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Abstract Laser Doppler anemometery and laser-induced fluorescence techniques were
used to explore the spatial structure of the flow within and above finite cavities created
within porous and solid media. The cavities within these two configurations were identical in
size and were intended to mimic flow disturbances created by finite gaps and forest clearing.
Because flows over permeable boundaries differ from their solid counterparts, the study here
addresses how these differences in boundary conditions produce differences in, (i) bulk flow
properties including the mean vorticity within and adjacent to the gaps, (ii) second-order
statistics such as the standard deviations and turbulent stresses, (iii) the relative importance
of advective to turbulent stress terms across various regions within and above the gaps, and
(iv) the local imbalance between ejections and sweeps and momentum transport efficiencies
of updrafts and downdrafts. Both configurations exhibited a primary recirculation zone of
comparable dimensions inside the gap. The mean vorticity spawned at the upstream corner
of the gap was more intense for the solid configuration when compared to its porous coun-
terpart. The free-shear layer spawned from the upstream corner-edge deeper into the gap for
the porous configuration. The momentum flux at the interface within and above the gap was
enhanced by a factor of 1.5–2.0 over its upstream value, and this enhancement zone was
much broader in size for the porous configuration. For the turbulent transport terms in the
longitudinal and vertical mean momentum balances, these transport terms were significant

S. Fontan (B) · D. Poggi · L. Ridolfi
Dipartimento di Ingegneria dell’Ambiente, del Territorio e delle Infrastrutture,
Politecnico di Torino, Torino, Italy
e-mail: stefano.fontan@polito.it

G. G. Katul
Nicholas School of the Environment, Duke University, Durham, NC, USA

G. G. Katul
Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA

C. Manes
Department of Engineering and the Environment, Energy and Climate Change Research Group,
University of Southampton, Southampton SO17 1RJ, UK

123
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inside the gap for both boundary configurations when compared to their upstream coun-
terpart. The effectiveness of using incomplete cumulant expansion methods to describe the
momentum transport efficiencies, and the relative contributions of ejections and sweeps to
turbulent stresses, especially in this zone, were also demonstrated. The flatness factor for both
velocity components, often used as a measure of intermittency, was highest in the vicinity of
the upstream corner in both configurations. However, immediately following the downstream
corner, the flatness factor remained large for the porous configuration, in contrast to its solid
configuration counterpart.

Keywords Backfacing step flow · Conditional sampling · Flow within cavities ·
Forest gaps · Recirculation zone

1 Introduction

Studies on flow disturbances created by gaps and clearings within forested ecosystems are
receiving significant attention given their implications on a plethora of processes such as
seed and pollen dispersal by wind, aerosol deposition onto canopies, spatial aggregation of
momentum, mass, and energy exchange rates within fragmented landscapes, bulk drag esti-
mates for large-scale models, among others (Klaassen 1992; Veen et al. 1996; Albertson and
Parlange 1999; Laurence 2004; Cassiani et al. 2008; Detto et al. 2008). Mean and turbulent
flow properties near forested edges have been reported in a number of field studies though
their spatial sampling remains rather restricted to few tower locations and levels (Irvine et
al. 1996; Thomas and Wilson 1999; Detto et al. 2008). In the last decade, large-eddy sim-
ulations (LES) have been used to explore the effects of forest edges on flow disturbances
at unprecedented resolutions (Yang et al. 2006a,b; Cassiani et al. 2008; Dupont and Brunet
2008; Schlegel et al. 2012). For flows traversing a clearing and entering into a dense forested
patch, these LES studies reveal a number of common features (Dupont and Brunet 2008;
Cassiani et al. 2008) including, (i) the formation of an adverse pressure gradient just upwind
from the edge that initiates a deceleration in the longitudinal velocity component, (ii) an
adjustment region inside the canopy in which the longitudinal velocity further reduces due
to the presence of canopy drag elements resulting in an upward vertical motion from the
canopy volume as schematically shown in Fig. 1. Turbulent intensity also decreases within
the canopy due to the presence of small wakes that enhance the turbulent kinetic energy
(TKE) dissipation rate (Belcher et al. 2003). Perhaps more significant is the occurrence of
a so-called enhanced gust zone near the canopy top at the clearing-forest interface charac-
terized by high intermittency and non-Gaussian statistics (see Fig. 1). Interest in this zone
is now proliferating given its implications to wind-induced tree damage (Dupont and Brunet
2008). On the other hand, flows traversing a dense forested canopy into a gap or a clearing
share some similarities with back-facing step (BFS) flows known to exhibit separation and
re-attachment zones (Detto et al. 2008; Cassiani et al. 2008). In a conventional BFS set-up,
as the flow traverses into a drop, the separation region is spawned by the sharp corner of the
drop as shown in Fig. 1. Following this separation point, shedding of vortices occur due to
the discontinuity imposed on the velocity at the corner interface (Simpson 1989; Spazzini et
al. 2001). A primary recirculation region is then established below the separated layer along
with an occasional secondary separation region near the ground adjacent to the corner. The
vortex structure in the primary separated layer generally resembles mixing-free shear layers
as shown in Fig. 1. Following this separation zone, a re-attachment zone is established and
after some downstream distance, the flow re-equilibrates with the new surface. This BFS
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Turbulent Flows Across Clearings 23

