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Abstract We investigate the reliability of a meandering plume model in reproducing the
passive scalar concentration statistics due to a continuous release in a turbulent boundary
layer. More specifically, we aim to verify the physical consistency of the parametrizations
adopted in the model through a systematic comparison with experimental data. In order to
perform this verification, we take advantage of the velocity and concentration measurements
presented in part I of the present study (Nironi et al., Boundary-Layer Meteorol, 2015)
particularly concerning estimates of the Eulerian integral length scales and the higher order
moments of the concentration probability density function. The study is completed by a
sensitivity analysis in order to estimate the effects of the variations of the key parameter to
the model results. In the light of these results, we discuss the benefits and shortcomings of
this modelling approach and its suitability for operational purposes.

Keywords Atmospheric turbulence · Concentration · Fluctuating plume · Meandering ·
Pollutant dispersion · Probability density function · Relative dispersion

1 Introduction

Fluctuating plume dispersion models are conceived to estimate the concentration statistics
of a pollutant dispersing within a turbulent flow. Compared to other modelling approaches,
such as micro-mixing Lagrangian models (Sawford 2004; Cassiani et al. 2005; Leuzzi et al.
2012; Amicarelli et al. 2012; Cassiani 2013) and large-eddy simulations (Xie et al. 2004;
Vinkovic et al. 2006), their relatively simple formulation makes them suitable for operational
purposes.
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The basic principle of this modelling approach (Gifford 1959) is to split the total plume
dispersion into two components: meandering and relative dispersion. The first mechanism
describes the fluctuation of the plume centroid, whereas the relative dispersion drives the
spreading of a plume element around its centre of mass. The two mechanisms can be treated
as independent, as long as it is assumed that they are related to spatial scales separated by
several orders of magnitude. As pointed out by Yee et al. (1994), and as discussed later, this
hypothesis is strictly valid only close to the source or in the far field. In between there does not
exist a clear spectral gap between the scales of motion contributing to the plume meandering
and those associated with the relative dispersion. Despite this theoretical weakness, this
modelling approach was shown to be quite robust in simulating the dispersion of a passive
scalar in a variety of turbulent flows (Fackrell and Robins 1982; Sawford and Stapountzis
1986; Yee et al. 1994; Franzese 2003).

Adopting this assumption, the concentration probability density function (PDF), p, can
be written as the convolution of the PDF of the location of the cloud instantaneous centroid,
pm , characterizing the large-scale random crosswind displacements of the centre of mass,
and the PDF of the concentration in the meandering reference scheme (ym, zm), pcr ,

p(c; x, y, z) =
∫ ∞

0

∫ ∞

−∞
pcr (c; x, y, z, ym , zm) pm(x, ym, zm)dymdzm, (1)

where c is the instantaneous concentration. Once p is known, the moments of the concentra-
tion can be computed as,

cn(x, y, z) =
∫ ∞

0
cn p(c; x, y, z)dc. (2)

The practice of partitioning the concentration fluctuations depending on the their character-
istic length scales was originally introduced by Gifford (1959). He proposed a model for
dispersion in isotropic and homogeneous turbulence, neglecting the role of internal concen-
tration fluctuations, so that pcr was parametrized by the Dirac delta function δD ,

pcr (c; x, y, z, ym, zm) = δD {c − cr (x, y, z, ym, zm)} , (3)

where cr is the mean concentration relative to the instantaneous plume centroid. The assump-
tion of negligible internal fluctuations is reliable for short times, so far as meandering is the
mechanism governing the dispersion process. It becomes unrealistic in the far field, where
the role of relative dispersion overcomes that of meandering.

This relatively simplemodelwas shown to reliably predict themain features characterizing
the near-field dynamics of a fluctuating plume emitted from an elevated source. Fackrell
and Robins (1982) simulated the effect of a varying source size on the intensity of the
concentration fluctuation in an anisotropic and non-homogeneous velocity field. According
to their analysis, this can be attributed to the different role of the meandering motion, whose
intensity increases as the source size decreases, since the range of scales of the turbulent
motion, that are responsible for displacing the plume centre of mass, widens. The model is
also able to distinguish between the different shapes that the concentration PDF assumes
according to the type of source (Sawford and Stapountzis 1986), predicting a unimodal PDF
for the point source and a bimodal PDF for the line source, in agreement with experimental
observations.

The role of the relative in-plume fluctuations was firstly taken into account by Yee et al.
(1994) who introduced the intensity of the relative concentration fluctuations icr as a new
parameter, defined as the ratio between the standard deviation of the mean relative concen-
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tration, σcr , and cr . The overall statistics of the relative dispersion were then parametrized
by means of a Gamma distribution,

pcr (c; x, y, z, ym , zm) = λλ

cr�(λ)

(
c

cr

)λ−1

exp

(
−λc

cr

)
, (4)

where �(λ) is the gamma function and λ = 1/ i2cr . A one-dimensional formulation of the
model was tested against in situ measurements of concentrations (Yee et al. 1994) at different
heights above the ground within an atmospheric boundary layer over a uniform flat terrain.
A two-dimensional formulation of the model for homogeneous and isotropic turbulence
was tested by Yee and Wilson (2000) against water-plume measurements of the first four
moments of the concentration PDF of a passive scalar dispersing in grid turbulence. In
order to reliably model the anisotropy and the inhomogeneity of the velocity field within a
turbulent boundary layer, several authors (Reynolds 2000; Luhar et al. 2000; Franzese 2003;
Mortarini et al. 2009) have reconstructed the spatial evolution of the vertical component
of the plume centroid PDF, pzm , by means of stochastic Lagrangian models simulating the
trajectories of the puff centre of mass. Cassiani and Giostra (2002) have also developed a
generalized approach that allows pzm to be computed by means of a mean concentration
field, without the need for a Lagrangian particle model. All the above-mentioned models
include a simple formulation of icr that is assumed to depend on the longitudinal coordinate
only. More complex parametrizations of icr have been proposed only recently. Gailis et al.
(2007) introduced a three-dimensional model of icr to predict the concentration PDF within
a dispersion plume in a group of obstacles. This same parametrization was used by Ferrero
et al. (2013) to compute the concentration statistics of two reactive chemical species within
a convective boundary layer.

