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Abstract Using one or more physical time scales as a basis for timestep (�t) selection is
common in Lagrangian stochastic simulations of particle dispersion. This approach generally
works well when the velocity statistics (and thus �t) vary slowly but problems such as the
�t bias and imbalanced particle fluxes at interfaces can occur when the velocity statistics
vary rapidly. These problems can result in violations of the well-mixed condition (WMC) and
inaccurate predictions. An additional problem is that unrealistically high (or rogue) particle
velocities can occur if �t is too large. A small constant timestep can be used to reduce
or eliminate these problems but incurs the penalty of considerable computational cost. A
timestep-buffering technique that eliminates abrupt changes in a variable timestep through
linear interpolation is demonstrated to be effective at satisfying the WMC and minimizing
rogue velocities for particle dispersion in an idealized one-dimensional turbulence regime
with a steep gradient. The technique is also shown to be effective when applied to a more
realistic three-dimensional system.

Keywords Lagrangian stochastic models · Rogue velocities · Timestep selection ·
Well-mixed condition

1 Introduction

The timestep (�t) used to integrate particle paths with Lagrangian stochastic (LS) models
of turbulent dispersion (Rodean 1996; Wilson and Sawford 1996; Thomson and Wilson
2013) is commonly selected as a fraction of one or more physical time scales of the process
under consideration. The Lagrangian integral time scale (TL) is arguably the most frequently
selected as a basis for timestep selection (e.g., Flesch and Wilson 1992; Flesch et al. 1995;
Nasstrom and Ermak 1999; Luhar et al. 2000; Sawford 2004; Shadwick et al. 2007; Postma
et al. 2012b),with the restriction that�t is “small” relative to TL. By comparing analytical and
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16 J. V. Postma

modelled plumewidths in homogeneous turbulence,Wilson andZhuang (1989) demonstrated
that �t = 0.1TL resulted in a discretization error of about two percent. Sawford (2004) used
�t = 0.02TL for a micromixing model in homogeneous turbulence and noted that the model
predictions changed very little with a smaller timestep. A constant of proportionality, or
timestep constant (μt), with a value of 0.02 has been used for simulations of dispersion in
inhomogeneous flows as well (e.g., Luhar and Sawford 2005; Postma et al. 2011b).

As LS models began to be used to address more realistic physical processes (for some
recent examples, see Lin et al. 2013) with steep gradients and strong inhomogeneities in
the turbulence, additional time scales have been added to the selection pool for timestep
determination (e.g., Thomson 1987; Stohl and Thomson 1999; Wilson et al. 2010; Lin and
Gerbig 2013). Some of these inhomogeneity time scales (TI) involve gradients of the standard
deviation of velocity or the coefficients of the LS model and consequently can be very
small. Applying such small timesteps globally would needlessly increase the computational
burden in regions with slowly-varying velocity statistics. This issue can be circumvented
by selecting the timestep to be a fraction of the minimum time scale at a given position:
�t = μt min(TL, TI), for example.

Simulating real-world processes requires a physically realistic LS model. Thomson and
Wilson (2013) review the evolution toward increased physical realism of LS models, the
principal criterion being the well-mixed condition (WMC; Thomson 1987). If the particles
are well mixed, then they retain their initial distribution after any number of timesteps. For
example, if the turbulence is assumed to be Gaussian then the velocities of the particles are
initialized in accordance with the Gaussian probability density function (PDF). If the model
satisfies the WMC, then at any time during the simulation the velocities of the particles
will have retained their initial Gaussian distribution. Violation of the WMC results in the
accumulation of particles in regions of low velocity variance.

While the derivation of a well-mixed LS model does not require quantification of the
timestep, practical applications have shown that �t must be sufficiently small or violations
will occur. Violations of theWMC can also occur when�t varies with position, which results
in a “�t bias error” (Wilson and Flesch 1993). Yet another mechanism leading to violation
the of WMC is a large discontinuity in the flow (Thomson et al. 1997). In this situation,
the particle fluxes on each side of the interface are imbalanced. A reflection/transmission
algorithm was proposed to eliminate this imbalance. Lin et al. (2003) and Lin and Gerbig
(2013) utilized a similar approach for the highly inhomogeneous planetary boundary layer.

Along with difficulties enforcing the WMC, another complication arising from the use of
inhomogeneous flows to drive LS models is the generation of unrealistically high particle
velocities. These are commonly referred to as rogue trajectories, rogue velocities or simply
rogues (Luhar and Britter 1989; Wilson and Yee 2000; Yee and Wilson 2007; Postma et al.
2012a; Wilson 2013). The qualifier “unrealistic” is subjective, thus it is common for there to
be a predefined velocity threshold, usually in terms of the local standard deviation of velocity
σu , that defines a rogue. For example, a particle with velocity |u| > rσu where r is a positive
real number is considered a rogue. Once flagged as such, the particle velocity is usually
reinitialized based on the local velocity statistics.

A shortcoming of this definition is that it does not capture all particles with velocities
that are inconsistent with the Eulerian velocity statistics used to drive the particle dispersion.
Postma et al. (2012a) found that many particles require two or three timesteps to reach
the rogue velocity threshold. During these timesteps, the velocities of these particles are
inconsistent with the Eulerian velocity statistics but below the rogue velocity threshold. They
go undetected, violate the WMC and contribute to inaccurate predictions. It may therefore
be more accurate to define rogue velocities as those that are inconsistent with the Eulerian
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Timestep Buffering for LS Models 17

velocity statistics. Since it would be difficult to determinewhether or not at any given timestep
a particle velocity is inconsistent with the Eulerian velocity statistics, avoidance of rogue
velocities is the best approach.

Yee and Wilson (2007) explain that rogue velocities arise from the inability of the for-
ward Euler scheme to maintain control of numerical round-off errors, which exacerbates
dynamical instabilities in the stiff generalized Langevin equations. They proposed a semi-
analytical fractional timestep integration scheme that eliminates rogue velocities in certain
situations but the model no longer satisfies the WMC. Another approach to prevent rogue
velocities is simply to reduce �t . Wilson (2013) put forth the suggestion that rogue veloc-
ities may occur as a result of �t failing to satisfy some limitation implicit to the velocity
statistics and demonstrated such a failure for an idealized one-dimensional flow consisting
of two zones of homogenous turbulence connected by a region of inhomogeneous turbu-
lence.

In the following, we use the same one-dimensional flow to evaluate a timestep-buffering
technique that permits the integration of particle paths over steep gradients while satisfying
the WMC and eliminating excessive rogue velocities. Due to the varying velocity statistics
in different regions of flow, the time scales used as the basis of timestep selection can vary
considerably in space. These variable timesteps combined with changing velocity statistics
can, under certain conditions, lead to violations of the WMC and the generation of rogue
velocities. The timestep buffers proposed herein linearly join regions with different timesteps
so that at any given step there is only a small change in �t .

Motivation can be found in Postma et al. (2012a), where it is demonstrated that rogue
velocities break the first-order consistency requirement of a particular implementation of
the Interaction by Exchange with the Conditional Mean micromixing model (hereafter, the
micromixing model). That is, the mean concentration field predicted by the micromixing
model is not equal to the mean concentration field predicted by a traditional LS marked-
particle model. No solution for this problem is presented. The objective is to develop a
simple solution that can easily be implemented into existing computer programs of varying
complexity.

