport occurs at the grid
scale (LES limit). The peak value of 〈| fx |〉 occurs near the TI scale where heterogeneity of
convection cells is apparent in the filter scale unlike the mesoscale limit, but the SFS contain
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Fig. 2 a Schematic picture of the filtering operation in the case of ΔH = 125 m, and b magnitude of the
filtered horizontal heat flux 〈| fx |〉∗ for various Δ∗

H at the lowest level, z∗ = 0.5, and z∗ = 0.9 at 5 h

significant fluxes unlike the LES limit. This suggests that a filter size around the peak value,
in the range of 0.2 < Δ∗

H < 1.5, can be considered as the TI zone.

2.3 The Conventional Mellor–Yamada Scheme

Here, we describe the governing equations of the improved MY (MYNN) level-3 scheme,
where notations followNakanishi andNiino (2009) unless specified otherwise. One could use
the ensemble average in mesoscale modelling including theMY scheme.While the ensemble
and spatial averages defined by Eq. 1 are fundamentally different as discussed in Wyngaard
(2004), the spatial average is expected to be close to the ensemble average at the mesoscale
limit (Wyngaard 2004). We assume the spatial average instead of the ensemble average in
the present study.

The prognostic equation for SFS TKE e = (u2i − ūi ūi )/2 is

∂e

∂t
= − ūi

∂e

∂xi
− ∂

∂xi
(u2i u j − 2ūi ui u j − u2i ū j + 2ūi

2ū j )

− ∂

∂xi

( 1

ρ0
(ui p − ūi p̄)

)
− τi j

∂ui
∂x j

+ g

θ0
fz − ε, (2)

where the first term on the right-hand side (r.h.s.) is advection, the second is turbulent trans-
port, the third is pressure transport, the fourth is shear production, the fifth is buoyancy
production and the sixth is dissipation. Here, τi j ≡ uiu j − ūi ū j − 2/3δi j e are turbulent
fluxes of momentum (deviatoric kinematic Reynolds stress tensor), and fz is the SFS (kine-
matic) vertical heat flux. A down-gradient assumption is used to parametrize turbulent and
pressure transport (diffusion) fluxes, viz.

u2i u j − 2ūi ui u j − u2i ū j + 2ūi
2ū j + 1

ρ0
(ui p − ūi p̄) = −LqSq

∂e

∂xi
, (3)

and dissipation ε is parametrized as

ε = q3

B1L
, (4)
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where L is a master length scale, B1 is a closure constant, and q is a turbulent velocity scale
defined as q ≡ √

2e. Temperature variance is also solved prognostically as

∂(θ2 − θ̄2)

∂t
= −ūi

∂(θ̄2 − θ̄2)

∂xi
− ∂(uiθ2 − ūiθ2 − 2 fi θ̄ )

∂xi
− 2 fi

∂θ̄

∂xi
− 2χ, (5)

where the first term on the r.h.s. is advection, the second is turbulent transport (diffusion), the
third is buoyancy production, and the fourth is dissipation. The turbulent transport in Eq. 5
is parametrized as a down-gradient form,

uiθ2 − ūiθ2 − 2 fi θ̄ = −LqSθ

∂(θ2 − θ̄2)

∂xi
, (6)

whereas dissipation χ is parametrized as

χ = q(θ2 − θ̄2)

B2L
, (7)

where B2 is another closure constant.
TheMY level-3 scheme reduces the considerable number of prognostic equations required

in the level-4 model by assuming local equilibrium in the turbulent flux budgets. Thus, the
budget of τi j is simplified to a local balance between production, buoyancy, and pressure
correlation,

1

3
q2

( ∂ ūi
∂x j

+ ∂ ū j

∂xi

)
−

(
τik

∂ ū j

∂xk
+ τ jk

∂ ūi
∂xk

− 1

3
δi jτkl

(∂ ūk
∂xl

+ ∂ ūl
∂xk

))

+ g

θ0

(
δ j z fi + δi z f j −

(2
3

)
δi j fz

)

+ 1

ρ

(
p
( ∂ui

∂x j
+ ∂u j

∂xi

)
− p̄

( ∂ ūi
∂x j

+ ∂ ū j

∂xi

))
= 0, (8)

where only the pressure correlation has to be parametrized. The parametrized pressure cor-
relation consists of slow and rapid parts, and while the slow part works as a sink due to the
return-to-isotropy, the rapid part represents the interaction with mean shear and buoyancy,

1

ρ

(
p
( ∂ui

∂x j
+ ∂u j

∂xi

)
− p̄

( ∂ ūi
∂x j

+ ∂ ū j

∂xi

))
= q

3A1L
τi j + C1q

2
( ∂ ūi

∂x j
+ ∂ ū j

∂xi

)