In this paper, we present a formulation of the fluctuating plume model (Sect. 2) and
discuss the parametrizations that render the model suitable for simulating the dispersion
process within a turbulent neutral boundary layer (Sect. 3). In particular, we aim to analyze
the consistency of these parametrizations in the light of the experimental characterization of
the velocity field performed by Nironi et al. (2015), especially concerning the estimates of
the Eulerian integral length scales (Sect. 3.1). Subsequently, the focus is on icr (Sect. 3.2) that
is modelled adopting two different parametrizations. Assuming icr = icr (x) (Sect. 3.2.1),
the formulation of the meandering model leads to an analytical solution for p(c; x, y, z),
whereas assuming icr = icr (x, y, z) (Sect. 3.2.2) leads to a semi-analytical solution. Both
formulations are compared to the experimental wind-tunnel results of Nironi et al. (2015),
providing a unique dataset concerning the spatial distribution of the first four moments of the
concentration PDF (Sect. 4). Finally we perform an error and sensitivity analysis of several
key parameters (Sect. 5) to determine the robustness and accuracy of the model and discuss
its advantages and shortcomings, as well as its suitability for operational purposes (Sect. 6).

2 Meandering Plume Model

We consider a source of diameter σ0 located at coordinates (0, ys, zs) within a turbulent
boundary layer of depth δ. Following Yee and Wilson (2000) and Luhar et al. (2000) we
assume the statistical independence of the plume meandering in the lateral and vertical
directions, so that pm can be expressed as the product of two components, pym and pzm ,

pm(x, ym, zm) = pym(x, ym)pzm(x, zm). (5)
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We stress here that this assumption is not supported by any theoretical consideration, but is
rather justified by the need for simplicity in the formulation of the model.

Since the velocity statistics are assumed to be homogeneous in the horizontal planes, the
crosswind distribution of the centroid locations is Gaussian,

pym(x, ym) = 1√
2πσym

exp

(
− (ym − ys)2

2σ 2
ym

)
, (6)

where σym is the centroid horizontal spread.
Conversely, pzm requires a slightly more complex formulation in order to account for the

effects of ground reflection and the non-homogeneity of the velocity statistics in the vertical
direction. This is modelled by means of the following reflected Gaussian distribution (Arya
1999),

pzm(x, zm) = 1√
2πσzm

{
exp

[
− (zm − zs)2

2σ 2
zm

]
+ exp

[
− (zm + zs)2

2σ 2
zm

]}
, (7)

where σzm is the vertical spread of the plume centroid. In the presence of one boundary, a
reflected Gaussian ensures a constant mass flux

∫∞
0 pzmdzm = 1 through any vertical section

perpendicular to the wind direction, a constraint that is not satisfied by a simple Gaussian
model far from the source, which gives

1√
2πσzm

∫ ∞

0
exp

(
− (zm − zs)2

2σ 2
zm

)
dzm = 1

2

(
1 + erf

(
zs√
2σzm

))
≤ 1. (8)

Note that different atmospheric stability conditions can alter significantly the shape of pzm .
For a detailed discussion on this topic, see Luhar et al. (2000) and Franzese (2003).

Similarly, to account for the anisotropy of the relative dispersion, we parametrize the
relative mean concentration cr as

cr = Mq

um
pyr (x, y, ym) pzr (x, z, zm), (9)

where Mq is the mass flow rate and um = u(zm) is the mean cloud advection velocity.
This parameter, as well as all other velocity statistics—mean velocity, velocity variances and
turbulent kinetic energy (TKE) dissipation rate—used in the model, is evaluated at the plume
centroid zm(x) and therefore depends solely on the downwind distance from the source. The
implications of this assumption on the results are discussed in Sect. 5.2. The functions pyr
and pzr are the lateral and vertical distributions of the mean concentration around the plume
centroid and are modelled as,

pyr = 1√
2πσyr

exp

(
− (y − ym)2

2σ 2
yr

)
, (10)

pzr = 1√
2πσzr

{
exp

(
− (z − zm)2

2σ 2
zr

)
+ exp

(
− (z + zm)2

2σ 2
zr

)}
, (11)

where σyr and σzr are the relative plume spreads around the plume’s centre of mass in the
horizontal and vertical directions, respectively.
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Substituting Eqs. 4, 6, 7 and 9 into Eq. 2 and solving the integral in the variable c, we
obtain the n-th concentration moment as function of the position in space (x, y, z),

cn(x, y, z) =
∫ ∞

0
pzm dzm

∫ ∞

−∞
pym dym

∫ ∞

0
cn pcr (c; x, y, z, ym , zm) dc

=
∫ ∞

0
pzm dzm

∫ ∞

−∞
1

λn

�(n + λ)

�(λ)
cnr pym dym

=
(

Mq

2πσyrσzr um

)n 1

2πσymσzm

×
∫ ∞

−∞
exp

(
− (ym − ys)2

2σ 2
ym

)
exp

(
−n (y − ym)2

2σ 2
yr

)
dym

×
∫ ∞

0

1

λn

�(n + λ)

�(λ)

{
exp

(
− (zm − zs)2

2σ 2
zm

)
+ exp

(
− (zm + zs)2

2σ 2
zm

)}

×
{
exp

(
− (z − zm)2

2σ 2
zr

)
+ exp

(
− (z + zm)2

2σ 2
zr

)}n
dzm . (12)

In Sect. 3.2 we provide analytical and semi-analytical solutions of Eq. 12, depending on the
formulation of λ = 1/ i2cr .

3 Set of Model Parameters

In order to have a complete formulation of the model, we need to parametrize σy , σyr , σym ,
σz , σzr , σzm , and icr . To this end, we take advantage of the information provided by the
experimental investigation of the velocity and concentration field presented in Nironi et al.
(2015). The analysis is performed for the emissions released from three different sources of
varying size σ0/δ and elevation zs/δ (see Table 1).

3.1 Parametrization of the Plume Spreads

The global plume spreads are related to the spread of the plume centroid and to the relative
spread by the following relations (Gifford 1959),

σ 2
y = σ 2

ym + σ 2
yr , (13)

σ 2
z = σ 2

zm + σ 2
zr . (14)

There are therefore two independent plume spread parameters that have to be set. Following
Luhar et al. (2000) and Franzese (2003) we model the global spreads σy and σz , the relative
spreads σyr and σzr , and then obtain σym and σzm by means of Eqs. 13 and 14.