The reflection/transmission algorithm used by Thomson et al. (1997), Lin et al. (2003) and
Lin and Gerbig (2013) requires a particle to stop at each interface to determine if it should be
reflected or transmitted. This has been applied to boundary-layer scales of hundred of metres
to kilometres with resolutions in the range of 30–100 m. Each level within the boundary
layer was treated as homogenous with no gradients in velocity variance, and the approach
has been shown to satisfy the WMC for these boundary-layer scales.

Themotivating problem in Postma et al. (2012a) ismicrometeorological with length scales
of few metres and resolutions of fractions of metres. The one-dimensional turbulence regime
that is used to evaluate the timestep-buffering technique has a narrow velocity variance
transition zone with a non-zero gradient. This will be resolved at a scale of few millime-
tres. Using the reflection/transmission algorithm, a particle would be stopped approximately
twenty-five times while traversing the transition zone to determine if it should be reflected
or transmitted. This would be highly inefficient. Further, setting the gradients to zero may
not be appropriate at micrometeorological scales. For these reasons, along with the fact that
the reflection/transmission algorithm has elsewhere been evaluated, it is not included in the
evaluation of the timestep-buffering technique.

Section 2 outlines a one-dimensional well-mixed LS model and the timestep-buffering
technique and application of the technique to a three-dimensional system is also described.
Section 3 evaluates the performance of the timestep-buffering technique for one and three-
dimensional systems, and Sect. 4 summarizes the findings.
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2 Model Equations and Numerical Implementation

Aone-dimensional LSmodel formulated in accordancewith theWMC is outlined in Sect. 2.1.
Section 2.2 presents the timestep-buffering technique and details the numerical set-up for the
one-dimensional simulations, while Sect. 2.3 demonstrates application of the technique to a
three-dimensional system.

2.1 One-Dimensional Well-Mixed LS Model

The evolution of the position (x) and velocity (u) of a fluid element can be modelled in
one-dimensional stationary turbulence using a first-order Langevin approach (e.g. Wilson
and Sawford 1996; Rodean 1996; Thomson and Wilson 2013),

dx = udt, (1)

du = a(u, x)dt + √
C0εdξ. (2)

The first term on the right-hand side of Eq. 2 represents drift and the coefficient a is the deter-
ministic acceleration. The second term on the right-hand side represents stochastic diffusion
where dξ is aWiener process with mean zero and variance equal to the infinitesimal timestep
dt . The coefficient b = √

C0ε ensures consistency between the LS model and Kolmogorov’s
theory of local isotropy. The dimensionless constant C0 arises from Kolmogorov’s similarity
law for the second-order Lagrangian structure function, and ε is the turbulent kinetic energy
dissipation rate.

By specifying the form of the PDF for the Eulerian velocity fluctuations to be Gaussian
with variance σ 2

u = σ 2
u (x),

ga(u, x) = 1√
2πσu

exp

(
− u2

2σ 2
u

)
, (3)

the unique, well-mixed (Thomson 1987) expression for the deterministic acceleration is

a(u, x) = −C0ε

2σ 2
u
u + 1

2

∂σ 2
u

∂x

(
1 + u2

σ 2
u

)
. (4)

While a small number of stochastic differential equations can be solved analytically, the
solutions to the remainder must be approximated numerically. A common, and perhaps the
simplest, technique for integrating stochastic differential equations is the forward Euler-
Maruyama (or simply Euler) scheme, which is detailed in several sources (e.g., Kloeden and
Platen 1992; Higham 2001). Space and time are discretized and the derivatives replaced by
forward approximations. Under this scheme, the position and velocity of a fluid element at
step n + 1 can be explicitly calculated as

xn+1 = xn + un�tn, (5)

un+1 = un + a(un, xn)�tn + √
C0ε�ξn, (6)

where �ξ is an incremental Wiener process with mean zero and variance equal to the dis-
cretized timestep �t .
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Fig. 1 Profiles of the timestep under different selection criteria. The dot-dashed line shows �t = 0.02TL,
the dashed line �t = 0.02 min(TL, Td) and the solid line �t = 0.02 min(TL, Td) with timestep buffering.
The inset shows a close-up view of the transition zone. Notable locations (xb1, xb2, xtr1, xtr2) and commonly
used terms (zone 1, zone 2, buffer 1, buffer 2, transition zone) are also shown

2.2 Numerical Set-Up and Timestep Buffering

A ramp function described by Wilson (2013) with zero mean velocity and variance profile

σ 2
u =

⎧
⎪⎨

⎪⎩

σ 2
1 x < xtr1 (zone 1),

σ 2
1 + m(x + D/2) xtr1 ≤ x ≤ xtr2 (transition zone),

σ 2
2 x > xtr2 (zone 2),

(7)

where xtr1 = −D/2, xtr2 = D/2 and m = �σ 2
u /�x = (σ 2

2 − σ 2
1 )/D is used to drive the

particle dispersion along the x-axis. It consists of two broad zones of homogeneous turbulence
joined by a transition zone of width D centred on x = 0. This simple one-dimensional flow
characterizes the discontinuities prevalent in the gridded flow fields commonly used to drive
more complex, three-dimensional LS models. It is ideal for studying the effects of timestep
selection on the satisfaction of the WMC and generation of rogue velocities.

Two time scales, and combinations thereof, are used to select the timesteps for the integra-
tion of Eqs. 5 and 6: TL = 2σ 2

u /C0ε and Td = σu/max(|u∂σu/∂x |), which for convenience
is referred to as the derivative time scale.

Unless otherwise specified, one-dimensional simulations use σ 2
1 = 1m2 s−2, σ 2

2 =
2 m2 s−2 and D = 0.1m. Any particle with a speed greater than six times the local standard
deviation (|u| > 6σu) is considered to be rogue. Since the maximum speed of a particle is
±6σu and ∂σ 2

w/∂x is constant, the derivative time scale simplifies to Td = (1/6)∂σu/∂x . The
timestep constant isμt = 0.02.All simulations useC0ε = 1m2 s−3, which, although not rep-
resentative of what is observed near a boundary (e.g., the ground), is suitable for the idealized
one-dimensional analysis below. The three-dimensional application of the timestep-buffering
technique in Sect. 2.3 incorporates realistic treatment of ε.