−C2
g

θ0

(
fiδ j z + f jδi z − 2

3
fzδi j

)
, (9)

where the master length scale L is also used for pressure correlation and three more closure
constants A1, C1 and C2 are introduced. Similarly, a local balance is assumed for the SFS
heat-flux budget,

− 1

3
q2

∂θ̄

∂xi
− τi j

∂θ̄

∂x j
− f j

∂ ūi
∂x j

+ g

θ0
(θ2 − θ̄2)δi z + 1

ρ0

(
p

∂θ

∂xi
− p̄

∂θ

∂xi

)
= 0, (10)

where the pressure correlation is given by

1

ρ0

(
p

∂θ

∂xi
− p̄

∂θ

∂xi

)
= − q

3A2L
(uiθ −ūi θ̄ )−C3

g

θ0
(θ2− θ̄2)δi z+C5(ukθ −ūk θ̄ )

∂Ui

∂xk
, (11)

and where three more closure constants A2, C3 and C5 are introduced.
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The stress tensor τi j appears in the second term and the heat flux fi in the third term of
both Eqs. 8 and 10. This requires Eqs. 8 and 10 to be solved simultaneously for all nine SFS
fluxes (six for τi j and three for fi ), leading to the following expressions for the turbulent
fluxes in the MY level-3 scheme,

τi j = −LqSM
∂Ui

∂x j
(12)

and

fi =
{−LqSH∂θ/∂xi (for level-2.5 or lower)

−Lq(SH∂θ/∂xi + Γθ ) (for level-3),
(13)

where SM and SH are non-dimensional stability functions (Nakanishi and Niino 2009). The
Γθ term represents an upward heat transport in the absence of any local gradient of θ .

Note that the boundary-layer approximation is assumed for Eqs. 9 and 11 in determining
SM , SH , and Γθ ; otherwise modelling of the mesoscale limit needs significant changes to
include many terms associated with the horizontal differential, and resulting in a significant
increase in computational cost. Thus, we decided to determine SM , SH , andΓθ in the conven-
tional way (Nakanishi and Niino 2009, or see http://www.nda.ac.jp/~naka/MYNN/ where a
Fortran program is available).

Nakanishi and Niino (2009) have empirically determined the above closure constants
and the master length L based on horizontally-averaged LES results for mesoscale limit
applications. We use these closure constants, which are given in Table 1, while Sq and Sθ in
Eqs. 3 and 6 are assumed to be Sq = 3SM and Sθ = SM . The master length L is determined
by a harmonic average of three length scales as

1

L
= 1

LS
+ 1

LT
+ 1

LB
, (14)

where LS is given by
LS = kz(1 − 100ζ )0.2, (15)

which is a limit for the unstable surface layer, ζ ≡ z/LM is a height scaled by the Obukhov
length, LM = θ0u3∗/kgQ, and u∗ is the friction velocity. The second term LT is defined as

LT = 0.23

∫ ∞
0 qzdz∫ ∞
0 qdz

, (16)

Table 1 Closure constants used
in Nakanishi and Niino (2009) A1 1.18

A2 0.665

B1 24.0

B2 15.0

C1 0.137

C2 0.75

C3 0.352

C5 0.2
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following Blackadar (1962), and the third term LB is

LB =
{

(1 + 5(qc/LT N )1/2)
q

N
(for ∂θ/∂z > 0)

∞ (for ∂θ/∂z ≤ 0),
(17)

which restricts L due to stable stratification in the inversion layer.Here N ≡ ((g/θ0)∂θ/∂z)1/2

is the Brunt–Väisälä frequency, and qc ≡ (gQLT /θ0)
1/3 is a velocity scale.

3 A Priori Test

The previous section introduced various length scales. Here we investigate how they vary
with the non-dimensional filter size Δ∗

H based on an a priori analysis of our benchmark
simulations.

3.1 Dissipation Terms

3.1.1 Dissipation Length for TKE, Lε

We apply different filter scales Δ∗
H to the benchmark LES solution at t = 5 h (when the PBL

depth is about 1500 m) and compute each term in the filtered TKE budget. The four values of
non-dimensional Δ∗

H (3.09, 1.25, 0.78, and 0.32) used here correspond to dimensional filter
sizes of 201dx (5025 m), 81dx (2025 m), 51dx (1275 m), and 21dx (525 m), respectively.