Table 1 Diameter σ0 and height
zs of the three sources

σ0/δ zs/δ

Elevated Source ES 3 0.00375 0.19

Elevated Source ES 6 0.0075 0.19

Low-Level Source LLS 0.00375 0.06
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The global spreads are parametrized according to Taylor’s statistical theory as Nironi et al.
(2015),

σ 2
y = σ 2

0

6
+ 2σ 2

v TLv

{
t − TLv

[
1 − exp

(
− t

TLv

)]}
, (15)

σ 2
z = σ 2

0

6
+ 2σ 2

wTLw

{
t − TLw

[
1 − exp

(
− t

TLw

)]}
, (16)

where σv and σw are the standard deviations of the transverse and vertical velocity com-
ponent, TLv and TLw are Lagrangian time scales, and t = x/um is the flight time. As is

customary (Tennekes 1982), the Lagrangian time scales are parametrized as TLv = 2σ 2
v

C0ε
and

TLw = 2σ 2
w

C0ε
, where C0 is the Kolmogorov constant assumed here equal to 4.5 (Nironi et al.

2015), and ε is the mean dissipation rate of the TKE.
The parametrization of the relative dispersion coefficients, σyr and σzr , has to satisfy two

asymptotic conditions (for brevity we report only those of σyr , since the same conditions are
imposed on σzr , see Franzese 2003; Franzese and Cassiani 2007),

t → 0 σ 2
yr = (Cr/6)ε (ts + t)3, (17)

t → ∞ σ 2
yr → σ 2

y = 2σ 2
v TLv t, (18)

where Cr is the Richardson–Obukhov constant and ts = [σ 2
0 /(Crε)

]1/3
represents the flight

time needed by a plume emitted from a virtual point source to expand to the size σ0.
Equation 17 follows from the Richardson–Obukhov law for a finite source size (Ott and

Mann 2000; Franzese and Cassiani 2007) and models the cloud spreading as a function of the
flight time t (Richardson 1926) and ε (Obukhov 1941). Equation 18 is the Taylor’s limit for
large dispersion time, which applies to σyr (and σzr ) when the meandering process becomes
negligible and the relative dispersion approaches the global dispersion. The objective is to
define a suitable transition between the two asymptotic behaviours. To that purpose we adopt
an approach similar to that proposed by Luhar et al. (2000) and Franzese (2003). In contrast
to them, we introduce the time scales Tmy and Tmz . These are needed in order to ensure that
the transition from the inertial scaling to the diffusive asymptotic scaling is consistent with
the main characteristics of the large-scale dynamics of the velocity field, presented in Nironi
et al. (2015). The evolutions of σ 2

yr and σ 2
zr are then modelled as

σ 2
yr = (Cr/6)ε (ts + t)3{

1 + [(Cr/6)εt2/
(
2σ 2

v TLv

)]2/5}5/2 exp

[
−
(

t

Tmy

)2]

+ σ 2
y

{
1 − exp

[
−
(

t

Tmy

)2]}
, (19)

σ 2
zr = (Cr/6)ε (ts + t)3{

1 + [(Cr/6)εt2/
(
2σ 2

wTLw

)]2/5}5/2 exp

[
−
(

t

Tmz

)2]

+ σ 2
z

{
1 − exp

[
−
(

t

Tmz

)2]}
, (20)

so that the spatial evolutions of σyr and σzr are therefore a function of the parameters Tmy ,
Tmz and Cr , whose setting is discussed in the following paragraphs.
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Fig. 1 Modelled transverse and vertical dispersion coefficients varying αT (C0 = 4.5 andCr = 0.8): a, b ES
3 source; c, d LLS source. Solid line αT = 1, dash line αT = 2, dash-dot line αT = 3. The black-dotted lines
represent reference values of the Eulerian integral length scales Lvv and Lww at source height, as estimated
by Nironi et al. (2015)

3.1.1 The Time Scales Tmy and Tmz

The time scales Tmy and Tmz can be thought of as thresholds beyondwhich relative dispersion
becomes the prevalent mechanism. This occurs when the size of the relative plume exceeds
that of the largest scale eddies (L), so that the contribution of the TKE to the fluctuations of
the cloud centroid becomes negligible. It is questionable if the quantityL refers to Lagrangian
statistics, as proposed by Franzese and Cassiani (2007), or to Eulerian statistics. The latter
are adopted here, since we dispose of the direct measurements of the Eulerian integral length
scales Lvv and Lww (Nironi et al. 2015).

Both Tmy and Tmz are assumed to be proportional to the Lagrangian time scales, Tmy =
αT yTLv and Tmz = αT zTLw . In order to define the value of the proportionality coefficients
αT y and αT z , we analyze the evolution of σyr and σzr , as given by Eqs. 19 and 20, and we
compare it with the experimental estimates of Lvv and Lww evaluated at source height zs . In
doing that, we fix the value of the Richardson–Obukhov constant Cr = 0.8 (the sensitivity
to Cr is discussed in Sect. 3.1.2). The evolution of σyr and σzr , as well as that of σym and
σzm , is plotted in Fig. 1 for varying values of αT y = αT z = 1, 2, 3. As expected, the plot
shows that the behaviour of the dispersion coefficients depends on the source elevation. In
particular the spreads due to the centre of mass, σym and σzm , for the elevated source ES (Fig.
1a, b) are larger than those of the low-level source LLS (Fig. 1c, d). This can be explained
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by two features. Firstly, in the lower part of the boundary layer the size of the most energetic
eddies is smaller and, as a consequence, the effects on the dispersion due to the displacement
of the plume centroid are significantly reduced. Secondly, the effects of the ground (Luhar
et al. 2000; Franzese 2003) result in a more rapid damping of the plume meandering in the
vertical direction (Fig. 1b, d) with respect to the transverse coordinate (Fig. 1a, c).

The aim here is to define αT y and αT z so that σym and σzm do not exceed Lvv and Lww,
respectively, (Fig. 1) as σyr and σzr attain their asymptotic values. The choice of the most
appropriate αT y and αT z is somehow arbitrary. In order to constrain the degree of freedom
of the model in the parameter space, we impose αT y = αT z = αT , a condition that may
not be appropriate for any source configurations (as a crosswind line source). Adopting
these criteria yields αT = 2. It is worth noting that, in the present case study, the original
formulation proposed by Luhar et al. (2000) and Franzese (2003), i.e. without the corrective
terms involving Tmy and Tmz in Eqs. 19 and 20, leads to a slower increase of σyr and σzr
with the distance from the source, implying an unphysical growth of σym and σzm to values
exceeding the Eulerian scales. Finally, we point out that the characteristic length scales of the
meandering and relative dispersion processes are well-separated only very close to the source
and in the far field (where σmy, σmz → 0). However, as expected (Fig. 1), this hypothesis is
not verified in an intermediate region that actually covers most of the investigated domain,
both for the ES and LLS cases.