Figure 1 shows profiles of the �t for TL- and Td-based timestep selection and some
frequently used terms and locations. In zones 1 and 2, TL is constant and Td is zero. In the
transition zone, TL varies with σ 2

u (since C0ε is constant) and Td is non-zero (see inset of
Fig. 1) and considerably smaller than TL. As discussed in Sect. 1, these discontinuities in
the flow and timestep can give rise to violations of the WMC. The abrupt changes in the
timestep can be eliminated through the use of timestep buffers, which linearly interpolate
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20 J. V. Postma

between the edges of the transition zone (xtr1 and xtr2) and the edges of the buffers (xb1 and
xb2; to be defined presently).1

The width of the timestep buffers are sufficient that particles, in one timestep, cannot
traverse them. Since max(|u|) = 6σu , we have xb1 = xtr1 − 6σ1μt TL1 and xb2 = xtr2 +
6σ2μt TL2 . With the extents defined, the buffered timesteps are calculated as,

�t (buffer 1) = �t (xb1) − �t (xtr1)

xb1 − xtr1
(x − xtr1) + �t (xtr1), (8)

�t (buffer 2) = �t (xb2) − �t (xtr2)

xb2 − xtr2
(x − xtr2) + �t (xtr2). (9)

where the resulting buffered timestep is shown as the solid line in Fig. 1.
The final component of the timestep-buffering technique is timestep randomization. As

designed, particles moving towards the transition zone will take, on average, larger steps than
particles moving away from the transition zone. This is the �t bias described in Wilson and
Flesch (1993). Moreover, a second bias arises since a particle can jump from just outside a
buffer in zones 1 or 2 to deep into the buffer (i.e., towards the transition zone). The inverse
is not true. Particles cannot jump from deep into buffers out into zones 1 or 2. The �t bias
gives rise to a small bias velocity but the second bias can, as will be shown in Sect. 3.3, lead
to a significant violation of the WMC.

Timestep randomization is used to eliminate the second bias. After the timestep for a
particular step has been determined, it is uniformly randomized between its current value
and the smallest timestep in the domain, �tmin. The timestep to be used for the step is
therefore given by

�tnew = (�told − �tmin)χ + �tmin, (10)

where χ is a random deviate drawn uniformly from [0,1]. The minimum timestep for the
current set-up is found within the transition zone and is �tmin = 0.02Td = 8.05 × 10−4 s.

2.3 Timestep Buffering in Three Dimensions

A LS marked-particle model along with the LS micromixing model are used to demonstrate
the timestep-buffering technique in three dimensions. Both models are identical to those
used by Postma et al. (2012a) to demonstrate how rogue velocities can break the first-order
consistency requirement. Both the marked particle and micromixing models utilize three-
dimensional Gaussian turbulence and model the deterministic acceleration in accordance
with Thomson’s simplest solution for three-dimensional turbulence (Thomson 1987). The
models work as a pair with the marked-particle model pre-calculating the conditional mean
concentrations to be used by the micromixing model. Thorough descriptions of the models
can be found in Postma et al. (2011a).

Rogue velocities break the first-order consistency requirement through two mechanisms.
First, they alter the accumulation of residence time (used to calculate the conditional mean
concentration field), which is a function of position and conditioned on velocity. Second, they
result in inaccurate normalization constants for the conditional mean concentrations. These
constants are calculated using the analytical velocity PDF of the driving Eulerian velocity

1 The timestep buffers are analogous to merging lanes on a highway. A car travelling at highway speed cannot
turn onto a residential street without slowing first. If it tried, it would likely lose control and drive off the
road—a rogue car. By entering a merging lane and slowing to a speed sufficient to negotiate a change in
direction, a car can safely merge with the slower traffic. Likewise, a particle that begins taking smaller steps
before encountering a steep gradient reduces its chances of becoming rogue and has properties similar to other
particles in the same region, helping to ensure satisfaction of the WMC.
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statistics. The combination of an improper accumulation of residence times and inaccurate
normalization constants, both a product of the particles not propagating in accordance with
the velocity PDF (i.e., rogue velocities or other violations of theWMC), results in a first-order
inconsistency. See Postma et al. (2012a) for further details.

As in Postma et al. (2012a), a horizontally-homogeneous wall-shear-layer flow (Fackrell
and Robins 1982) with a friction velocity u∗ = 0.188m s−1 and a roughness length z0 =
2.88 × 10−4 m is modified to include a rogue cell in the volume bounded by 2.85 ≤ x <

3.00 m, 0.30 ≤ y < 0.375 m and 0.60 ≤ z < 0.63 m. The centre of the rogue cell is
(xr, yr, zr) = (2.925, 0.3375, 0.615) m. The bin widths of the driving velocity statistics in
the x, y and z directions are: �Bx = 0.15 m,�By = 0.075 m and �Bz = 0.30 m. There is
no interpolation of the velocity statistics to the particle position within each grid cell.

Within the rogue cell, the variance of vertical velocity is increased to twenty times its wall-
shear-layer value.2 This results in sharp discontinuities in the σ 2

w profile and steep gradients
in the x, y and z directions (i.e., ∂σ 2

w/∂x, ∂σ 2
w/∂y, ∂σ 2

w/∂z) surrounding the rogue cell.
Without intervention, these discontinuities and gradients will produce rogue velocities and
break the required first-order consistency of the micromixing model.

Two interventions are employed. The first is to build a σ 2
w transition zone around the rogue

cell. Consider the grid cell one cell upstream of the rogue cell and at the same spanwise and
vertical locations. In this upstream cell, ∂σ 2

w/∂x > 0, which will act to increase the vertical
velocity of a particle travelling through that cell. However, due to the discretized nature of
the driving velocity statistics, σ 2

w of the grid cell cannot increase as it would in a continuous
system. A particle with increasing vertical velocity combined with a fixed σ 2

w in the grid
cell is a recipe for rogue velocities. A transition zone, which can be regarded as a sub-grid
process, can help to prevent this mechanism of rogue velocity formation.

The second intervention is to buffer the timestep around the rogue cell to ensure particles
do not take too large a step when their deterministic accelerations are increased due to the
non-zero gradients surrounding the rogue cell, helping to prevent rogue velocities that may
form through the a�t or b�ξ = √

C0ε�ξ contributions to the velocity increment in Eq. 6.
Both the σ 2

w transition zone and �t buffer are constructed using truncated ellipsoids. For
a particle at position (x, y, z), first calculate

R2
e =

(
x − xr
ae

)2

+
(
y − yr
be

)2

+
(
z − zr
ce

)2

, (11)

where ae, be and ce are respectively the semi-principal axes in the x, y and z directions. Any
particle with R2

e ≤ 1 is within the ellipsoid. We desire σ 2
w and �t to reach the values of

rogue cell at the boundaries of the rogue cell, not at the centre of it, and this requires the
ellipsoid to be truncated. We define a cut-off point C2 so that the rate of change of σ 2

w within
the truncated transition ellipsoid is

mtr = σ 2
w(xr, yr, zr) − σ 2

w(x, y, z)

1 − C2 . (12)

The variance of vertical velocity within the truncated transition ellipsoid is then given by

σ 2
w

(
C2 ≤ R2

e ≤ 1
) = σ 2

w(x, y, z) + mtr
(
1 − R2

e

)
. (13)

The timestep buffer is constructed in a similar manner. First, the minimum buffer timestep is
selected as �tb = μt min(Tdi ) = μt min(Tdu , Tdv , Tdw ). A unified buffer timestep must be

2 There was a tenfold increase of the variance of vertical velocity in Postma et al. (2012a). A larger increase
is used here to provide a greater challenge to the timestep-buffering technique.
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chosen otherwise buffering would depend on the direction a particle is moving since Tdu , Tdv

and Tdw are in general not equal. Then the buffer slope is calculated as

mb = �tb − �t (x, y, z)

1 − C2 , (14)

and the buffered timestep is calculated as

�t
(
C2 ≤ R2

e ≤ 1
) = �t (x, y, z) + mb

(
1 − R2

e

)
. (15)

The derivative time scale in the rogue cell is zero due to the central-difference approximations
used to calculate the derivatives. In addition to the buffering, the timestep in the rogue cell is
set to �tb to produce a smooth timestep profile across the entire buffered region,

�t
(
R2
e < C2) = �tb. (16)

Finally, timestep randomization in accordance with Eq. 10 is performed. The semi-principal
axes are selected to be ae = 1.5�Bx , be = 1.5�By and ce = 1.5�Bz to allow the transition
zone and buffer to begin at the boundaries of the neighbouring cells farthest from the rogue
cell. Using the x-coordinate as an example, we have xr −ae = 2.70 m, which is the upstream
edge of the cell directly upstream of the rogue cell.