Fig. 1 The topology of turbulence for a back-facing step flow (left) and a zone of upward motion and intense
turbulence as the flow traverses into a densely forested canopy from a gap (right)

mean flow ‘topology’ may be dramatically altered in two ways within clearings and gaps.
In small and mid-sized gaps, the size of the primary separation region and the re-attachment
zone may not be allowed to freely establish. Moreover, dense forested canopies do not impose
the same no-slip constraints on the flow as in a BFS and their permeability allows for some
pressure relaxation and adjustments that are absent in solid boundaries. In fact, turbulent
flows over permeable boundaries differ from their solid counterparts, especially with regards
to the type of coherent structures near the boundary (Raupach et al. 1996; Finnigan 2000;
Manes et al. 2011). It is this latter point, with its implications to flows in gaps and clear-
ings, that motivated our study. How a porous medium alters the BFS vortical topology and
any modifications arising due to finite gap dimensions is explored here using detailed flume
experiments. The emphasis is on addressing how differences in these two boundary condi-
tions produce differences in, (i) bulk flow properties including the mean vorticity within and
adjacent to the gaps, (ii) second-order statistics such as the standard deviations and turbu-
lent stresses, (iii) the relative importance of advective to turbulent stress terms across various
regions within and above the gaps, and (iv) the local imbalance between ejections and sweeps
and momentum transport efficiencies of updrafts and downdrafts.

2 Laboratory Experiments

The experiments were conducted in a large non-tilting re-circulating rectangular flume at
the G. Bidone Hydraulics Laboratory in Politecnico di Torino, Turin, Italy. The flume is
18 m long and 0.9 m wide built with glass side walls to permit optical access. A steady water
depth of h = 0.4 m at the upstream end was maintained throughout the experiments. For
modelling a forest, the flume bottom was covered with a mattress block made of Polyester
foam (PPI30) having a thickness H = h/4, a filament thickness of 0.11 mm, a mean pore
size of 1.5 mm (Manes et al. 2011), and a porosity that is approximately homogeneous and
isotropic. These pore configurations correspond to an effective leaf area index (LAI) equiv-
alent to about 3.5 m2 m−2, which is common to many forested canopies (Detto et al. 2008;
Cassiani et al. 2008; Schlegel et al. 2012). A gap was created by splitting the mattress block
into two parts and then separating them apart by an adjustable distance L whose value is dis-
cussed later. Two mattress porosity values were considered as end-members for the boundary

123



24 S. Fontan et al.

conditions. The first is a 97 % porosity mattress, which was deemed to be sufficiently large
so that finite porosity effects can be ignored. The second is zero, which is the extremum
condition representing a non-porous or ‘solid configuration’. This so-called solid configura-
tion was constructed by covering the two mattress blocks constituting the gap with a smooth
stainless steel sheet.

2.1 Visualizations

Dye laser visualization (DLV) runs were carried out to first identify a gap size and Reynolds
number configuration that is dynamically rich for exploring the mean momentum balance,
the mean vorticity, and the momentum transfer properties, and yet relevant to forest gap
dynamics in such a way as to analyze small discontinuities until the infinity case. The DLV
is based on the planar laser induced florecence (LIF) technique, which is employed here to
measure the local instantaneous dye concentration in the flow. The DLV runs were conducted
by releasing Fluorescein and Rhodamine 6G upstream of the gap. When excited by a laser,
Fluorescein and Rhodamine 6G emit a metallic green and a bright red light, respectively,
that can be imaged. The details of the LIF instrumentation and data processing are discussed
elsewhere (Poggi et al. 2006, 2011). The gap size to be identified by the DLV runs is a com-
promise between very small gaps that dictate the size of the vortical structure and very large
gaps that have been extensively studied as isolated forest edges. In a very small-gap set-up, as
the flow transverses over the gap, the small gap size permits limited eddy penetration thereby
dictating the primary size of the recirculating zone. On the other hand, flow over very large
gaps approach a quasi BFS immediately after the drop and then re-equilibrate following the
reattachment region. The newly equilibrated flow will encounter the downstream end face
of the gap, experience a disturbance, and re-adjust accordingly. This latter adjustment has
received theoretical and experimental attention as earlier noted (Belcher et al. 2003; Yang et
al. 2006a,b; Cassiani et al. 2008; Seraphin and Guyenne 2008) and is not the main focus here.
Rather, the focus here is on a configuration that allows a separated shear layer to be initiated
and developed but with a minimal re-attachment zone. This case is dynamically interesting
because the adjustment phase immediately following the re-attachment phase encounters
the downstream gap face. An initial DLV exploration was conducted by placing four laser
sources that project a plane of light along the central axis of the channel (0.6 m along the
longitudinal axis and 0.4 mm thick) and four cameras positioned in such a way so that their
combined view captures the entire light plane at 25 frames s−1. The injection tubes (upstream)
and the mattress used for the porous case are shown in Fig. 2a. The positioning of the two
mattress blocks, the injection tubes, and the laser source are also presented schematically in
Fig. 2b. The intent of these DLV runs was to explore three main characteristic parameters
on the separation and re-attachment within the gap: porosity, gap dimension, and Reynolds
number effects. The DLV runs were conducted for a combination of two porosity values, two
Reynolds number values, and five gap-size values as shown in Fig. 3a. In presenting the DLV
results in Fig. 3a, the width-to-height ratio L/H = G R (Gap Ratio) is varied by varying L ,
keeping H and h constant. When G R = 0.5, the DLV suggests that the primary vortex size
appears to be dictated by L . If G R is between 1 and 2, the separated shear layer initiated from
the upstream edge forms due to vortex shedding at the corner but is prematurely censored at
the downstream end of the gap. However, for G R = 3, the separated shear layer appears to
fill the gap just prior to the formation of a typical BFS re-attachment zone. When G R ≥ 5,
the shear layer re-attaches along the gap floor before being disturbed by the downstream side
of the gap (Ashcroft and Zhang 2008). In this case, the effects of the gap walls share many
analogies with configurations that are well studied in the literature as earlier noted (Seraphin
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Fig. 2 Laboratory set-up for the DLV runs showing the positioning of the cameras, the dye injection tubes,
the mattress foam representing the porous media, and a schematic of the overall setup. a Polyester foam and
dye injectors. b Dye injection and visualization set-up. The mean flow is from left to right