3.1.2 Richardson–Obukhov Constant Cr

Values of Cr are affected by a significant uncertainty. In homogeneous and isotropic turbu-
lence, estimates obtained with direct numerical simulations are approximately in the range
0.4 < Cr < 0.8 (Ishihara andKaneda 2002; Boffetta and Sokolov 2002; Biferale et al. 2005),
and in non-homogeneous and anisotropic turbulence the range is further widened. Franzese
(2003) adopted Cr = 1.4 in a convective boundary layer whereas Mortarini et al. (2009)
assumed Cr = 0.06 in a plant canopy.

In order to emphasize the influence on themodel due to the Richardson–Obukhov constant
variations, in Fig. 2 we plot σym

σy
, σzm

σz
, σyr

σy
, and σzr

σz
as a function of the downwind distance

from the source, for values of Cr spanning a range consistent with the literature data, i.e.
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(b)

Fig. 2 a σyr /σy , σym/σy , and b σzr /σz , σzm/σz vs x/δ for ES 3 varying Cr = 0.4, 0.8, 1.2 (C0 = 4.5 and
αT = 2); solid line Cr = 0.4, dash line Cr = 0.8, dash-dot line Cr = 1.2
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Cr = 0.4−1.2. The effects of the variations ofCr are significantly reduced compared to those
of αT , plotted in Fig. 1. Nevertheless, the influence ofCr is non-negligible in an intermediate
region (see Fig. 2), from x/δ ≈ 0.2 up to x/δ ≈ 1.5, within which it can appreciably affect
the model results. According to Franzese and Cassiani (2007), the quantity Cr/C0 should be
fixed and equal to 1/11. Since we adopted C0 = 4.5 this leads to Cr ≈ 0.4. However, for
reasons that will be made clear in the next paragraph (Sect. 3.2), this value was not consistent
with the formulation of themodel for icr .We have therefore assumedCr = 0.8which implies
a ratio Cr/C0 ≈ 0.17. Note however that this value is quite close to the theoretical value
suggested by Franzese and Cassiani (2007) compared to those presented in previous studies
(Franzese 2003 imposed Cr/C0 ≈ 0.5 and Mortarini et al. 2009 assumed Cr/C0 ≈ 1/33).

3.2 Parametrization of the Intensity of Relative Concentration Fluctuations

The determination of the spatial evolution of the intensity of relative concentration fluctu-
ations icr is a key aspect in the formulation of the meandering models. The dependence
of this parameter on the flow dynamics and emission conditions however has been rarely
characterized either experimentally or numerically. As far as we know, the only attempt to
measure this parameter is that of Gailis et al. (2007), who studied the dispersion of a passive
scalar with optical measurement techniques within both a turbulent boundary layer and an
obstacle array. Given this lack of information, most of the meandering plume models found
in the literature (Luhar et al. 2000; Yee and Wilson 2000; Franzese 2003; Mortarini et al.
2009) adopt quite simple models for icr , which is generally assumed to be dependent on
the x-coordinate only. This assumption however can significantly deteriorate the numerical
results in the far field. As shown by Mortarini et al. (2009), to avoid this lack of accuracy of
the model it is then necessary to impose an unphysical growth of icr for increasing distance
from the source.

In what follows, we consider two different formulations of the model. In the first case we
consider icr = icr (x), in the second case icr = icr (x, y, z). Both formulations are set in order
to ensure the physical consistency of the model with respect to the evolution of the intensity
of the concentration fluctuations, ic = σc/c, determined experimentally in the wind-tunnel
experiments presented in Nironi et al. (2015).

3.2.1 1-D Model of icr

In the case of icr = icr (x), Eq. 12 can be solved analytically, leading to

cn(x, y, z) =
(

Mq

2πσyrσzr um

)n σyr(
nσ 2

ym + σ 2
yr

)0.5
σzr(

nσ 2
zm + σ 2

zr

)0.5
1

λn

�(n + λ)

�(λ)

× exp

⎡
⎣− n(y − ys)2

2
(
nσ 2

ym + σ 2
yr

)
⎤
⎦ n∑

k=0

{(
n

k

)
exp

[
− (n − k)(z − zs)2

2(nσ 2
zm + σ 2

zr )

]

× exp

[
− k(z + zs)2

2(nσ 2
zm + σ 2

zr )

]
exp

[
− (2z)2k(n − k)

2(nσ 2
zm + σ 2

zr )

σ 2
zm

σ 2
zr

]}
, (21)

where

(
n

k

)
is the binomial coefficient.
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With some algebra, Eq. 21 can be rearranged in order to illustrate the relation between icr
and ic on the plume centreline (y = ys, z = zs),

i2cr = (i2c + 1
)
Fc − 1, (22a)

Fc =
σyr

√
2σ 2

ym + σ 2
yr

σ 2
y

σzr

√
2σ 2

zm + σ 2
zr

σ 2
z

×
{
1 + 2 exp

(
− 2(zs)2

(2σ 2
zm + σ 2

zr )

)
exp

(
− 2(zs)2

(2σ 2
zm + σ 2

zr )

σ 2
zm

σ 2
zr

)

+ exp

(
− 4(zs)2

(2σ 2
zm + σ 2

zr )

)}−1 {
1 + exp

(
−2(zs)2

σ 2
z

)}2
, (22b)

where the evolution of Fc is fully determined by the parametrization (Sect. 3.1) of the plume
spreads (total, relative and centroid position). For all release conditions ic is larger than icr
close to the release point, where the meandering process is significant both for the ES and
LLS cases. Moving away from the source, the relative dispersion becomes the prevalent
mechanism and icr → ic.

As Eq. 22b clearly shows, the model of icr depends on the distribution of ic, which
therefore requires an independent estimate. To overcome this problem, Yee et al. (1994)
and Yee and Wilson (2000) have set icr by fitting models of the form of Eq. 22b to the
experimental estimates of ic. Following this same approach, we then turn to the experimental
values of ic(x, ys, zs) collected by Nironi et al. (2015). By substituting these data in Eq. 22b
we determined icr at six different distances from the source. Since two asymptotic bounds
have to be satisfied at source location (x → 0) and in the very far field (x → ∞), the
following rational curve was used to fit the icr estimates,

icr → 0 at
x

δ
→ 0, (23a)

icr → ic = σc

c
�= 0 at

x

δ
→ ∞, (23b)

icr = xad
p1x2ad + p2xad + p3

x3ad + q1x2ad + q2xad + q3
, (23c)

where xad = x/δ. The values of the parameters in Eq. 23c for the three cases considered are
computed with the method of least-squares and are summarized in Table 2.