The vertical profiles of the TKE budget terms are given in Fig. 3. The dissipation rate ε is
computed from the SGS dissipation term in the LES, which agrees well with that obtained
from the residual of other terms in Eq. 2 (not shown). The result for Δ∗

H = 3.09 approaches
the mesoscale limit as the profiles are similar to those shown in Fig. 1e. Unlike the production
and turbulent transport terms, dissipation varies little with Δ∗

H (Fig. 3a). This is a natural
consequence of the TKE cascade; dissipation takes place at a scale much smaller than these
filter scales, so the magnitude of dissipation is insensitive to the filter size.
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Fig. 4 Vertical profiles of
〈B1L∗

ε 〉 for each Δ∗
H . Error bars

denote the standard deviation of
L∗

ε at each height
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In the TI zone, SFS TKE decreases with decreasing Δ∗
H because more turbulent eddies

are resolved. Since the dissipation rate remains nearly the same for various Δ∗
H , we expect

the dissipation length scale Lε ≡ B1L in Eq. 4 to depend on Δ∗
H .

UsingEq. 4, togetherwith q and ε diagnosed from the benchmarkLES,we can compute Lε

for various Δ∗
H . Figure 4 shows vertical profiles of horizontally-averaged 〈L∗

ε 〉 = 〈q∗3/ε∗〉
and their standard deviations: first, it shows that 〈L∗

ε 〉 decreases asΔ∗
H decreases. Second, the

vertical shapes of all 〈L∗
ε 〉 profiles resemble the profile of the master length L∗

ε (∞) used in
the standard MY model, in which the length increases with height near the surface, becomes
almost constant in the middle of the CBL, and then reduces to zero at the top of the CBL
(Nakanish 2001; Nakanishi and Niino 2009). Note that the large L∗

ε above the CBL shown
in Fig. 4 results from very small q and should be neglected. Because the profile shapes are
nearly universal, we may assume

〈L∗
ε (Δ

∗
H )〉 = F(Δ∗

H )L∗
ε (∞), (18)

where the function F depends only on Δ∗
H .

Figure 4 also suggests that the standard deviation becomes larger for smallerΔ∗
H , implying

that L∗
ε (Δ

∗
H ) varies more in the horizontal plane as Δ∗

H decreases. We discuss these local
fluctuations of L∗

ε (Δ
∗
H ) in Sect. 3.1.3. The function F is given below based on the fact that

the dissipation rate is independent of filter size,

F(Δ∗
H) = 〈L∗

ε (Δ
∗
H )〉

L∗
ε (∞)

= 〈q3(Δ∗
H )/ε〉

q3(∞)/〈ε〉 ∼ 〈q3(Δ∗
H )〉

q3(∞)
, (19)

noting that 〈q3(Δ∗
H )/ε〉 ∼ 〈q3(Δ∗

H )〉/〈ε〉 is assumed.
We compare our results with an empirical relation derived by Honnert et al. (2011). Based

on their analysis, F(Δ∗
H ) is expressed as

F(Δ∗
H ) =

(
Δ∗2

H + (7/100)Δ∗2/3
H

Δ∗2
H + (3/21)Δ∗

H
2/3 + 3/42

) 3
2

. (20)

Figure 5 shows good agreement between this empirical relation and our estimate of F(Δ∗
H )

as 〈q3(Δ∗
H )〉/〈q3(∞)〉 based on our benchmark LES with various surface heat fluxes at z∗ =

0.5. Figure 4 also suggests that 〈L∗
ε (Δ

∗
H )〉/L∗

ε (∞) appears almost uniform, and therefore, it
is reasonable to apply Eq. 18 for all heights in the CBL.
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Fig. 5 Ratio of the
horizontally-averaged dissipation
length scales
〈Lε(Δ

∗
H )/Lε(Δ

∗
H = 3.16 ≡

∞)〉 computed from Eq. 4 at
z∗ = 0.5 (crosses). Estimates
from 〈q3(Δ∗

H )〉/q3(∞) from our
benchmark LES and the fitting
function (Eq. 20; Honnert et al.
(2011)) are also shown
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3.1.2 Dissipation Length for Temperature Variance, Lθ

We also use the benchmark LES to diagnose each term in the temperature variance budget
for various filter scales and display them in Fig. 6, which suggests dissipation varies little
with Δ∗

H . Similarly to Lε , we estimated Lθ ≡ B2L from Eq. 7 using the LES-diagnosed
SFS q , temperature variance and dissipation rate.