and Guyenne 2008; Dupont and Brunet 2008; Cassiani et al. 2008). Hence, based on these
DLV results, G R = 3 was selected for exploring the effects of porous and solid boundaries
on the flow statistics. This G R configuration is also commensurate with a forest clearing
field study in which the gap length was 60 m and the canopy height was 30 m (i.e. G R = 2)
described elsewhere (Schlegel et al. 2012).

2.2 Laser Doppler Anemometer

In describing the flow statistics, meteorological notation is adopted with x and z defining
the longitudinal and vertical coordinates (z = 0 being the channel bed), U and W are
the mean longitudinal and vertical velocity components, respectively, u′ and w′ are instan-
taneous turbulent fluctuations from U and W , respectively. Throughout, primed quantities
indicate turbulent excursions from the mean state indicated by the overbar. The instantaneous
u = U + u′ and w = W + w′ time series were acquired using laser Doppler anemometry
(LDA) operated in forward scattering mode. The LDA system, data acquisition, and pro-
cessing routines are discussed elsewhere (Poggi et al. 2002). Laser acquisition parameters
were adjusted for every point to cover all the expected range in velocity fluctuations. The
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Fig. 3 Laser-induced fluorescence (LIF) dye visualization runs for various GR configurations and bulk Rey-
nolds numbers Reb (based on upstream depth-averaged velocity and h)

main acquisition parameters to be adjusted are the signal gain, the voltage to the photo-
multiplier, and an estimate of the mean velocity and its root-mean-squared fluctuation. The
LDA inclination angle configuration employed here results in the nearest velocity sampling
point to be 0.015 m above the mattress. Measured velocity profiles were sampled every 0.01
m throughout the water level. The horizontal spatial sampling resolution was chosen in such
a way as to optimally describe gradients in the flow within the gap. Data were collected as
five series of 2 min per sampling location per velocity component. The sampling rate is a
function of the velocity component and varied from 7,000 to 40,000 samples for every series
(roughly coinciding with sampling frequencies between 60 and 350 Hz). All the acquired
series were combined and used to compute first-, second-, and third-order moments of the
flow field, the mean vorticity, the mean advective and turbulent transport terms, momentum
transport efficiencies in updrafts and downdrafts, and ejection-sweep properties at all sampled
locations and for the configurations identified by the DLV runs. The measurement locations
as well as the mean velocity are presented in Fig. 4 as ‘quiver’ plots. Quiver plots assign
the base of each arrow to the sampling location, while the angle and length of each arrow
indicate the direction and magnitude of the mean velocity vector, respectively. It is evident
from Fig. 4 that the primary recirculation region fills the gap as expected from the DLV runs,
and the re-attachment zone is almost confined to the downstream gap face. Table 1 shows the
pertinent flow variables and dimensionless numbers for the solid and porous configurations.
In these experiments, the friction velocity (u∗) was determined by extrapolating the Reynolds
stress profile (u′w′(z)) to the surface using measurements at a location undisturbed by the
gap (about 0.4 m upstream of it). For the porous mattress, u∗ was determined by fitting U to
the logarithmic mean velocity profile, and the value estimated was comparable (i.e. within
10 %) to the u∗ value inferred from linearly extrapolating the turbulent stress profile to z = 0.
For the solid boundary, the limited sampling points near the surface prohibited the use of the

123



Turbulent Flows Across Clearings 27

Fig. 4 The mean velocity vectors and their measurement locations with respect to the gap for the solid (a)
and porous (b) boundaries

Table 1 The main flow variables and dimensionless numbers for the solid and porous boundaries, where Q
is the bulk steady flow rate, h is the water depth, u∗ is the inferred friction velocity from extrapolating the
Reynolds stress profile, zo is the aerodynamic roughness length of the porous boundary estimated from the
upstream mean velocity profiles, δ = 5u∗/ν is the thickness of the viscous sublayer for the solid boundary, ν

is the kinematic viscosity, Reb is the bulk flow Reynolds number, Rer is a roughness Reynolds number, Fr is
the Froude number showing that the flow maintained a subcritical state throughout, and g is the gravitational
acceleration