As discussed in Sect. 3.1.2, the values of icr close to the source depend significantly on the
choice ofCr (with variations of order 30%). In particular, forCr = 0.4, we found unphysical
negative values of icr . We have therefore excluded this value, even though it is supported by
the theoretical analysis proposed by Franzese and Cassiani (2007), and adopted Cr = 0.8
instead.

Figure 3 shows a comparison at increasing distances from the source between the experi-
mental values of ic, measured on the plume centreline, and the values of icr computed through

Table 2 Coefficients used in
Eq. 23c to calculate icr

p1 p2 p3 q1 q2 q3

ES 3 0.35 −1.30 24.54 1.74 −0.58 9.95

ES 6 0.35 0.56 38.64 8.47 −8.70 25.18

LLS 0.35 −0.65 5.97 2.50 −0.55 1.20
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Fig. 3 Experimental values of ic (symbols) and icr computed through Eq. 23c (lines) vs x/δ at the plume
centreline: a ES 3, b ES 6, c LLS

Eq. 23c. In both ES and LLS cases, icr exhibits an initial growth and thereafter decreases
monotonically to an asymptotic value, which is reached far from the source. As the mean-
dering motion weakens, icr correctly approaches ic. In the ES case the meandering influence
disappears later (x/δ ≈ 2, Fig. 3a, b) in accordance with the model of σym and σzm (Fig.
1). Conversely, in the LLS case the fluctuation of the plume centre of mass is damped very
rapidly by the presence of the ground and icr → ic at x/δ ≈ 1 (Fig. 3c). In both cases,
the model leads to the same asymptotic value of the relative concentration fluctuations (at
x/δ → ∞, icr → 0.35).

It is worth mentioning that as icr → ic the intermittency in the core of the plume is
suppressed. Note that according to the analysis performed in Sect. 5.3 and Sect. 5.4 in Nironi
et al. (2015), this actually takes place at distances (x/δ ≈ 3.75 for the ES) that are larger than
those predicted by the present model (x/δ ≈ 2.5 for the ES, see Fig. 3a, b). In this sense, the
model is not fully consistent with the experimental data in this intermediate region between
the near and the far field.

As shown in Fig. 3, the model reproduces a dependence of icr on the source size and
elevation. The dependence on zs is due to the inhomogeneity of the velocity field, whereas
the influence of σ0 is not easily explained. According to this model, the increased intensity ic
observed for the smaller source size is due partially to the increased intensity of the meander-
ing motion and partially to an increased intensity of the relative concentration fluctuations.
It is questionable if this trend represents the real physics of the phenomenon or if it has to
be attributed to a fictitious effect related to the formulation of the model. The answer to this
question, however, can be given only through a direct estimate of icr bymeans of experiments
or direct numerical simulations.

3.2.2 3-D Model of icr

By means of experimental measurements, Gailis et al. (2007) showed that the lateral and
vertical profiles of icr exhibit large variations on the y–z plane. Based on thesemeasurements,
they proposed to parametrize icr as a function of the mean relative concentration cr ,

i2cr (x, y, z) = [1 + i2cr0(x)]
[

cr (x, y, z)

cr (x, ym, zm)

]−ζ(x)

− 1, (24)

where, for each transverse section corresponding to a given distance x , icr0 is the minimum
of icr , ζ is a shape parameter depending on the longitudinal coordinate and cr (x, ym, zm)

is the mean relative concentration evaluated at the instantaneous plume centroid. The same
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Fig. 4 a Self-similarity of the vertical profiles of ic in the far field, experimental data for the LLS from Nironi
et al. (2015); b shape parameters ζy and ζz vs x/δ

parametrizationwas assumedbyFerrero et al. (2013) in a convective boundary layer.Weadopt
here a similar formulation, which we slightly modify by introducing two shape parameters,
ζy and ζz , to take into account the effects of anisotropy in the y and z directions,

i2cr = (1 + i2cr0)

{
exp

(
− (y − ym)2

2σ 2
yr

)}−ζy

×
{
exp

(
− (z − zm)2

2σ 2
zr

)
+ exp

(
− (z + zm)2

2σ 2
zr

)}−ζz

×
{
1 + exp

(
− (2zm)2

2σ 2
zr

)}ζz

− 1, (25)

where the longitudinal evolution of icr0 remains the same as that defined in the previous
paragraph (Sect. 3.2.1).

The evolution of the shape parameters ζy and ζz with x has been modelled in order to
ensure consistency with the main feature characterizing the plume relative dispersion. Close
to the source the size of the cloud relative to the plume centroid, σyr and σzr , is smaller than
the Eulerian integral length scale and mixing with the ambient air is due to eddies whose
size ranges from the Kolmogorov scale to that of the cloud itself. We can then expect an
efficient mixing within the core of the plume, leading to an almost uniform icr with respect
to y and z directions. Conversely, in the far field σyr and σzr approach respectively σy and σz
and exceed significantly the Eulerian integral length scale, so that mixing with ambient air
is due to eddies smaller than the plume. The intermittency of the entrainment of ambient air
within the plume produces high fluctuations of the relative concentration at the edges of the
plume, that are progressively reduced approaching the core. In this case, icr depends on y-
and z-coordinates and the form of its transverse and vertical profiles varies with downwind
distance from the source and tends to a self-similar behaviour in the far field. This tendency
can be reproduced by modelling the shape parameters with a sigmoid function, viz.

ζ = α1

α2 + exp
(−α3

x
δ

) . (26)

Close to the source location icr (x) ≈ icr0(x) and, therefore, ζy and ζz should assume
values close to zero. The values of α1 and α2 have been set in order to fit the self-similar
profile of ic observed experimentally in the LLS case (see Fig. 4a) at large distance from the
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Table 3 Sigmoid function
coefficients

LLS ES
ζy ζz ζy ζz

α1 1.43 ×10−3 0.65 3.58 ×10−3 5.0 ×10−3

α2 3.16 ×10−3 0.72 7.9 ×10−3 5.6 ×10−3

α3 9.64 5.8 1.6 1.9

Table 4 a j coefficients
evaluated through Eq. 28 for the
first four concentration moments

n a0 a1 a2 a3

1 1

2 0 1

3 0 −1 2

4 2 2 −7 6

source. The values of α3 drive the transition between the asymptotic states corresponding to
the near and far fields. The spatial extent of this transition is small for the LLS plume, since
the profiles of ic rapidly attain self-similarity, and larger for the ES plume. Therefore, moving
away from the source, ζy and ζz increase and tend to different values, giving an icr that is
shaped differently in the transverse and vertical directions. The values of the coefficients α1,
α2 and α3 adopted in our model are reported in Table 3 and the resulting downwind variations
of ζy and ζz are plotted in Fig. 4b.