Figure 7 demonstrates that Lθ changes with Δ∗
H in a similar way to Lε . Thus, 〈L∗

θ 〉 may
reasonably be given as

〈L∗
θ 〉 = F(Δ∗

H )L∗
θ (∞), (21)

where the function F is the same as in Eq. 20.1

The much larger standard deviations in Lθ (compared with those in Lε) in the mid-CBL
are due to a small SFS temperature variance. Again, this large standard deviation suggests
the need to look at the local fluctuations of the SFS length scales, which is discussed below.

1 F presented in Eq. 20 is derived using the partition function for TKE proposed byHonnert et al. (2011). They
have proposed another empirical function for θ2. These functions differ only slightly, so that F is employed
in Eq. 21 for simplicity although it is associated with θ2.
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Fig. 7 As in Fig. 4 except for L∗
θ
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3.1.3 Locality of Dissipation Length

Here, we discuss local fluctuations of the dissipation length Lε(x, y) for a fixed Δ∗
H and

z. Although Lε can be assumed to be horizontally uniform when Δ∗
H is large enough to

rationalize the boundary-layer approximation, its spatial variation increases with decreasing
Δ∗

H (Fig. 4 for Lε , and similarly Fig. 7 for Lθ ).
Figure 8a shows that the local values of q(x, y) and Lε(x, y) in themid-CBL are positively

correlated for Δ∗
H = 0.32 and 0.78. In the mesoscale limit (Δ∗

H = 3.09), however, local
values are mostly clustered (blue dots). When a local equilibrium holds for TKE, as assumed
in LES or the mesoscale limit, ε ∝ q3 and hence Lε is independent of q according to Eq.
4. For Δ∗

H at the TI scale, however, the local equilibrium assumption may not be valid. In
Fig. 8b, we show that, if ε ∝ qα is assumed, the powerα is closer to 2 rather than 3, suggesting
that L∗

ε may linearly depend on q (according to Eq. 4).
If we assume a linear relationship between local fluctuations of Lε and q as shown by the

dashed lines in Fig. 8a, we can express the local length scale as

L∗
ε (Δ

∗
H ) = 〈L∗

ε (Δ
∗
H )〉

〈q∗(Δ∗
H )〉 q

∗ = L∗
ε (∞)

q∗(∞)
F(Δ∗

H )2/3q∗ ∼ 1.9F(Δ∗
H )2/3q∗, (22)
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where 〈q∗3(Δ∗
H )〉 ∼ 〈q∗(Δ∗

H )〉3. Here we have used Eqs. 18 and 19, and also an empirical
relationship L∗(∞)/q∗(∞) ≈ 1.9, which is found at the mid-level of the CBL. This linear
relationship between local fluctuations of q∗ and L∗

ε is shown as the dashed lines in Fig. 8a
for the two TI zone filter scales; the lines fit our benchmark data reasonably well. We have
also seen a similar relationship for temperature variance,

L∗
θ (Δ

∗
H ) = L∗

θ (∞)

q∗(∞)
F(Δ∗

H )2/3q∗ ∼ 0.8F(Δ∗
H )2/3q∗. (23)

Including the locality (dependence on q at each grid point) into the length scale should
provide a more reliable parametrization of the dissipation. We present the results of an a
posteriori test on the performance of parametrizations with and without the locality proposed
here, see Sect. 4.

3.2 Parametrization of Third-Order Terms

In theMY scheme, third-order terms such as the turbulent transport and the return-to-isotropy
terms in the TKE (Eq. 3) and θ2 (Eq. (6)) equations need to be parametrized. The conventional
MY scheme applies the same master length scale L as that for dissipation to these transport
terms. Accordingly, the diffusion length scales introduced in Eqs. 3, 6, 9, and 11 are also
given by

〈L∗〉 = F(Δ∗
H )L∗(∞), (24)

in the TI zone, where F(Δ∗
H ) is again given by Eq. 20.

Todetermine the locality of these length scales for third-order terms,we compute each term
in Eqs. 3, 9, and 11. Figure 9 shows the correlation between the sum of the vertical pressure
and turbulent transport (left-hand side (l.h.s.) of Eq. 3) and−q∂e/∂z on the r.h.s. of Eq. 3 for

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.006 -0.003  0  0.003  0.006

-(
T

. T
.)

 in
 z

-d
ire

ct
io

n

-q de/dz

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.006 -0.003  0  0.003  0.006

-(
T

. T
.)

 in
 z

-d
ire

ct
io

n

-q de/dz

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.006 -0.003  0  0.003  0.006

-(
T

. T
.)

 in
 z

-d
ire

ct
io

n

-q de/dz

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.006 -0.003  0  0.003  0.006

-(
T

. T
.)

 in
 z

-d
ire

ct
io

n

-q de/dz

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.006 -0.003  0  0.003  0.006