Name Solid configuration Porous configuration Typical values

Q (m3 s−1) 0.1 0.1 –

h (m) 0.4 0.4 –

u∗ m s−1 0.045 0.046 –

δ or z0 (m) 1.2 × 10−4 1.7 × 10−3 –

Reb = Uh
ν 102,400 102,400 –

Rer = u∗z0
ν 4.8 70.1 –

Fr = U√
gh

0.14 0.14 –

σ/u∗ – – 3.3

σu/u∗ – – 2.7

σw/u∗ – – 1.1

logarithmic mean velocity profile to determine any roughness parameter. Hence, for the solid
case, it was assumed that the flow is smooth with a viscous sublayer thickness estimated
by δ = 5u∗/ν (Pope 2000), where ν is the kinematic viscosity of water. Based on these
estimates, the aerodynamic roughness length (zo) for the porous boundary was one order of
magnitude larger than δ.

3 Results and Discussion

The main goal of our study was to explore how differences in porous and solid boundaries
produce differences in, (i) bulk flow properties within and adjacent to the gap, including
any differences in the spatial structure of the mean vorticity, (ii) the relative importance of
advective and turbulent transport terms in the mean longitudinal and vertical momentum
balances for various regions across and within the gap, and (iii) the local imbalance between
ejections and sweeps contribution to the momentum flux as well as the transport efficiencies
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Fig. 5 The spatial variation of the normalized mean longitudinal (U/u∗) and vertical (W/u∗) velocities, and
mean vorticity (ωy(h/u∗)) = (h/u∗)(∂U/∂z − ∂W/∂x) for the solid (left) and porous (right) configurations.
a, b U/u∗, c, d W/u∗, e, f ωyh/u∗

of updrafts and downdrafts. Hence, Sect. 3 is structured to address these goals. Because the
LDA flow measurements are used to evaluate the spatial variations in the mean velocity, mean
vorticity, and advective terms in the mean longitudinal and vertical momentum balances, the
estimation of the spatial gradients must be considered given the unavoidable measurement
errors. While various approaches are available to interpolate and compute spatial gradients
for noisy data, the approach followed here is intended to correct the time-averaged U and
W so as to ensure that the mean fluid continuity equation is satisfied. These corrections are
derived and discussed in the Appendix. When presenting the effects of the boundary on the
flow statistics, u∗ and h values given in Table 1 are used as normalizing variables for all
velocity and length scales, respectively. The data are graphically presented as colour maps,
where the colour intensity is proportional to the quantity being analyzed to emphasize var-
iability across different regions within the flow domain. For convenience, G FU and G FD

refer to the upstream and downstream gap faces, respectively.

3.1 Mean Velocity and Vorticity

Figure 5 show the measured normalized mean velocity components and the mean vorticity
for the solid and porous configurations. The U well above the gap with solid boundaries
appears to be insensitive to the presence of the gap (i.e. exhibiting a quasi planar-homoge-
neous behaviour), which is not the case for the porous boundary. For the latter, there is a
‘speed-up’ zone in U in the upper layers situated immediately above the gap. The measure-
ments inside the gap show a rapid decrease in U for both solid and porous configurations as
expected. Within the gap, both configurations also show the onset of a quasi-free shear layer
initiated at the upstream corner point of G FU, characterized by U/u∗ ≈ 3. The U/u∗ = 3
is remarkably consistent with free-shear mixing layers and has been reported in numerous
dense canopy flow experiments near the canopy top (Raupach et al. 1996; Katul et al. 1998;
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Fig. 6 The spatial variations of the normalized velocity standard deviations σu/u∗ (top), σw/u∗ (middle) and
the normalized Reynolds stress u′w′/(u2∗) (bottom) for the solid (left) and porous (right) configurations. a, b
σu/u∗, c, d σw/u∗, e, f u′w′/(u2∗)

Finnigan 2000; Cava et al. 2006). For the porous configuration, this free-shear layer appears
more space filling (i.e. the zone delineated by U/u∗ ≈ 3 is commensurate with the gap size),
again pointing out to the effects of the boundary on the mean flow structure within the gap.
Both configurations exhibit a primary recirculation zone of comparable dimensions inside
the gap, which was already noted in Fig. 4. For W , the pronounced influences of the gap
appear to be concentrated in two regions. The first is within the primary re-circulation zone
with the expected downward mean flow induced by the G FD and the concomitant upward
mean flow region distributed from the G FU and extending to the centre of the gap. The
second region is the adjustment zone immediately after G FD. In this zone, W is positive
over a wider distance for the porous boundary, consistent with forest edge studies (Belcher
et al. 2003; Dupont and Brunet 2008; Cassiani et al. 2008). Over the solid boundary, the
positive W is large but narrowly confined to the immediate vicinity downstream of G FD.
The most striking difference introduced by the surface cover is the spawning of the mean
vorticity ωy . It is clear that over the solid boundary, the spawning of ωy at G FU is co-located
with the upstream corner of the gap, consistent with BFS type flows (as expected). For the
porous case, the spawning of ωy is apparently more spatially diffuse presumably due to, (i)
the lack of a sharp corner edge, and (ii) finite velocities in the porous matrix. Naturally, the
large normalized |ωy |(> 1) delineates the free-shear interface within and immediately above
the gap and is embedded within the zone for which U/u∗ ≈ 3. Next, we explore how the
generation and dissipation of ωy affect the spatial variability of the velocity variances and
turbulent stresses.