Substituting Eqs. 25 and 26 in Eq. 12, we obtain an analytical solution in ym and an
integral in zm , that has to be solved numerically. The moments of the concentration are then
given by the following relation,

cn(x, y, z) =
(

Mq

2πσyrσzr um

)n ∫ ∞

0

n−1∑
j=0

{
a j

[
(i2cr0 + 1)

(
1 + exp

(
− 4z2m
2σ 2

zr

))ζz

×
(

1√
2πσzr pzr

)ζz
] j

σyr√
(n − jζy)σ 2

ym + σ 2
yr

× exp

(
− (n − jζy)(y − ys)2

2((n − jζy)σ 2
ym + σ 2

yr )

)}(√
2πσzr pzr

)n
pzm dzm (27)

where a j are the coefficients of the polynomial

P(x) =
n−1∑
j=0

a j x
j =

n∏
k=1

[(n − k)x − (n − k − 1)] (28)

computable through Vieta’s formulae. The values of the coefficients a j for the first four
concentration moments are reported in Table 4.

3.2.3 Asymptotic Behaviour

At large distance from the source (x/δ → ∞, t/TL → ∞) the relative dispersion becomes
the only mechanism characterizing the dispersion process, so that,
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Fig. 5 Experimental and modelled PDF on the mean plume centreline varying with the distance from the
source location for ES 6 at y/δ = 0, z/δ = zs/δ: a x/δ = 0.625, b x/δ = 5.0

icr → ic, (29a)

σym → 0, σyr → σy, (29b)

σzm → 0, σzr → σz . (29c)

In these conditions, the centroid PDF pm tends to a Dirac delta distribution and the PDF of the
global dispersion (p) is equal to the relative concentration PDF, that assumes the following
formulation,

pm → δD, (30)

pcr → p = λλ

c�(λ)

(c
c

)λ−1
exp

(
−λc

c

)
(31)

with λ = 1/ i2cr → 1/ i2c .
This formulation of the model is in agreement with one of the main findings of the exper-

imental investigation presented in Nironi et al. (2015), i.e. that the PDF of the concentration
can be modelled with high accuracy by a Gamma distribution.

4 Comparison with Experimental Results

We finally test the agreement of the fluctuating plume model with the wind-tunnel measure-
ments of the concentration statistics, carried out by Nironi et al. (2015). A first qualitative
analysis concerns the form of the concentration PDF at the plume centreline, presented for
both formulations of icr in Sect. 3.2. As an example, in Fig. 5 we report a comparison between
themodelled and experimental PDFs at two distances from the source. Close to the source the
meandering mechanism prevails (see Fig. 1) and the form of the PDF is similar to a negative
exponential distribution (Fig. 5a). In the far field, the meandering becomes negligible with
respect to the relative dispersion. The intermittency within the plume is damped, and the
shape of the PDF is similar to a log-normal distribution with a short tail, as shown in Fig. 5b.
In both cases the model captures the plume dynamics well and accurately reproduces the
shape of the concentration PDF.

To perform a more accurate analysis of the model reliability and to quantify the errors in
the predictions, we focus on the profiles of the first four moments around the mean, referred
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Fig. 6 ES case: concentration statistics vs x/δ at y/δ = 0, z/δ = zs/δ: a σc/c, b m3/c, c m4/c

to asmi , with i = 1, 2, 3, 4. These can be computed from Eq. 2 using the following relations
(Monin and Yaglom 1971),

m1 = c, (32a)

m2 = σ 2
c = c2 − c2, (32b)

m3 = c3 − 3c2c + 2c3, (32c)

m4 = c4 − 4c3c + 6c2c2 − 3c4. (32d)

In the analysis we apply the following normalization:

m∗
i = mi

1/ i u∞δ2

Mq
, (33)

where u∞ is the velocity at the top of the boundary layer.
It is worth noting that in what follows (as well as in the analysis presented in Sect. 5), the

computed values of the first two moments, the mean and the standard deviation, are actually
the results of a best fit of the models given by Eq. 21 and Eq. 27 (with n = 1 and n = 2) to
the experimental data, obtained by tuning the model parameters, as discussed in Sect. 3. A
real comparison between model and experiments is therefore performed only form∗

3 andm
∗
4,

whose estimates can be considered as fully independent from the experimental observations.

4.1 Elevated Source

Firstly,we analyze the longitudinal profiles of the ratio between the values of the concentration
statistics (σc,m

1/3
3 , andm1/4

4 ) and mean concentration c at source height, where the estimates
of the two models of icr do not differ one from the other. As Fig. 6 shows, the model provides
accurate estimates in the whole domain investigated here (0 ≤ x/δ ≤ 5), for the two elevated
sources considered. In particular, the model reproduces well the influence of the source size
in the near field, that progressively vanishes as the meandering motion becomes less effective
at displacing the plume centre of mass. The concentration statistics then tend to the same
asymptotic values in the far field, independently of the source conditions.

A further analysis concerns the transverse profiles of the concentration statistics at source
height. As an example we show in Fig. 7a, c, e, and g a comparison between experiments
and model predictions at x/δ = 0.625, z/δ = zs/δ. At this distance from the source, the two
formulations of the icr provide almost identical values since icr = icr0 in both cases. The
varying source diameter does not affect the profiles of mean concentration (Fig. 7a), whereas
it significantly influences the profiles of the higher order moments (Fig. 7c, e, g). The model
results are in excellent agreement with the experimental observations.
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Fig. 7 ES case: comparison between experimental and modelled transverse profiles of the concentration
statistics at source height and at x/δ = 0.625: a c∗, c σ∗

c , e m
∗
3, g m

∗
4, and at x/δ = 3.75: b c∗, d σ∗

c , f m
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3, h
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4. Blue circles experimental values for ES 3, red crosses experimental values for ES 6, blue solid line and red

dash line solutions provided by Eq. 27, blue dash line solutions provided by Eq. 21. Note that at x/δ = 0.625
the differences between the solutions computed by means of Eq. 21 and Eq. 27 are negligible
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Fig. 8 LLS case: concentration statistics vs x/δ at y/δ = 0, z/δ = zs/δ: a σc/c, b m3/c, c m4/c

As we proceed downwind from the source, the results show a slight deterioration, which
is only partially corrected by adopting a 3-D model of icr . In Fig. 7b, d, f, and h we show
a comparison between experimental and analytical results for the ES 3 emission, computed
with both the 1-D and the 3-D models of icr (Eq. 25) at z/δ = zs/δ and x/δ = 3.75, where
the influence of the source size has become negligible. The model provides quite accurate
estimates of the concentration statistics, even though the spreads of the simulated profiles of
m∗

3 and m
∗
4 are narrower than the experimental profile.