Recall that in the one-dimensional case in Sect. 2.2, the width of the �t buffers is deter-
mined by considering the maximum distance a particle can travel in one timestep (see para-
graph above Eqs. 8 and 9). Such consideration is not necessary in this three-dimensional
example since the resolution of the driving velocity statistics determines the semi-principal
axes of the truncated ellipsoid and the bin widths are significantly larger than the maximum
travel distance of a particle. For the grid cell directly upstream of the rogue cell, we have
(u+6σu)μt TL/�Bx ≈ 0.25. Similarly for y and z. It is not possible for the particles to jump
in one timestep over the timestep buffer.

The value of the cut-off point is related to the resolution of the driving velocity statistics
and to the semi-principal axes.Whenmeasured along the x, y or z axes, the centre of the rogue
cell is half a bin width away from the boundaries of the rogue cell. Setting y = yr, z = zr and
on the upstream face of the rogue cell, x = 2.85m,Eq. 11 gives R2

e = ((2.85−2.925)/ae)2 =
(0.5�Bx/1.5�Bx )

2 ≈ 0.111; identically for the y and z directions. The required cut-off is
therefore C2 = (0.5/1.5)2 ≈ 0.111.

The results of the truncated ellipsoid transition and buffering processes are shown in
Fig. 2, which displays streamwise transects of σ 2

w and �t for three different scenarios along
(y, z) = (yr, zr) and in the vicinity of the rogue cell.

3 Results and Discussion

This section presents results from one-dimensional and three-dimensional simulations. In
Sect. 3.1, the timestep-buffering technique in one-dimension is compared with other timestep
selection criteria and its effectiveness at maintaining theWMC evaluated. Section 3.2 investi-
gates the velocity bias produced by the constant-slope buffers while Sect. 3.3 investigates the
sensitivity to the spatial resolution of timestep buffering and timestep randomization. Sec-
tion 3.4 examines for a three-dimensional micromixing model the effectiveness of timestep
buffering, and a σ 2

w transition zone at eliminating rogue velocities and achieving first-order
consistency with a traditional LS marked-particle model. Lastly, Sect. 3.5 suggests further
improvements that could be made to the technique.
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Fig. 2 Streamwise transects for (y, z) = (yr , zr ) in the vicinity of the rogue cell. a The vertical velocity
variance and b the timestep used for the three-dimensional micromixing model simulations. Note the A and
B transects overlap in (a). The transects are identified by their Sect. 3.4 run letters, timestep selection criteria
and other interventions: tran. transition zone; buf. timestep buffering and ran. timestep randomization

3.1 Dispersion in One-Dimensional Inhomogeneous Turbulence

We now consider particle dispersion in the one-dimensional inhomogeneous turbulence
regime given by Eq. 7. A total of N = 109 particles are initialized uniformly in the domain
x ∈ [−5, 5] m and their initial velocities assigned in accordance with Eqs. 3 and 7. Perfect
reflection is used to keep the particles within the domain. Equations 5 and 6 are numerically
integrated to tmax = 0.20 s, a time sufficient for particles to cross the transition zone (if they
are in the vicinity).

The sub-domain x ∈ [−1, 2] m (asymmetry is to accommodate differing buffer widths
in zones 1 and 2) is discretized into Nx = 750 bins with �x = 0.004 m. The velocity
space u ∈ [−6σu, 6σu] was divided into Nu = 120 bins with �u = 0.1σu . When t ≥
tmax, the particle is binned accordingly in position-velocity space. After all N particles have
propagated, numerical velocity PDFs fu are calculated, and a mean absolute error (MAE)

MAE = 1

Nd

Nu∑

j=1

Nx∑

i=1

∣
∣ fu(u j , xi ) − ga(u j , xi )

∣
∣ , (17)

where Nd = Nx Nu , is used to quantify the results. If the numerical velocity PDF is equal to
the analytical Gaussian PDF thenMAE = 0.

123



24 J. V. Postma

Table 1 Timestep selection criteria and performance measures for the one-dimensional runs

Run �t Rogues MAE (sm−1) Emax (sm−1) WMC Sim. time (min)

1 0.02TL 9949 4.37 × 10−3 0.265 No 5

2 0.02min(TL, Td) 835 4.59 × 10−3 0.329 No 7

3 min(0.02TL, 0.02Td,�ttr1, �ttr2) 5 3.41 × 10−3 0.321 No 8

4 0.02min(TL, Td) + buf. 7 1.24 × 10−3 0.019 Yes 15

5 0.001 s 5 6.06 × 10−4 0.017 Yes 195

Both TL and Td are functions of the velocity statistics and vary with position. The �ttr timesteps vary with
position and particle velocity. Rogues denotes how many rogue velocities occurred in the run; MAE (Nd =
90,000) is given by Eq. 17; the maximum one-point error Emax by Eq. 18; WMC refers to a qualitative
assessment of the satisfaction of theWMC and lastly, the simulation time for a 2.1 GHz Intel Core i7-3612QM
processor is listed

A misleadingly small MAE can be achieved if the numerical PDF closely conforms to
the analytical Gaussian PDF at most comparison locations and has only a small number of
significant deviations from it. This situation is countered by identifying the maximum single
point error

Emax = max
∣
∣ fu(u j , xi ) − ga(u j , xi )

∣
∣ , (18)

for 1 ≤ j ≤ Nu and 1 ≤ i ≤ Nx along with qualitative evaluation of the numerical PDFs
in regions where WMC violations are expected: near the boundaries of, and within, the
transition zone and near the buffer boundaries, if applicable.

In addition to the time scales TL and Td, the times to the transition boundaries, �ttr1 =
(xtr1−x)/u and�ttr2 = (xtr2−x)/u, which are only valid when positive (i.e., when a particle
is moving towards a boundary), form the timestep selection pool for four variable timestep
simulations. A fifth simulation uses a constant timestep throughout the entire domain. Table 1
summarizes the timestep selection and performance of the five runs to be examined while
timestep profiles for Runs 1–4 (excluding �ttr1 and �ttr2, which vary with the velocity of
the particle) are shown in Fig. 1. Note that theMAE values are significantly smaller than the
Emax values since they are averaged by Nd.

Figure 3 shows the numerical PDFs predicted by the five runs in Table 1 at the boundary
between zone 1 and the transition zone (i.e., xtr1) and near the centre of the transition zone.
Runs 1–3 fail to satisfy the WMC at xtr1 while Runs 4 and 5 show good conformance with
the Gaussian PDF. Although ending a particle step at the transition zone boundaries (Run 3)
improves the numerical PDF, a large violation of the WMC remains. The results are slightly
different near the centre of the transition zone: Runs 1 and 2 still fail to satisfy the WMC,
Run 3 shows good conformance with the Gaussian PDF, and Runs 4 and 5 once again satisfy
the WMC.