3.2 Velocity Standard Deviations and Reynolds Stresses

Figure 6 show the normalized longitudinal σu/u∗ and vertical σw/u∗ turbulent velocity stan-
dard deviations for the solid and porous configurations, respectively, where σs = (s′2)1/2,
and s is an arbitrary flow variable. The zone of most intense velocity variances is situated
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near the interface between the flow inside the gap and aloft. Within this zone, the production
of turbulent kinetic energy scales with ∂U/∂z, which is largest at this interface for both flow
configurations. For the porous boundary, σu/u∗ and σw/u∗ increase to values as high as 2.2
and 1.6, respectively, around this interface. These maximum values of σu/u∗ and σw/u∗ for
the porous case are larger than their counterparts for the solid case (i.e. turbulence is more
energetic). However, it should be noted that the increases in σu/u∗ and σw/u∗ from their
undisturbed upstream state are larger for the solid case by comparison to the porous case,
which suggests more turbulent kinetic energy was produced by the sharp corner. What is
perhaps more significant here is the impact of the boundary cover on the spatial persistence
of these large σu/u∗ and σw/u∗ downstream of G FD. For the porous boundary case, the
persistence of a large σu/u∗ and σw/u∗ downstream of G FD is far more significant when
compared to the solid boundary case. In part, this persistence for the porous boundary case
is analogous to flows into forest edges initiated from a clearing as noted elsewhere (Belcher
et al. 2003; Dupont and Brunet 2008; Cassiani et al. 2008). As with the velocity variances,
the zone of large normalized turbulent shear stress u′w′ exists at the interface just above and
just below the gap with values reaching up to twice the values of the undisturbed wall stress
upstream. Moreover, as with the velocity variances, the zone of large u′w′ is wider for the
porous case when compared to the solid boundary case. The implications of these spatial
patterns on the advective and turbulent transport terms in the mean longitudinal and vertical
momentum balances are considered next.

3.3 Advective and Turbulent Transport

Away from boundaries and at high Reynolds numbers, the mean longitudinal and vertical
momentum balances for a stationary flow in the absence of any density gradients are given
as

U
∂U

∂x
+ W

∂U

∂z
= − 1

ρw

∂ P

∂x
− ∂u′w′

∂z
− ∂u′u′

∂x
, (1)

U
∂W

∂x
+ W

∂W

∂z
= − 1

ρw

∂ P

∂z
− ∂u′w′

∂x
− ∂w′w′

∂z
, (2)

where ρw is the mean density of water, and the mean pressure (P) term here is assumed to
be a perturbation from a hydrostatic reference state. How the boundary configurations affect
the individual advective and turbulent transport terms in both mean momentum budgets is
explored in Figs. 7 and 8. For the mean longitudinal momentum balance, the spatial varia-
tions in the vertical advective (W∂U/∂z), longitudinal advective (U∂U/∂x), and turbulent
transport (∂u′w′/∂z + ∂u′u′/∂x) terms are first discussed. The vertical advective term is
most significant in magnitude within the gap, where large negative values are expected based
on W and noted in the upstream vicinity of G FD. The effect of the boundary on W∂U/∂z
is most significant downstream from G FD. In this region, a positive W∂U/∂z is set-up for
both boundary configurations though the porous case appears more spatially expansive when
compared to its solid counterpart. For the horizontal advective term, its spatial variations
are generally ‘in-phase’ with the vertical advective term inside the gap. In other regions of
the flow domain, the horizontal advective term exhibits a more complex spatial pattern and
appears more sensitive to the boundary cover when compared to its vertical advective coun-
terpart. For the porous case and at G FU, the horizontal advective term is positive and large,
while at G FD the horizontal advective term switches sign but retains the large amplitude.
At the downstream corner end of the G FD, the horizontal advective term is positive. For the
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Fig. 7 Spatial variation of the advective and turbulent transport terms for the mean longitudinal momen-

tum balance for the solid (left) and porous (right) cases. a, b U ∂U
∂x (h/(u∗)2), c, d W ∂U

∂z (h/(u∗)2), e, f(
∂u′w′

∂z + ∂u′u′
∂x

)
(h/(u∗)2)

turbulent transport terms, their values are most significant inside the gap for both boundary
configurations, though their magnitude is smaller for the porous configuration when com-
pared to their solid counterparts. The spatial variations in the vertical advective (W∂W/∂z),
longitudinal advective (U∂W/∂x), and turbulent transport (∂u′w′/∂x + ∂w′w′/∂z) terms
are discussed here for the vertical momentum balance. The vertical advective term appears to
be small and can be ignored except inside the gap. This finding also appears to be insensitive
to whether the boundary configuration is solid or porous. The horizontal advective terms are
significant within and above the gap and sensitive to the boundary configuration. The turbu-
lent transport terms appear to be significant within the gap and immediately above it. For the
solid configuration, these transport terms are large at the interface between the flow inside
and above the gap. For the porous configuration, this interface of intense turbulent transport
is displaced deeper into the gap. When taken together, these results suggest that the flows
adjacent and inside gaps are not amenable to simplified theoretical treatment as virtually all
the terms in the mean momentum balance (vertical and horizontal) appear significant.