-(
T

. T
.)

 in
 z

-d
ire

ct
io

n

-q de/dz

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.006 -0.003  0  0.003  0.006

-(
T

. T
.)

 in
 z

-d
ire

ct
io

n

-q de/dz

z*=0.1

z*=0.9
Δ

H*=0.32

Δ
H*=0.32

Δ
H*=1.25

Δ
H*=1.25

Δ
H*=3.09

Δ
H*=3.09

(a)

(e)(d)

(b) (c)

(f)

Fig. 9 Scatter plot between the sum of vertical pressure transport and turbulent transport terms in Eq. 3 and
−q∂e/∂z for various Δ∗

H . The top three panels are for z∗ = 0.9 and the bottom panels for z∗ = 0.1 at
t = 5 h

123



An Extension of the Mellor–Yamada Model to the… 35

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

-0.001 -0.0005  0

q*
f z

-P.C.

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

-0.001 -0.0005  0

q*
f z

-P.C.

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

-0.001 -0.0005  0

q*
f z

-P.C.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-0.005  0  0.005  0.01

q*
zz

-P.C.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-0.005  0  0.005  0.01

q*
zz

-P.C.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-0.005  0  0.005  0.01

q*
zz

-P.C.

(a) ΔH
*=3.09

(d) ΔH
*=3.09

(b) ΔH
*=1.25

(e) ΔH
*=1.25

(c) ΔH
*=0.32

(f) ΔH
*=0.32

τ zz

fz

τ τ τ
Fig. 10 Correlation between a–c −q fz and pressure correlation term (P.C.) of upward heat flux fz and d–f
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to y = ax

the different values of Δ∗
H and two different z∗. The slopes of a best fit line to the data points

in each panel of Fig. 9 would represent the mean length scale 〈L∗〉. Unfortunately, however,
there is much scatter and no clear slope can be derived. The data points that fall in the first
and third quadrants indicate down-gradient diffusion, while those in the second and fourth
quadrants suggest counter-gradient diffusion. Figure 9 suggests that down-gradient diffusion
for local transport is a poor assumption in the TI zone and even in the mesoscale limit in our
test. Nonetheless, Fig. 3b (and Fig. 6b near the inversion layer) suggests that the magnitude of
the horizontally-averaged SFS turbulent transport decreases with decreasing Δ∗

H . Therefore,
it seems reasonable to reduce the horizontally-averaged 〈L〉 as Δ∗

H is decreased.
Similar issues also arise for return-to-isotropy terms. Our analysis shows large scatter of

all return-to-isotropy components, except for the vertical components τzz and fz . Figure 10a–
c plot the l.h.s. of Eq. 9 against −qτzz and Fig. 10d–f the l.h.s. of Eq. 11 against −q fz , at
the middle of the CBL, where we assume the rapid terms involving C1, C2, C3, and C5 to
be negligibly small. The reasonably positive correlations in Fig. 10 suggest that there exist
meaningful length scales for their pressure correlations, although a small number of points
fall in the second and fourth quadrants. Local correlations for other components are so small
that no meaningful relations can be deduced (not shown).

From the slopes of best fit lines that pass through the origin in Fig. 10 at each height,
we have estimated the horizontal averages of the length scales 〈Lτzz 〉 ≡ 〈A1L〉 and 〈L fz 〉 ≡
〈A2L〉. Figure 11 shows the vertical profiles of 〈Lτzz 〉 and 〈L fz 〉 given by the best-fit lines in
Fig. 10 for various Δ∗

H . As with the dissipation length (e.g., Fig. 4) these return-to-isotropy
length scales decrease with decreasing Δ∗

H .
Local fluctuations in Lτzz and L fz still deviate greatly from the horizontal means estimated

from the slopes in Fig. 10, particularly in the TI zone.We have tried conditional sampling and
correlation analyses with local q fluctuations, but failed to produce any reasonable estimate
for the local values of Lτzz and L fz .
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The number of samples in our calculation of local SGS statistics, especially the third-order
moment statistics, may be of concern. The analysis with Δ∗

H = 0.32 uses only 21 × 21 data
points in computing SGS statistics at each filtered grid, and the large scatter for small Δ∗

H
might be due to the small number of samples. In order to address the sampling issue, we
have performed another LES with a grid size of 15 m and compared it with the control-run
LES. The resulting behaviour of third-order moment SGS statistics is nearly unchanged (not
shown). Thus, the sample size does not seem to be responsible for the large scatter.