There is some correlation between the number of rogue velocities and satisfaction of the
WMC. Runs 1 and 2, both of which fail to satisfy the WMC, have respectively 9949 and 835
rogue velocities, but Run 3 has only five rogue velocities and also does not in all locations
satisfy the WMC. Both Runs 4 and 5 have a comparable number of rogue velocities as Run
3, and at all locations satisfy the WMC. It appears that the absence of a significant number
of rogue velocities is a necessary but not sufficient requirement for WMC satisfaction.

Examining the errors in Table 1 reveals that Runs 1–4 haveMAE values of the same order
of magnitude and Run 5 has an MAE that is an order of magnitude smaller than the other
runs. The MAE for Run 4 is approximately 2.7–3.7 times smaller than Runs 1–3 and twice
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Fig. 3 Analytical (solid line) and numerical (symbols) PDFs showing WMC satisfaction or violation for the
runs in Table 1. a is for the boundary between zone 1 and the transition zone (xtr1). b is for near the centre
of the transition zone. The legends show the run number and the timestep selection criteria and apply to both
panels

as large as Run 5. The similar values for theMAE are due to the fact that the numerical PDFs
may be very accurate in all but a few locations, where large violations of the WMC occur.
That said, Runs 4 and 5 do satisfy the WMC and have the lowest MAE values.

The maximum one-point errors are more revealing. Runs 1–3 have Emax values that are
an order of magnitude larger than Runs 4 and 5, as can be seen in the top panel of Fig. 3.
Qualitatively assessing other locations reveals that the numerical PDFs for Runs 1–3 have
some significant departures from the Gaussian PDF. In contrast, the numerical PDFs from
Runs 4 and 5 conform well to the Gaussian PDF at all locations. The success of Runs 4 and 5
at satisfying theWMC is in part attributable to the use of significantly smaller timesteps either
around the transition zoneor in the entire domain.Consequently, the simulation times for these
runs are larger.WhileRun 5 produced themost accurate resultswith a small constant timestep,
it took 195 min to do so. Run 4 had results of similar accuracy and took approximately 15
min, roughly eight percent of the time of Run 5. The Run 4 simulation time is two to three
times larger than Runs 1–3, but that is an acceptable trade off for accurate results.

Lookingmore closely into the causes ofWMCviolations in Runs 1–3 reveals a few causes:
particles jumping directly between zones 1 and 2 without going through the transition zone;
an imbalance in the number or particles travelling between zones 1 and 2, and a mixing of
particles with significantly different timesteps.
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Fig. 4 Two causes ofWMCviolations: an abrupt change in the timestep (triangles) and a negligible stochastic
diffusion term (circles)

Particles far from the transition zone experience homogeneous turbulence and tend to
remain in the same zone after each timestep. In contrast, particles close to the transition zone
may experience in a single timestep inhomogeneities either by changing from zone 1 to zone 2
(or vice versa) or by entering the transition zone. Since�t1 < �t2 and σ1 < σ2 (i.e., particles
can have higher velocities in zone 2), particles are biased toward moving from zone 2 to zone
1. This is similar to the �t bias described in Wilson and Flesch (1993). Both Runs 1 and 2
have approximately 3.55 × 106 particles jump in a single timestep over the transition zone,
and of these, approximately 3.51× 106 travel from zone 2 to zone 1. Since a similar number
of particles does not leave zone 1 (i.e., the particle fluxes across the transition zone are not
balanced), the excess particleswith negative velocities accumulate and result in the secondary
maxima seen around u/σu ≈ −1.8 in the fu profiles for these runs in the top panel of Fig. 3.

Ending a particle step at the transition boundaries reduces the WMC violation by pre-
venting particles from jumping over the transition zone. Run 3 had no particles that jump the
transition zone in a single timestep and has a lowerMAE value and Emax than is the case for
Runs 1 or 2. There is also no secondary maximum in the negative tail of the numerical PDF
at xtr1. However, the violation of the WMC is still unacceptably large.

Figure 4 displays two causes of WMC violations. Two simulations using σ 2
u = 1 m2 s−2

are used to produce the fu profiles; one simulation uses the timestep �t = 0.01TL = 0.02 s
for x < 0 and�t = 0.02TL = 0.04 s for x > 0, both of which are sufficiently small to satisfy
the WMC in homogeneous turbulence. The other simulation uses �t = 0.02TL = 0.04 s
and is lacking the stochastic diffusion term from Eq. 6.

The WMC violation is evident in the run with the factor two change in the timestep,
despite each timestep being sufficiently small on its own to satisfy the WMC. The secondary
maximum at u/σu ≈ −0.5 has similar counterparts in the fu profiles for Runs 1 and 2 in the
top panel of Fig. 3. This violation is a result of imbalanced particle fluxes at x = 0 (Thomson
et al. 1997). Since there is homogeneous turbulence across the domain, the imbalance in
particles jumping across x = 0 is reduced relative to Runs 1 and 2. There are 390 more
particles going from positive x to negative x than the other way around, hence the WMC
violation is less severe than is shown in Fig. 3. As the change in �t across x = 0 increases,
so too does the severity of the WMC violation. Adding a velocity variance change across the
x = 0 boundary increased the particle flux imbalance and WMC violation further. This is
the same process as is occurring in Runs 1 and 2.
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TheWMC violation is also evident in the run that is lacking a stochastic diffusion term. In
homogeneous turbulence, the deterministic term in Eq. 4 drives the velocity of the particles
towards themeanvelocity,which in this case is zero. The stochastic diffusion term randomizes
the particle velocities; without it, the fu profile becomes longer and narrower with each step.
The stochastic term of Eq. 4 ensures consistency with Kolmogorov’s theory of local isotropy;
without it, the consistency is broken.

None of the runs herein lacks a stochastic diffusion term, however many have disparate
timesteps between zones. The timesteps at selected locations are �t1 = 0.04 s,�ttr1 =
�ttr2 = 0.02, Td = 8.05×10−4 s and�t2 = 0.08 s.Consider a position in zone1very close to
the xtr1 boundary. Particles in zone 1 approaching xtr1 from the left have�ξ2 = �t1 whereas
particles in the transition zone approaching xtr1 from the right have�ξ2 ≈ �ttr1. Around xtr1,
there is amixing of particles with stochastic diffusion terms of vastly differingmagnitudes. In
zone 1, the contribution to maintaining local isotropy of particles that have just left the transi-
tion zone (and thus have �ξ2 ≈ �ttr1) is negligible compared with those particles in zone 1
with�ξ2 = �t1. This results in a narrowing of the numerical PDF and violation of theWMC.

This is likely themain cause of theWMCviolation seen inRun 3 at xtr1. Particles are forced
to terminate a step at the transition-zone boundaries so that particles cannot therefore jump
across boundaries, thus eliminating this type of flux imbalance as a source of the violation.
However, xtr1 in Run 3 is a location where particles with vastly different timesteps mix,
which can also lead to a WMC violation. By the middle of the transition zone (bottom panel
of Fig. 3), all of the particle in Run 3 will have equal and small timesteps (�t = 0.02Td) and,
as seen in the figure, there is no violation of the WMC at this location. The large violations
seen in the PDFs for Runs 1 and 2 are a result of imbalanced particle fluxes and/or a mixing
of particles with differing timesteps.