3.4 Sweeps, Ejections and Momentum Transport Efficiency

In this section, the relative importance of ejections and sweeps and the relative transport
efficiency of direct and indirect fluxes that quantify the transport of momentum (locally) are
discussed. In keeping with standard convention, when u′w′ < 0 the terms ‘direct’, ‘indi-
rect’, ‘ejections’, and ‘sweeps’ are defined via quadrant analysis formed by the plane whose
abscissa is u′ and whose ordinate is w′ (Antonia 1981). The direct and indirect fluxes define
events whose w′u′ < 0 (quadrants 2 and 4) and w′u′ > 0 (quadrants 1 and 3), respectively.
The terms sweeps and ejections refer to events situated in quadrants 4 (u′ > 0 and w′ < 0)
and 2 (u′ < 0 and w′ > 0), respectively, of the w′ − u′ cartesian plane. There are instances
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Fig. 8 Spatial variation of the advective and turbulent transport terms for the mean vertical momentum

balance for the solid (left) and porous (right) cases. a, b W ∂W
∂z (h/(u∗)2), c, d U ∂W

∂x (h/(u∗)2), e, f(
∂u′w′

∂x + ∂w′w′
∂z

)
(h/(u∗)2)

where u′w′ > 0 occurs in a small and restricted region near the bottom corner of G FD. For
this region, the quadrants affiliated with these definitions reverse. However, for much of the
flow domain, u′w′ < 0, and the standard quadrant convention for defining direct, indirect,
sweeps, and ejections, is employed unless otherwise stated. The relative fraction of u′w′
transported by ejections and sweeps is given as (Raupach 1981)

ΔS0 = (u′w′)4 − (u′w′)2

u′w′ , (3)

where
(

u′w′
)

4
and

(
u′w′

2

)
are momentum flux contributions originating from quadrants

4 (sweeps) and 2 (ejections), respectively. Here, ΔS0 > 0 signifies the dominant role of
sweeps, while ΔS0 < 0 signifies the dominant role of ejections in momentum transport. The
results in Fig. 9a, b show that much of the u′w′ outside the gap is dominated by ejection
for both boundary configurations; however, u′w′ inside the gap is primarily dominated by
sweeps. The bottom corner region of G FU inside the gap is dominated by ejections. For the
porous boundary case, the ΔS0 > 0 within the gap is roughly co-located with the zone of
the free-shear interface earlier discussed. For the solid boundary case, the zone of intense
sweeps appears less well defined within the gap except close to the ground. However, for
both surfaces, the relative importance of ejections and sweeps follows the overall mean circu-
lation pattern inside the gap. In the adjustment region immediately downstream from G FD,
ejections dominate the u′w′ transport for a horizontal distance roughly commensurate with
H in the region close to the ground or porous surface for both boundaries. The transport
efficiency of direct and indirect fluxes can be defined as the ratio of the net flux to the direct
flux and is given as(Wyngaard and Moeng 1992; Li and Bou-Zeid 2004)

123



Turbulent Flows Across Clearings 33

Te = Direct Flux + I ndirect Flux

Direct Flux
= 1 +

[
(u′w′)1 + (u′w′)3

]
[
(u′w′)4 + (u′w′)2

] . (4)

If all the u′w′ originates from the direct flux component, then Te = 1, and if the direct and
indirect fluxes contribute equally, then Te = 0. Figure 9c, d shows the spatial variation of
Te for the solid and porous configurations. As with the ΔSo, the highest Te is situated in
the free-shear layer area within the gap, and the smallest Te is situated in the bottom lower
corner of G FD. The high Te associated with this free-shear layer appears to ‘fill’ more of the
gap space for the porous boundary when compared to its solid boundary counterpart. With
regards to modelling ΔSo and Te, it is instructive to ask how detailed the joint probability
density functions (pdfuw) between u′ and w′ must be resolved before all the spatial patterns
in Fig. 9 can be reproduced. A similar (though not identical) problem has been considered
in a number of turbulent flows (Frenkiel and Klebanoff 1967; Durst et al. 1992) in which the
pdfuw was expanded via Gram-Charier cumulants and the number of cumulants that must be
retained to describe the statistical properties of ΔSo and Te was evaluated. A logical starting
point to address this problem is the relationship between ΔS0 and third-order cumulants (or
CEM) given as (Nakagawa and Nezu 1977; Raupach 1981),

ΔS0 = 1 + ρ

ρ
√

2π

(
2C1

(1 + ρ)2 + C2

1 + ρ

)
, (5)

where ρ = u′w′/(σuσw) is the correlation coefficient between u′ and w′, C1 and C2 are
given as