3.3 Length Scales for Horizontal Turbulent Fluxes

Horizontal turbulent fluxes havebeen considered insignificant for conventional configurations
with a coarse Δ∗

H . When the MY scheme is used in a three-dimensional simulation, a small
value of horizontal eddy viscosity is imposed to smooth out the computational noise (e.g.,
Yamada and Kao 1986). When Δ∗

H falls in the TI zone, however, horizontal turbulent fluxes
become significant as shown in Fig. 2b.We expect that a similar modification of a length scale
for horizontal diffusion to that in Eq. 24 is necessary in the TI zone. To this end, we also need
to obtain a proper length scale for the mesoscale limit Lx (∞) to parametrize third-order
terms of horizontal processes. However, Lx (∞) has not yet been studied in conventional
NWP models.

Ito et al. (2014) investigated the horizontal turbulent diffusivity, KH (∞), for themesoscale
limit by analyzing the same LES benchmark data described herein, except that a constant
horizontal gradient of a passive scalar ∂C/∂y = −1 was introduced, and an evolution of
passive scalar c = C + c′ was predicted in the LES. An ensemble-averaged horizontal
turbulent flux in the y direction 〈v′c′〉 at each height gives a vertical profile of horizontal
turbulent diffusivity KH (∞) and thus the horizontal diffusion length scale, Lx (∞), in the
mesoscale limit can be retrieved as

〈v′c′〉 = −KH (∞)
∂C

∂y
= K ∗

H (∞)w∗h ≡ q∗(∞)L∗
x (∞)w∗h. (25)

Figure 12 shows the scaled L∗
x (∞), which turns out to be roughly on the order of 0.1

throughout the CBL. Unlike the length scale for vertical turbulent diffusivity (cf. Degrazia
et al. 1997), L∗

x (∞)does not decrease at the bottomor at the top of theCBL. Itmaybe assumed
that the length scales for the horizontal fluxes of momentum and heat are the same as for the
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Fig. 12 Vertical profile of length
scale L∗

x (∞) for horizontal
turbulent fluxes in the mesoscale
limit from Ito et al. (2014)
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passive scalar. Thus, a non-dimensional length scale for the horizontal turbulent diffusivity
is assumed to be simply L∗

x (∞) = 0.1 with the stability functions set to SM = SH = 1 for
the entire CBL in the mesoscale limit.

We further investigate local fluctuations of the horizontal diffusion length scales based on
the τxy component in Eq. 9. Note that all of the rapidly changing terms are set to zero. As for
the vertical diffusion length, the scatter in the relationship between pressure correlation and
−qτxy (l.h.s. and r.h.s. of Eq. 9) is very large (not shown). We then make a crude assumption
that the length scale decreases with the filter size as

Lx (Δ
∗
H ) = F(Δ∗

H )L∗
x (∞), (26)

where F(Δ∗
H ) is assumed to be the same form as Eq. 20 for simplicity. This modification,

which again ignores large fluctuations, is applied to all horizontal diffusion length scales
introduced in Eqs. 3, 6, 12, and 13.

4 A Posteriori Test

An a posteriori test is carried out to investigate the performance of the new MY level-3
scheme with the TI zone modifications described in the previous section. This new scheme
is referred to as the TI scheme, and will be compared with the conventional MY scheme.

4.1 Methodology

To test our proposed TI scheme, we use the 3D LES dynamics code described in Sect. 2.1
but with two major changes in the horizontal grid size and the SGS parametrization. The
Smagorinsky SGS scheme is replaced by the modified MY level-3 scheme (described in
Sect. 2.3) and the SGS length scales are also modified depending on the grid spacing. As
in the benchmark LES, the horizontal resolution varies between 500 and 1500 m, while the
vertical resolution is fixed at 25 m. The number of grid cells thus varies between 10 and 720
in both x and y directions, and is sufficient to spawn convection cells even for the coarsest
dx .

Since a background flow with non-zero wind speed is necessary to properly calculate the
stability length LS in Eq. 15 in the MY scheme, a geostrophic wind speed with uniform
vertical shear given by V = min(1+ 0.005z, 13.5) m s−1 is imposed. Unless the horizontal
length scale described in Sect. 3.3 is implemented, the SGS horizontal diffusivity is assumed
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temperature in the LES and MY level-3 for the mesoscale limit at t = 5h, and b time series of dx∗, which is
the horizontal grid size scaled by h

to be equal to the vertical diffusivity. To serve as a benchmark, a LES (with grid cell size
of 25 m in all three directions) with this geostrophic wind is also carried out. Even with the
geostrophic flow, the developed CBL, which has a small friction velocity (u∗ ≈ 0.3 m s−1)
and large negative Obukhov length (Lm ≈ −20 m), can be regarded as a free convection
regime (e.g. Wyngaard et al. 1971) and similar to that in the a priori test.