4.2 Low-Level Source

As for the ES case, the modelled profiles of the second-, third- and fourth-order moments of
the concentration as function of the x-coordinate at y = 0 and z = zs (Fig. 8) present a fairly
good agreement with the experimental data, both close to the source and in the far field.

Even in this case the predictions performed through 1-D and 3-D formulations of icr
provide good results of the concentration statistics close to the source, given the ζy coefficient
is next to zero up to x/δ ≈ 0.5 (see Fig. 4). This is shown in Fig. 9a, c, e, and g, where we
have plotted the transverse profiles of the concentration statistics at the source height.

In the far field, the model with icr = icr (x) is not able to reproduce the profiles of
the concentration statistics, even qualitatively. As Fig. 9d, f, and h show, the model fails
to reproduce the off-centreline peaks and the transverse profiles keep a Gaussian shape. In
order to improve the model prediction it is then necessary to assume icr = icr (x, y, z).
The results of the model are however less accurate than in the ES case. In the far field,
the model underestimates the mean concentration peak on the plume axis (Fig. 9b), due
to the discrepancies between the modelled σy (Eq. 15) and its experimental values (Nironi
et al. 2015). The transverse profiles of the higher order moments show the emergence of off-
centreline peaks, that are particularly marked for the third order moment. The model captures
these tendencies qualitatively but its quantitative predictions show significant discrepancies
with the experimental data (Fig. 9d, f, h).

5 Error and Sensitivity Analysis

Finally, we evaluate the reliability and robustness of the fluctuating plume model by means
of:

– estimates of its global accuracy, computed through a comparison between the measured
and computed concentration statistics;

– a Monte-Carlo analysis providing the sensitivity of the solutions to variations of the key
parameters.
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Fig. 9 LLS case: comparison between experimental and modelled transverse profiles of the concentration
statistics at the source height and at x/δ = 0.625: a c∗, c σ∗
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4. Circles experimental values, solid line solutions provided by Eq. 27, dash line solutions provided
by Eq. 21. Note that at x/δ = 0.625 the differences between the solutions computed by means of Eq. 21 and
Eq. 27 are negligible

123



Dispersion of a Passive Scalar Fluctuating Plume in a… 465

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

 x/δ

 R
E i

 RE1
 RE2
 RE3
 RE4

(a)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

 x/δ

 R
E i

 RE1
 RE2
 RE3
 RE4

(b)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

 x/δ

 R
E i

 RE1
 RE2

 RE3
 RE4

(c)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

 x/δ

 R
E i

 RE2
 RE3
 RE4

(d)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

 x/δ

 R
E i

 RE2
 RE3
 RE4

(e)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

 x/δ

 R
E i

 RE2
 RE3
 RE4

(f)

Fig. 10 Relative error of the transversal profiles vs x/δ for 1-D model of icr : a ES 3, b ES 6, c LLS; and 3-D
model of icr : d ES 3, e ES 6, f LLS

5.1 Errors

To investigate the reliability of the model we need to quantify the gap between the measured,
(m∗

i )exp and the computed (m∗
i )mod values of the moments of the concentration. To this end

we define the relative error as

REi =
√√√√
∫ [

(m∗
i )mod − (m∗

i )exp
]2 ds∫ [

(m∗
i )exp

]2 ds , (34)

with i = 1, 2, 3, 4, ds = dy, dz and where i is the moment number.
The analysis is performed considering the cases of icr parametrized by the 1-D model

(Eq. 23c) and the 3-D model (Eq. 25). Figure 10a–c show that the relative error associated
to the mean concentration RE1 takes low values across the whole domain. Conversely RE2,
RE3 and RE4 computed for 1-D icr model are bounded close to the release point, but they
increase significantly away from it.

The relative errors evaluated for 3-D icr model are reported in Fig. 10d–f, where RE1 is
not plotted, since it does not depend on the formulation of icr . REi of the transversal profiles
are bounded in all the cases, except for RE3 in the LLS case (Fig. 10f). This is due to the
particular shape of the experimental profile of m∗

3 at x = 5δ, that exhibits significant off-
centreline peaks. As shown in Fig. 9f, the model reproduces this behaviour only qualitatively,
but it fails in quantifying the centreline values of m∗

3.
In the light of this analysis, we can however conclude that, by adopting a suitable para-

metrization of icr , the model reproduces the statistics of the concentration field produced by
a fluctuating plume with good accuracy.

5.2 Sensitivity Analysis

In order to discuss the reliability of the model for operational purposes, we analyze its sen-
sitivity to several key parameters, whose evaluation is potentially affected by non-negligible
errors. Our analysis focuses on twomain features. Firstly, we discuss the uncertainties related
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Table 5 Turbulent velocity field at zm and zs

u (m s−1) σv (m s−1) σw (m s−1) ε (m2 s−3)

zm = 0.14δ 3.2 0.28 0.23 0.18

zs = 0.06δ 2.6 0.29 0.22 0.38

to the reference value of the vertical coordinate at which are evaluated the velocity statis-
tics used to compute the model parameters. Secondly, we analyze the errors induced by
uncertainties in the parametrizations of icr .

In the results presented in Sect. 4, velocity statistics, i.e. um , σv , σw and ε, were evaluated
at the plume centroid z = zm , which varies with the distance from the source. A simpler
approach consists of estimating these same quantities at a fixed reference height, generally
the source elevation zs . As an example, we show in Table 5 the differences of these velocity
statistics in the far field (x/δ = 3.75) for the LLS emission, as computed at zs and zm (in this
case ≈ 2.5zs). As shown in Table 5 the two parameters that exhibit higher variations are um
and ε. Comparisons of the concentration statistics computed at x/δ = 3.75 for the LLS case,
and adopting these two different sets of input data, are plotted in Fig. 11a–c. Results clearly
show that these variations in the input data affect significantly the model performances and
produce differences in the standard deviation and the third- and fourth-order moments of the
concentration exceeding 100 %.