C1 = (1 + ρ)

[
1

6
(M03 − M30) + 1

2
(M21 − M12)

]
, (6)

C2 = −
[

1

6
(2 − ρ) (M03 − M30) + 1

2
(M21 − M12)

]
, (7)

where M03, M30, M21 and M12 are the third- (or mixed) order moments of the rescaled
velocity components given as

Mi j =
(

u′
σu

)i (
w′
σw

) j

. (8)

An ‘incomplete’ cumulant expansion (ICEM) (i.e. some terms in a third-order cumulant
expansion are discarded) can also be derived by neglecting contributions from M03 and M30.
This approximation was shown to be reasonably accurate in other studies (Katul et al. 1997;
Fer et al. 2004; Poggi et al. 2004; Cava et al. 2006; Katul et al. 2006). With this truncation, the
main contributions to ΔSo originate from M21 and M12 and the third-order CEM simplifies
to:

ΔSo(I C E M) = 1

2
√

2πρ
(M21 − M12). (9)

A comparison between ΔSo inferred from quadrant analysis, the CEM, and ICEM for
both solid and porous boundaries is shown in Fig. 10a, b. Despite the large inhomogene-
ity in the flow, the ability of the ICEM to reproduce measured ΔSo is suggestive that the
mixed moments M12 and M21 dictate the behaviour of ΔSo far more than the two velocity
skewnesses. These two moments are directly linked to the flux transport terms (w′w′u′ and
w′u′u′) in the turbulent kinetic energy budget as discussed elsewhere (Katul et al. 1997;
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Fig. 9 The spatial variation of ΔS0 (a, b) and Te spatial variation (c, d) for the solid (left) and porous (right)
configurations

Fig. 10 Comparison between
modelled ΔS0 from CEM (open
circle) and ICEM (plus) against
ΔS0 from quadrant analysis (a,
b), comparison between
measured M12 and measured
M21 for all measurement
locations in the flow domain (the
regression lines are also shown)
(c, d) and comparison between
measured and modelled Te using
a Gaussian distribution (e, f) for
the solid (left panels) and porous
(right panels) boundaries
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Fig. 11 Spatial variation of the longitudinal velocity (a, b) and vertical velocity (c, d) flatness factor (F F)
for the solid (left) and porous (right) cases

Poggi et al. 2004; Cava et al. 2006). Moreover, as discussed in a number of studies (Raupach
1981), M12 and M21 are usually inversely related to each other. Wind-tunnel studies have
shown that M12 ≈ −M21 in rough-wall boundary layers and across a wide range of surface
roughness values (Raupach 1981). On the other hand, canopy flow experiments suggest that
M12 ≈ −0.6M21 for measurements within the canopy and near the canopy top as well as
across a wide range of atmospheric stability conditions (Cava et al. 2006). For the dataset
here, this relationship is explored in Fig. 10 for both boundary configurations. From this
figure, M12 ≈ −0.82M21 describes well the data for both solid and porous boundaries even
when combining all measurement locations. Hence, this result demonstrates that only one
of the two flux transport terms is actually needed to describe ΔSo when using the ICEM.
Next, the simplest representation for Te, which is derived from a joint Gaussian distribution
assumption for Puw, is discussed. For a Gaussian Puw , the transport efficiency is given as
(Wyngaard and Moeng 1992)

Te = 2πρ

2
√

1 − ρ2 + πρ + 2ρsin−1(ρ)
, (10)

so that Te can be described entirely from ρ for a Gaussian Puw. Figure 10e, f compare the
measured Te from quadrant analysis and the modelled Te from Eq. 10 for both configurations.
The good agreement between measured and modelled Te for solid and porous configurations
is rather surprising given the severe inhomogeneity in the flow. These results indicate that,
despite the large inhomogeneity in the flow and differences in boundary conditions, much of
the properties of the ejections and sweeps can be described by simplified representations of
Puw that resolve one of the two mixed moments.

To further explore the non-Gaussianity in the velocity field for both configurations, the
flatness factor F F (or kurtosis) is computed and shown in Fig. 11. For a Gaussian flow
field, F F = 3. Because F F is sensitive to large turbulent excursions from the mean, its
value is dominated by the so-called active or energetic phases of the flow variable and hence
is often used to characterize their intermittency (Batchelor and Townsend 1949; Sandborn
1959). Figure 11 demonstrates that F F > 3 at the upstream corner for both solid and porous
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configurations. For the downstream end of the cavity, F F again increases beyond 3 when the
flow encounters the corner of the porous boundary though not as much increases in F F are
evident for the solid configuration. This enhanced F F zone over the porous configuration
roughly coincides with the zone of intense turbulence already highlighted in Fig. 1. F F is
also enhanced near the top of the boundary layer given the intermittent nature of the turbu-
lence near the free water surface. Across the entire flow domain, F F for the vertical velocity
generally exceeded those of the longitudinal velocity, but the range in F F was between
2.5 and 4.5. Such a range in F F is not too far from Gaussian behaviour, again suggesting
that a third-order CEM may suffice to describe the tails of Puw and thus the ejection-sweep
properties.