The models were integrated for 10 h, and the results for the initial spin-up period of 1.5 h
are excluded from the following analysis. Again, the height of the CBL h is determined by
the height at which the vertical gradient of mean θ̄ reaches its maximum.

4.2 The Conventional MY Model Run

We first run the conventional MY model with the same set-up, for comparison with the TI
model, where this conventional MY model also uses the same LES dynamical code. The
MY model was first tested for a mesoscale limit with dx = 100 km. Figure 13a shows that
the vertical profile of potential temperature roughly agrees with the horizontally-averaged
potential temperature of the LES.2

Now, we reduce the horizontal grid size dx systematically to 1500, 1000, and 500 m,
which all fall inside the TI zone; the non-dimensional grid size scaled by the CBL height
dx∗ ≡ dx/h is used in our analysis. The time evolution of dx∗ is shown in Fig. 13b for
the three TI runs, with the simulated dx∗ remaining or becoming <1, which implies that the
experiments operate in the TI zone.

The strength of the SGS convection may be evaluated using the ratio R ≡ e/(e + E) at
z∗ = 0.5, where E ≡ 0.5((u −〈u〉)2 + (v −〈v〉)2 + (w −〈w〉)2)) is grid-scale or resolvable
scale TKE. The ratio R should depend on the grid spacing, approaching a value of 1 in the
mesoscale limit because all turbulent motions are SGS motions and should be close to zero
in a high resolution LES. Figure 14 shows R for the three TI runs using the conventional MY
model; the ratio R always remains larger than 0.9, indicating a small amount of grid-scale
convection. These results are compared with those of our LES benchmark simulation (solid
curve) retrieved by using various filter widths dx∗. The dashed curve is from a different LES
study by Honnert et al. (2011). The conventionalMY scheme is found to greatly overestimate

2 There is a slight difference in the potential temperature profile of theMYmodel and the LES. This difference
can be reduced by using smaller B1. Since the discussion of the performance of the mesoscale limit is not the
purpose of this study, we use the original B1 value given in Table 1.
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Fig. 14 Ratio R = e/(e + E)

for temporally varying dx∗ (see
Fig. 13b) with three different dx
at z∗ = 0.5. The solid and
dashed lines show R in our LES
benchmark filtered by various
dx∗ and an empirical function
suggested by Honnert et al.
(2011), respectively
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the strength of SGS convection for small dx∗ when it is incorporated in a model with a TI
scale grid size.

The poor performance of the convectional MY scheme in the TI zone is also seen in
horizontal cross-sections of the resolvable vertical velocity field: the vertical velocities of the
resolved convection (Fig. 15a, b) are much weaker than those in the filtered LES benchmark
flow field (Fig. 15c, d). We also compare the profiles of the grid-scale vertical velocity
variances 〈w∗2〉 in Fig. 16. Again, the conventional MY scheme underestimates the grid-
scale vertical velocity fluctuations compared with those of the filtered LES.

All turbulent motions are treated as SGS motions in ensemble-mean turbulence models
like the MY scheme, so when such models are run at TI scale grid size, no turbulent motions
are expected to appear as grid-scale motions under uniform surface heating. However, Zhou
et al. (2014) showed that turbulence may erroneously appear as resolvable grid-scale motions
when the grid resolution reaches the TI scale. We are attempting to design a TI turbulence
model that can bridge conventional ensemble-mean closure models and LES for TI scale
simulations. The performance of the TI model is tested against the filtered LES solutions in
the next section.

4.3 Performance of the TI Scheme

The length scales in the MY scheme used in the SGS are now changed to those described
in Sect. 3. We systematically examine the impacts of each length scale, by their inclusion or
exclusion.

Figure 17a shows results when only the dissipation length is modified according to Eqs.
18 and 21 and other length scales are as in the original. Reduction of the dissipation length
is found to have the primary impact, inducing stronger grid-scale convection (i.e. smaller R)
than the originalMY scheme as shown in Fig. 14. Since the net dissipation rate over the entire
CBL must remain almost the same for a given buoyancy forcing, the reduced length scale
for small dx∗ is likely to result in small SGS TKE e. Further, incorporating the length-scale
reduction given in Eq. 24 for third-order terms results in similar R as shown in Fig. 17a (not
shown). Large temporal oscillations in the entrainment zone are seen in these tests, resulting
in the large fluctuation in R.