Similar toWMC violations, rogue velocity genesis can result from particles jumping from
one zone to another as well as from too large a timestep. Both Runs 1 and 2 have a significant
number of particles jumping from zone 2 to zone 1. If a particle with u = 5σ2 in zone 2
crosses into zone 1, its velocity relative to the lower velocity variance is u = 7.07σ1. The
particle is rogues in zone 1 whereas it is not in zone 2. Of the 9949 rogues in Run 1, 2362
are a result of the change in σu when a particle changes zones. Of the 835 rogues in Run 2,
732 are a result of the change in σu when a particle changes zones. Recall that particles in
both of these runs have a significant fraction that jump directly into zone 1 from zone 2.

The forward Euler scheme uses velocity statistics from the current location to move a
particle to its new location. A particle beginning in zone 2 will have a, b,�t and u suitable
for and permissible in zone 2. This may not hold true should the particle move to a new
location with differing velocity statistics. In particular, u may exceed the rogue threshold at
the new location.

The remainder of the rogue velocities are a result of large changes to the particle velocity
through the deterministic term a�t and/or the stochastic term b�ξ , of Eq. 6. Since the
coefficients a and b are products of the driving velocity statistics and turbulent kinetic energy
dissipation rate, it is �t that is responsible for the formation of rogue velocities. Run 1 has
the largest timesteps throughout the domain and has the most rogue velocities. Of those not
formed through the�σu mechanism, 6482 are a result of the a�t mechanism and 179 a result
of the b�ξ mechanism. The remainder are a result of the combination of all mechanisms.
Run 2 has fewer rogues on account of using �t = 0.02Td in the transition zone. With this
small timestep where a is large, there are no rogues generated through the a�t mechanism.
The 103 rogues not resulting from a change in σu all form through the b�ξ mechanism. All
103 became rogue in zone 1 and have negative velocities. It is likely that they recently jumped
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line is for a run identical in every way to Run 4 except the buffers are double the width. The dotted lines
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from zone 2 directly into zone 1 and b�ξ was sufficient for the velocity to exceed the rogue
threshold. Runs 3 – 5 have very few rogues largely due to the usage of small timesteps.

3.2 Timestep and Velocity Biases

Both Runs 4 and 5 satisfy the WMC but the performance of Run 5 is slightly better. This is a
result of the �t bias caused by the linearly-changing timesteps in the buffers. As described
in Wilson and Flesch (1993), the timestep bias gives rise to a velocity bias (uB) that can be
calculated as the difference between the numerical mean velocity and the analytical mean
velocity. Since the analytical mean is zero, the velocity bias at position xi is calculated as

uB(xi ) =
Nu∑

j=1

u j fu(u j , xi )�u. (19)

Figure 5 shows the velocity bias for Run 4 and an identical run with double-width buffers.
Beginning in zone 1, the velocity bias in Run 4 is approximately zero, with statistical error due
to the use of a finite number of particles resulting in noise about zero. Around x ≈ −0.35 m,
slightly outside of buffer 1, the velocity bias begins to have a non-zero value. It reaches a
maximum value of uB ≈ 0.052 m s−1 inside buffer 1 at x ≈ −0.15 m, after which the
value remains constant until the transition zone is reached at x = xtr1. In the transition
zone, the timestep is constant (since ∂σw/∂x is constant) and there is no velocity bias. After
x = xtr2, the velocity bias is approximately constant with a value uB ≈ −0.077 m s−1

until x ≈ 0.4 m. The magnitude of the velocity bias lessens throughout the remainder of
buffer 2 until reaching zero again at x ≈ 0.9 m. The profile for the double-width buffer
run is similar but the regions of constant velocity bias are larger and the magnitudes smaller
because the buffers are larger and the timestep slope within them smaller. The regions where
the velocity bias is changing is a result of particle from within and without the buffers
mixing.

Following Wilson and Flesch (1993), consider a particle in buffer 1 with velocity u.
The change in timestep experienced by this particle is �tB = mB1�x = mB1u�t , where
mB1 is the timestep slope in buffer 1. The distance the particle moves with this timestep is
�xB = u�tB. Substituting the expression for�tB into this equation gives�xB = mB1u

2�t ;
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assuming uP ∝ �xB/�t and the result is uP ∝ mB1u
2.As stated inWilson andFlesch (1993),

the velocity bias does not act on a single particle trajectory, so we take the mean over all par-
ticles: uP = uB ∝ mB1u

2 = mB1u
2, and note the last term is equal to the velocity variance.

Therefore the velocity bias is uB = −αmB1σ
2
u , where α is a constant of proportionality and

the negative is added so that α > 0.
The slopes of buffers 1 and 2 are calculated from Eq. 8 to respectively be mB1 =

−0.163 s m−1 and mB2 = 0.117 s m−1. Using these and the constant uB values from
Fig. 5, along with corresponding values from other simulations (not shown), suggest that
α ≈ 1/3, which differs from the value of 1/2 reported by Wilson and Flesch (1993). The
difference may be due to the manner in which the values are calculated. In Wilson and
Flesch (1993), α is determined using concentration data whereas velocity data are used
above.

The velocity bias is the significant source of error in Run 4, contributing approximately
6.33× 10−4 (51%) to theMAE. If this is subtracted from theMAE values shown in Table 1,
the remainder is 6.07 × 10−4, which is almost equal to theMAE value of Run 5.

3.3 Sensitivity to Spatial Resolution

Many practical applications of LS models have a lower spatial resolution than those used for
the simulations in Sect. 3.1. It is therefore worthwhile to investigate the sensitivity to spatial
resolution of timestep buffering and timestep randomization. Simulations in this section have
parameters used in Run 4 unless otherwise noted.

The top panel of Fig. 6 shows four PDFs from low (�x = 0.12 m) and high
(�x = 0.004 m) resolution simulations in which the timestep randomization was either
active or not. The results show both low and high resolution simulations with timestep
randomization satisfying the WMC but the results differ without timestep randomization.
The violation of the WMC in the low resolution simulation without timestep randomiza-
tion is relatively minor and consists of slight PDF narrowing and overprediction of the
PDF maximum. This error may not be noticeable in more realistic systems with other
sources of error. In contrast, the violation of the WMC in the high resolution simula-
tion without timestep randomization is much larger, with the PDF inaccurately predicted
for 1 � u/σu � 2. These WMC violations are a result of the flux imbalance aris-
ing from particles jumping towards the transition zone and being unable, on account of
smaller timesteps in the buffer, to be replaced by particles jumping away from the tran-
sition zone. To clarify, consider a particle at x = xb1 = −0.29 m, with u = 1 m s−1

and �t = 0.02TL = 0.04 s. A step brings the particle into buffer 1 at x = −0.25 m; a
particle at this location with u = −1 m s−1 has �t = 0.033 s. One step will take it to
x = −0.283 m 	= xb1 with timestep randomization mitigating this flux imbalance. With
larger bins, the effects of the flux imbalance are lessened through a smoothing out and can-
cellation of errors.