4 Summary and Conclusions

How the porosity of the boundary controls the flow within and above a regular gap was
explored using DLV and LDA experiments. The DLV experiments showed that for a ratio
of gap-length to gap-depth values of around 3, the free-shear layer interface spawned at
the upstream gap corner intersects the downstream gap face just prior to the formation of a
re-attachment point. Because the dynamics of this particular configuration are not dominated
by complex re-attachment and re-equilibration zones, it was selected for exploring the mean
and turbulent flow for a porous and a solid boundary surrounding a gap. The LDA measure-
ments were used to evaluate the effects of the porous versus solid boundary on, (i) bulk flow
properties including the mean vorticity within and adjacent to the gaps, (ii) second-order sta-
tistics such as the standard deviations and turbulent stresses, (iii) the relative importance of
advective to turbulent stress terms across various regions within and above the gaps, and (iv)
the local imbalance between ejections and sweeps and momentum transport efficiencies of
updrafts and downdrafts. The LDA data were normalized with the boundary-layer height, the
gap height and the friction velocity at an upstream distance not significantly disturbed by the
gap. For the solid configuration, the U component above the gap appears to be insensitive to
the presence of the gap. In contrast, for the porous configuration, the U magnitude increases
in the upper layers situated above the gap. Moreover, for both boundary configurations, the
measurements inside the gap show a rapid decrease in U . Commencing at the upstream cor-
ner of the gap, U , normalized with the undisturbed friction velocity, is about 3, resembling a
free-shear mixing layer. This upstream corner is also shown to be responsible for spawning a
large mean vorticity, which is more intense for the solid boundary. The LDA measurements
demonstrated that the horizontal advective terms are most significant above the gap for both
boundary configurations. Turbulent transport terms are important only inside the gap, where
the vertical advective term for the longitudinal momentum balance dominates over its lon-
gitudinal counterpart. Another important conclusion here is the possibility of describing the
relative importance of ejections and sweeps to momentum transfer by using only one of the
two flux transport terms. Moreover, it is demonstrated that the transport efficiency can be
described entirely by a joint Gaussian distribution. These last two conclusions are surprising
given the large inhomogeneity and the non-Gaussianity in the flow statistics detected by the
flatness factor—but they are suggestive that few cumulants connected to the flux transport
terms can describe Puw for the purposes of modeling the ejection-sweep statistical properties.
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Appendix: Post Processing of the Velocity Data

Because the LDA velocity measurements are used to evaluate the mean vorticity and the
advective terms in the mean longitudinal and vertical momentum balances, the estimation
of the spatial gradients must be discussed given the unavoidable measurement errors. While
various approaches are available to interpolate and compute spatial gradients for noisy data,
the approach followed here is intended to correct the time-averaged U and W to ensure that
the mean continuity equation, given as

∂U

∂x
= −∂W

∂z
(11)

is closely satisfied and any departure from it is minimized. In this approach, a Lagrange
multiplier method that minimizes the velocity corrections (U −U 0)

2 and (W − W 0)
2 is used

and is given as

∫ ∫

Ω

α2
1(U − U 0)

2 + α2
2(W − W 0)

2dxdz =
∫ ∫

Ω

λ

(
∂U

∂x
+ ∂W

∂z

)
dxdz. (12)

Here, the U 0, W 0 are the acquired mean velocity components that need not satisfy the mean
continuity equation. The mean velocities U and W are the error-free velocities that satisfy the
mean continuity equation. The difference (U − U 0) and (W − W 0) are the corrections to be
minimized so as to find U and W as close as possible to the acquired data. The scheme here
is aimed at applying as small as possible a correction to the LDA measured velocity so that
they optimally satisfy the mean continuity equation. The terms α2

1 , α2
2 are Gaussian precision

moduli that consider particular flow conditions in which a component is more important than
the other one. The parameter α governs the adjustment between the two velocity components.
In these experiments, as is the case for neutral atmospheric conditions studied elsewhere, it is
possible to assume both coefficients are equal to unity. In stable atmospheric flow conditions,
it is common to assume that α2

2 exceeds α2
1 and vice versa for unstable condition. Minimizing

Eq. 12 is equivalent to minimizing the correction needed to be added to each velocity com-
ponent to ensure the mean continuity equation is satisfied. The solution of this minimization
problem is equivalent to solving the Euler-Lagrange set of equations comprised of the elliptic
system, given by

∂2λ

∂x2 +
(

α1

α2

)2
∂2λ

∂z2 = −2α2
1

(
∂U 0

∂x
+ ∂W 0

∂z

)
(13)

where the corrections derived from the solution to Eq. 13 are given as

U = U 0 + 1

2α2
1

∂λ

∂x
; W = W 0 + 1

2α2
2

∂λ

∂z
. (14)

These corrections, as represented in Eq. 14, are applied to the mean velocity components
prior to computing spatial gradients. In Fig. 12, the corrected velocity gradients show that
the mean continuity equation is reasonably well satisfied for all points in the flow domain.
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Fig. 12 The mean continuity equation terms ∂U/∂x against ∂W/∂z after the proposed post-processing and
corrections
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