The inclusion of the TI length scale for all horizontal turbulent fluxes described in Sect.
3.3 has the second largest impact (Fig. 17b). The performance for the TI zone simulations
is somewhat improved, because the new horizontal length scale described in Sect. 3.3 does
not take into account the stability effect and thus enhances the horizontal diffusivity near
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Fig. 15 Horizontal cross-sections of vertical velocity from the conventional MY model for a dx = 1 km and
b 500 m, those from filtered LES for c ΔH = 1025 m and d 525 m, and those from the model with the TI
scheme for e dx = 1km and f 500 m at z∗ = 0.5 and t = 5 h

the top of the CBL. The proposed new horizontal diffusion also reduces the large temporal
oscillation in the entrainment zone found in simulations using a stability corrected length
scale given by Eq. 17.
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Fig. 17 As Fig. 14 except for the proposed “TI model”: a only dissipation lengths are reduced by Eqs. 12
and 13, b all changes in Sect. 3 except for locality in the dissipation length, and c all proposed changes are
included

Figure 17c presents the results of implementing all the changes proposed in Sect. 3,
including locality (Sect. 3.1.3). Inclusion of the locality intensifies grid-scale convection
slightly and hence weakens the SGS TKE. This result agrees best with the benchmark LES
analysis. In the following, we show more detailed results from the proposed TI scheme.

Figure 15e and f shows horizontal distributions of the vertical velocity of the convective
cells obtained for dx = 1 km and 500 m. The magnitudes of the vertical velocity are compa-
rable to those of the filtered LES benchmark solution (Fig. 15c, d) with corresponding filter
sizes ofΔH = 1025m and 525m. The strength of grid-scale convection can be quantitatively
evaluated by calculating the resolved-scale vertical velocity variance 〈w∗2〉. Figure 16 shows
that the vertical velocity variance for the resolved convection agrees reasonably well with
the filtered LES solution for both dx = 1 km and 500 m.

To check the performance for even smaller dx∗, we performed an additional test with
dx = 250m, where the grid is increased to 20× 20× 200 to spawn convection cells. The R
value in this test agrees very well with that retrieved from the LES (not shown). Therefore,
the proposed TI scheme can produce reasonable grid-scale convection for dx∗ as small as
0.1.

5 Concluding Remarks

Based on the LES benchmark for a dry CBL in the free convection regime, we propose a
simple extension of the Mellor–Yamada (MY) scheme to a TI zone turbulence simulation.
This new TI scheme: (1) modifies various length scales in the conventional MY scheme via
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an empirical function that depends only on a scaled horizontal grid size dx∗ (i.e., the grid
size normalized by the PBL height); (2) includes a new length scale for horizontal diffusion
terms; and (3) incorporates a linear relationship between the local dissipation length scale
and local intensity of SGS TKE. Our empirical function is similar to that suggested by
Honnert et al. (2011). This extension includes a new length scale to parametrize horizontal
turbulent processes but does not change the conventional MY scheme at large dx∗ (i.e., the
mesoscale limit). On the other hand, the proposed TI scheme yields similar resolvable versus
SGS statistics to the LES solutions for small dx∗. The transition occurs seamlessly. This new
parametrization scheme is easy to implement into a NWP model that already employs the
MY scheme as a boundary-layer parametrization, and the computational cost of the new TI
scheme is almost the same as that of the conventional MY scheme. An a posteriori test shows
that a reasonable amount of grid-scale motion is generated mainly because of the reduced
SGS TKE dissipation length scale for finer horizontal resolution. Inclusion of horizontal
diffusion also improves the simulations.

The major modification of this proposed TI scheme is to the horizontally-averaged length
scales. Our LES analysis suggests that fluctuations of local length scales can be very large
in simulations with a TI grid scale. The analysis also suggests that a considerable fraction of
local diffusion length scales are negative, implying counter-gradient transport, which can be
difficult to implement. In this study, we introduce a local relationship between the dissipation
length scale and the SGS turbulence intensity, although the inclusion of this locality does not
change the overall performance significantly.

A PBL scheme for the NWP of real-world cases must include many complexities that are
not addressed in the present study. For example, we did not consider the effect of moisture
that can alter boundary-layer characteristics when clouds form in the CBL. We also did not
consider the effect of strong vertical wind shear, which often occurs during cold-air outbreaks
(Asai 1970), although Shin and Hong (2013) implied that the difference between the free
convection regime and a strongly sheared CBL may be insignificant. An ultimate goal is to
develop a unified treatment of convection and turbulence (c.f., Mironov 2009) for the TI zone,
while another challenging issue is to address horizontal heterogeneity of the land surface,
terrain inclination, or synoptic-scale disturbances.
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