Timestep buffering appears to be more sensitive to spatial resolution. The bottom panel
of Fig. 6 shows four PDFs from low and high resolution simulations with and without
timestep buffering. Both low and high resolution simulations with timestep buffering satisfy
the WMC while both low and high resolution simulations without it do not. The PDFs for
low and high resolution simulations without timestep buffering are inaccurately predicted for
−4 � u/σu � 1. In addition, the high resolution simulation has a large spike in the numerical
PDF at u/σu ≈ −1.3 (the location of this spike varies with position; not shown). As with
timestep randomization, the low resolution simulation appears to average over these spikes
and produces a smoother, but still inaccurate, numerical PDF.
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Fig. 6 Effects of spatial resolution onWMCsatisfaction for timestep randomization (a) and timestep buffering
(b). The solid line shows the analytical Gaussian PDF and the symbols show the numerical PDFs. The circles
are for Run 4

3.4 Dispersion in Three-Dimensional Inhomogeneous Turbulence

We arrive at the motivating problem for the development of the timestep-buffering technique.
Both the marked-particle and micromixing model simulations use N = 2 × 107 particles,
and are initialized within a 1-mm diameter tophat source at (xs, ys, zs) = (0, 0, 0.6) m for
the marked-particle simulations and uniformly on the upstream face of the domain for the
micromixing simulations. Position and velocity spaces are respectively divided into Nx =
40, Ny = 40, Nz = 40, Nu = 20, Nv = 20, and Nw = 40 bins. The model constants are
immaterial to first-order consistency but for completeness we use: Kolmogorov constant,
C0 = 6, Richardson constant, Cr = 0.45 and micromixing constant, μ = 0.75.

Table 2 summarizes the timestep selection and performance of the simulations. Run A
uses the same timestep as Postma et al. (2012a) while Run B includes the derivative time
scale in the timestep selection. Run C uses the same timestep selection as Run B but incor-
porates the interventions described in Sect. 2.3: a σ 2

w transition zone, timestep buffering and
randomization. Run D uses the same timestep selection as Runs B and C but uses only the σ 2

w

transition zone intervention. TheMAE and Emax values listed are for the region surrounding
the rogue cell, transition zone and buffer, since elsewhere in the domain all runs had identical
timesteps and very similar performance. Figure 2 shows streamwise transects of σ 2

w and �t
in the vicinity of the rogue cell.
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Table 2 Parameters and performance measures for the three-dimensional marked-particle and micromixing
model runs

Run �t + interventions Rogues MAE (sm−1) Emax (sm−1) First-order
consistency

Sim. time (min)

A 0.02TL 14,278 1.53 × 10−1 5.63 No 105

B 0.02min(TL, Td) 23,043 1.74 × 10−1 7.33 No 107

C 0.02min(TL, Td) +
tran. + buf. + ran.

8 3.95 × 10−2 0.28 Yes 174

D 0.02min(TL, Td) + tran. 14 4.33 × 10−2 0.32 Yes 107

The second column lists the timestep and other modifications to the vertical velocity variance (e.g., transition
zone; tran.) and timestep (e.g., buffer and randomization; buf., ran.). Both TL and Td are functions of the
velocity statistics and vary with position. Rogues denotes how many rogue velocities occurred in the marked-
particle model/pre-calculation simulation; MAE (Nd = 539) is given by Eq. 17; the maximum one-point
error Emax by Eq. 18; first-order consistency is a qualitative assessment between the marked-particle and
micromixing model predictions and lastly, the simulation time for is listed

The effectiveness of the interventions is apparent in the spanwise concentration transects
for (x, z) = (2.85, 0.60) m shown in Fig. 7. Each of the runs has a corresponding marked-
particle simulation but only one is shown in the figure since the transects from the four
marked-particle simulations vary only slightly near the rogue cell and the differences are
unnoticeable on the scale used in Fig. 7.

Run A, with no interventions and a relatively large timestep, displays a significant first-
order inconsistency. This is not surprising since there are 14,278 rogue velocities in the
marked-particle simulation used to pre-calculate the conditionalmean concentrations used by
the micromixing model. All but twelve of these were clustered in the grid cells neighbouring
the rogue cell. In these cells, gradients of σ 2

w are non-zero and relatively large when compared
with the gentle vertical gradients in the wall-shear-layer flow. These gradients increase the
vertical velocity of a particle but since σ 2

w in these grid cells is fixed, the vertical velocity of
the particle will eventually cross the rogue threshold. Indeed, all but six of the 14,278 rogue
velocities are a result of the vertical velocity exceeding the rogue threshold, as opposed
to rogue velocities in the streamwise or spanwise directions. For 13,793 of them, the a�t
contribution to �w was sufficient for the particle to go rogue. As discussed in Sect. 2.3 and
Postma et al. (2012a), these rogue velocities are responsible for the first-order inconsistency.

Reducing the timestep in the cells neighbouring the rogue cell (i.e., including Td in the
timestep selection criteria; Run B) increases the number of rogue trajectories and the magni-
tude of the first-order inconsistency. Corresponding increases inMAE and Emax are observed.
As with Run A, the vast majority of the 23043 rogue velocities were in the cells neighbouring
the rogue cell, in the w component of velocity and a result of the aw�t contribution to �w.
The combination of large accelerations and large grid cells with constant σ 2

w promotes the
generation of rogue velocities regardless of the timestep. Smaller timesteps simply result in
the particle taking more steps to reach the rogue velocity threshold. A larger timestep, as in
Run A, may help particles avoid or escape regions of large acceleration without going rogue,
particularly in multi-dimensional simulations where particles can traverse diagonally across
grid cells potentially resulting in shorter paths (e.g., cutting across the corner of a grid cell).

The results from Runs C and D are qualitatively very similar although quantitatively, Run
C,which uses three interventions, ismore accurate at the Nd = 539 comparison locations. The
small number of rogue velocities in both runs was spread throughout the simulation domain
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Fig. 7 Spanwise transects of concentration at (x, z) = (2.85, 0.60) m from the three-dimensional marked-
particle (solid line) andmicromixingmodel runs (symbolswith thin lines) inTable 2. The dotted linesdemarcate
the spanwise extent of the rogue cell. The legend shows the run letter, the timestep selection criteria and other
interventions

as opposed to clustered around the rogue cell. These results suggest that for this three-
dimensional example, the σ 2

w transition zone is the most effective intervention. However,
timestep buffering and randomization does improve the performance slightly.

The minimal performance increases resulting from timestep buffering and randomization
are probably a result of the relatively low resolution used for the simulations. Any overpre-
dictions and underpredictions within the large cells are smoothed out as described in Sect. 3.3
and shown in Fig. 6. There is some supporting evidence to be found for this assertion by
examining the streamwise distribution of error.

The ratio of MAE from Runs D and C in Table 2 is MAED/MAEC ≈ 1.09. Examining
this ratio at each of the seven streamwise data-extraction locations (xk = [2.425, 2.50, 2.85,
3.00, 3.15, 3.35, 3.425] m) reveals: MAED(xk)/MAEC (xk) = [1.26, 1.15, 1.04, 1.05, 1.09,
1.06, 1.07], noting that the performance differs most significantly at x = 2.425 and 2.50 m.