As a second step, we investigate the sensitivity on the parametrization of icr (Eq. 23c).
Since the spatial distribution of the concentration fluctuations downwind the source is highly
influenced by the emission conditions (Nironi et al. 2015), i.e. source size and elevation, the
determination of a suitable longitudinal profile of icr represents actually the main modelling
challenge. To test the influence of uncertainties in the parametrization of icr we performed a
Monte-Carlo simulation, assuming that the coefficients in Eq. 23c are normally distributed,
with averages values given by the reference values reported inTable 2 and a standard deviation
corresponding to 10 % of the average. These turn out to be a maximum close to the source
(≈15 %) and a minimum far from it (≈10 %). The variations of the second-, third- and
fourth-order moments are shown in Fig. 11d–f and attain a maximal value ≈20 %.

The same analysis was performed for the parameters ζy and ζz (see Eq. 25) characterizing
the evolution of icr in the transversal and vertical directions. These were assumed to be
normally distributed, with a standard deviation equal to 10 % of the mean values reported
in Table 3. The resulting uncertainties in the vertical profiles of the high order concentration
statistics at x/δ = 0.625 for the LLS case are plotted in Fig. 11g–i. These show that variations
of these parameters have little influence on σ ∗

c (Fig. 11g) and m∗
3 (Fig. 11h) whereas they

can induce significant variations in the m∗
4 profiles (Fig. 11i), especially at the plume edges.

6 Discussion and Conclusion

We have investigated the reliability of a meandering plume model to simulate the dispersion
of a passive scalar emitted within a neutral turbulent boundary layer. Following most authors
who presented a similar model (Sawford and Stapountzis 1986; Yee et al. 1994; Luhar et al.
2000; Cassiani and Giostra 2002; Franzese 2003), we base its formulation on two main
assumptions. The first is that the dispersion of the plume centre of mass and that of the tracer
particles around it are statistically independent. The second is that both dispersion processes
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Fig. 11 Sensitivity analysis for the LLS case. Influence of the plume centroid on the vertical profiles of the
concentration statistics, x/δ = 3.75, y = 0: a σ∗
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4; circles experiments; solid line model with
u(zm ), σv(zm ), σw(zm ), ε(zm ); black dash line model with u(zs ), σv(zs ), σw(zs ), ε(zs ). Influence of an
uncertainty of ±10 % in the estimate of the coefficients of icr (Table 2) on the longitudinal profiles of the
concentration statistics at y/δ = 0, z/δ = zs/δ: d σc/c, em3/c, f m4/c. Influence of an uncertainty of±10 %
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x/δ = 0.625: g σ∗
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∗
4. The uncertainty is evaluated as the ratio between the standard deviation and
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are given by motions in the vertical and transversal plane that are decoupled one from the
other. The first assumption is actually verified only close to the source and in the far field.
The second cannot be strictly justified on some physical basis. It is rather adopted since it
allows simplification of the model formulation.

A fluctuating plume model requires the setting of several parameters. According to our
formulations, these are C0 and Cr , the Kolmogorov and Richardson–Obukhov constants,
respectively, αT , required to evaluate the time scales Tmy and Tmz characterizing the intensity
of the meandering downwind the source, and the parameters needed to model the spatial
evolution of the intensity of the relative concentration fluctuations icr in the longitudinal
direction and in the transversal planes (α1, α2 and α3). All these parameters were set by
systematically comparing our model results to the experimental data presented in Nironi
et al. (2015), in particular concerning the Eulerian integral length scales, the total plume
spreads σy and σz and the spatial distribution of ic. Furthermore, the information provided by
this experimental dataset was used here to verify the consistency of the model formulation, as
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well as of the procedure adopted to tune its parameters, with the main features characterizing
the physics of the dispersion process.

We have then tested the performances of the model by comparing its solutions with
experimental profiles of the higher-order moments of the concentration PDF (Nironi et al.
2015). The comparison shows that, despite the theoretical weakness of some of its basic
assumptions, once properly set the governing parameters, the meandering model is able to
predict the concentration statistics with a suitable accuracy and to simulate the effects due
to the source size and elevation. In the near field, a good accuracy of the results could be
achieved assuming a constant icr on the yz-planes. The good agreement between model
simulations and experimental data persists even at larger distances from the source, where
the assumption of the statistical independence of the meandering and the relative dispersion,
as well as of the vertical and transversal motions, is far from being verified. Finally, in the
far field, as the relative dispersion becomes the only relevant dispersion mechanism, the 1-D
model results progressively deteriorate. To reliably reproduce profiles of the higher-order
moments, the model requires a more complex formulation of icr , which takes account for its
variability along the transverse and vertical directions.

In view of the application of the model for operational purposes, we have finally tested
its sensitivity to the variations of several key parameters. The analysis shows that the model
performances can be significantly affected by varying the reference values of the height from
the ground at which the velocity statistics are estimated. Furthermore, the model is shown to
exhibit also a strong sensitivity on the parametrization of icr , especially in the near field.

This sensitivity of the model to parametrization of icr represents, in our opinion, the main
limitation for its use for operational purposes, since the spatial distribution of icr is strictly
linked to that of ic. As widely discussed in Nironi et al. (2015), the evolution of ic is highly
influenced by the conditions at the emissions. These include the source elevation and diameter
and the emission velocity, as well as other features characterizing the source design that can
affect the flow dynamics in the wake of the source, where most of the production of the
concentration variance takes place. All these aspects influencing the plume dynamics in its
initial phase of growth can not realistically be fully characterized when applying the model
to atmospheric emissions. As a consequence, estimates of the higher-order concentration
statistics in this near-field region can be affected by significant uncertainties.

Given these uncertainties of the model results in real case studies and in the light of
the findings presented in Nironi et al. (2015), a last remark can be made. As long as the
Gammadistributionwas shown to reliablymodel the concentrationPDF (independently of the
emission conditions), it is actually questionable if, for operational purposes, the concentration
statistics deserve to be computed by a meandering plume model, that requires several input
parameters, rather thanwithmore simple semi-empiricalmodels. These should be formulated
in order to provide solely estimates of c and ic, the two independent quantities needed to
fix the form of the Gamma distribution, which can be subsequently used to compute the
higher-order moments.
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