The lower panel of Fig. 2 shows x = 2.70 m and x = 3.15 m to be locations where parti-
cles with large differences in�t maymix in RunD and give rise toWMCviolations similar to
those seen in the one-dimensional results in Fig. 3 (Run 2 in particular).Higher resolution sim-
ulations of Runs C and D (Nx increased to 70 from 40) resulted in theMAED(xk)/MAEC (xk)
ratios improving except at x = 2.425 and 2.50 m, where they worsened respectively to 1.35
and 1.21. This worsening performance with increasing resolution is also observed in the
one-dimensional results without timestep buffering and randomization (see Fig. 6).

The performances of Runs C andD around x = 3.15mwere similar although this too is an
area where particles with different �t can mix. This is suspected to be due to the alternating
timestep determination in Run D upstream of this location. In the streamwise direction and
on a line centred on the rogue cell, the timesteps are: 0.02TL for x < 2.70 m, 0.02Td one cell
upstream of the rogue cell, 0.02TL in the rogue cell, 0.02Td downstream of the rogue cell and
0.02TL for x > 3.15 m; similarly for the spanwise and vertical directions. This alternating
pattern may act to pre-mix the TL- and Td-based timesteps. In contrast, the x = 2.70 m
boundary is the first place particles with different timesteps can interact, there is no pre-
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mixing. This perhaps is why the MAED(xk)/MAEC (xk) values around here are larger than
for x = 3.15 m.

The similarity of the location of poorer relative performance in Run D to those observed
in the one-dimensional simulations suggests that the increased errors in this run rela-
tive to Run C are the result of the absence of timestep buffering and randomization.
However, these interventions added another 67 min of simulation time that may or may
not be worth the performance increases they provide, depending on the physical system
being studied, research objectives, resolution, desired accuracy, time constraints and so
on.

3.5 Improving Performance

The rate limiting step of the timestep-buffering technique is timestep randomization.
By uniformly mixing the timesteps, the simulation times are approximately doubled,
and is unsurprising since the expectation value of a uniform deviate in [0,1] is 0.5. In
both the one and three-dimensional examples, the discontinuity occupied a small por-
tion of the overall domain. Timestep randomization must occur in the entire domain
to prevent imbalanced fluxes between regions with and without timestep randomization.
This domain-wide randomization is computationally wasteful but acceptable with the
short-duration simulations presented above, but may not be the case for longer simula-
tions.

It may be possible to construct additional buffers to slowly phase out timestep randomiza-
tion as the distance from the discontinuity increases. Perhaps by changing the randomization
rate from every step, to every two steps, to every three steps and so on until there is no more
randomization. Alternatively, imposing some form of functional dependence on tmin may
achieve the desired result. This is an area for further development.

The velocity bias is the major source of error for the timestep-buffering technique. Elim-
inating or correcting for it would decrease the error. Since its magnitude is deterministic to
within a constant, eliminating it by adding or subtracting (depending on the sign of the veloc-
ity bias) a small velocity from each particle step was attempted. The value of the correction
was a small fraction of the velocity bias since a particle takes several steps in a buffer and the
correctional effects are cumulative. Although this approach did eliminate the velocity bias in
certain areas, it generally produced other errors elsewhere in the domain. Difficulties arose
in determining the magnitude of the correction velocity and in what spatial range it should
be applied. This too is an area for further development.

4 Summary

The timestep-buffering technique has been demonstrated to satisfy theWMC for steep veloc-
ity variance gradients in an idealized one-dimensional flow. The relationships between �t ,
WMC satisfaction and rogue velocities have been demonstrated, with smaller timesteps
resulting in more accurate predictions and fewer rogue velocities. However, abrupt changes
in �t (Runs 1–3) continued to produce WMC violations. Timestep reduction can be used
to minimize or eliminate rogue velocities but this does not necessarily ensure satisfaction
of the WMC (Run 3). A simulation that utilized the timestep-buffering technique (Run 4)
prevented these abrupt changes in �t and produced accurate results in approximately eight
percent of the computation time for an accurate simulation using a small constant timestep
(Run 5). A velocity bias resulting from the�t bias in the timestep buffers was responsible for
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the majority of the error in Run 4. This error was acceptably small in light of the simulation
time savings.

Run 5 demonstrates that a small constant timestep can be used to satisfy the WMC by
eliminating the �t bias and equalizing �ξ throughout the domain. There was however con-
siderable computational cost (simulation time of 195 min). Using a variable timestep greatly
decreases the simulation time (5–8 min) but if not done carefully can lead to an imbalance
in particle fluxes across interfaces, rogue velocities and violations of the WMC (Runs 1–3).
In Run 4, particles began taking smaller and smaller steps in the timestep buffers as they
approached a transition boundary. By doing so, abrupt changes in�t were eliminated, fluxes
across interfaces maintained, and near elimination of rogue velocities realized. The result
was the satisfaction of the WMC with reasonable computational cost (15 min of simulation
time).

Timestep randomization, a part of the timestep-buffering technique, could be considered
optional in low resolution simulations. The low resolution simulations in Sect. 3.3 have
�x = 0.12m, but in general, what constitutes low resolutionwill depend on the system being
simulated. Not using timestep randomization would cut simulations times by approximately
a factor of two but it has been demonstrated that simulations with timestep randomization are
more accurate than those without. Whether or not the performances increases are worth the
extra simulation time depends upon the physical system being studied, research objectives,
desired accuracy and time constraints. Timestep buffering is more sensitive to the spatial
resolution as there were significant violations of theWMC in both the low and high resolution
simulations without it (see Fig. 6).

The first-order inconsistency seen in the micromixing model of Postma et al. (2012a)
was eliminated using the timestep-buffering technique along with building a sub-grid
velocity variance transition zone (Run C). The three-dimensional flow used to drive
these simulations was idealized: a horizontally homogeneous wall shear layer with a sin-
gle region of steep gradients and a strong inhomogeneity created by increasing σ 2

w to
twenty times its wall-shear-layer value within the rogue cell. Application to more real-
istic flows to drive LS simulations (e.g., a flow with many regions of strong gradients
and inhomogeneities) would be straightforward but difficulties may occur. With multi-
ple regions requiring timestep buffering and transitions zones, it is possible that these
may overlap. It would not be difficult to smoothly join the buffers themselves but doing
so might produce consistently small timesteps in each grid cell and possibly result in
long simulation times, which is exactly what was to be avoided. However, this poten-
tial complication depends upon the grid-cell size and the Eulerian velocity statistics. It is
therefore conceivable that there exist many problems of practical importance where the
timestep-buffering technique could be used to eliminate excessive rogue velocities, main-
tain balanced particle fluxes, satisfy the WMC and prevent the domain-wide use of small
timesteps. However, if there is no other way to simulate the system without violations to
the WMC, then the longer simulations resulting from overlapping buffers times must be
endured.

The objectivewas to develop an easily-implemented solution toWMCviolations. Incorpo-
rating timestep buffering into complex three-dimensional marked-particle and micromixing
models is straightforward and requires only basic linear algebra, a uniform random num-
ber generator and one short subroutine. More important than the ease of implementation,
the timestep-buffering technique has been demonstrated effective at preserving the WMC in
one- and three-dimensional flows.
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