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Abstract There are many geometrical factors than can influence the aerodynamic param-
eters of urban surfaces and hence the vertical wind profiles found above. The knowledge
of these parameters has applications in numerous fields, such as dispersion modelling, wind
loading calculations, and estimating the wind energy resource at urban locations. Using quasi-
empirical modelling, we estimate the dependence of the aerodynamic roughness length and
zero-plane displacement for idealized urban surfaces, on the two most significant geomet-
rical characteristics; surface area density and building height variability. A validation of the
spatially-averaged, logarithmic wind profiles predicted by the model is carried out, via com-
parisons with available wind-tunnel and numerical data for arrays of square based blocks
of uniform and heterogeneous heights. The model predicts two important properties of the
aerodynamic parameters of surfaces of heterogeneous heights that have been suggested by
experiments. Firstly, the zero-plane displacement of a heterogeneous array can exceed the
surface mean building height significantly. Secondly, the characteristic peak in roughness
length with respect to surface area density becomes much softer for heterogeneous arrays
compared to uniform arrays, since a variation in building height can prevent a skimming
flow regime from occurring. Overall the simple model performs well against available exper-
imental data and may offer more accurate estimates of surface aerodynamic parameters for
complex urban surfaces compared to models that do not include height variability.

Keywords Aerodynamic roughness length · Displacement height · Heterogeneous array ·
Surface roughness · Urban surfaces · Vertical wind profiles · Zero-plane displacement

1 Introduction

An understanding of the airflow in the urban boundary layer (UBL) has applications in
numerous fields, such as dispersion modelling, wind loading calculations, and estimating the
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444 J. T. Millward-Hopkins et al.

wind energy resource at urban locations. Normally, of most interest to these applications is
the surface layer of the UBL that extends from the ground up to a height of about 100–200 m
(Britter and Hanna 2003). This can be split further into the inertial sublayer (ISL) and the
roughness sublayer (RSL; Raupach et al. 1991). The ISL is the upper of these two layers,
and it is characterized by a constant magnitude of shear stress and horizontally homogeneous
flow (Grimmond and Oke 1999). Consequently, in neutral stability, the vertical variation of
the horizontal mean wind speed (U ) in the ISL follows the usual logarithmic law,

U (z) = u∗
κ

ln

[
z − d

z0

]
(1)

where κ ≈ 0.41 is the von Karman constant (Davidson 2004), u∗ is the friction velocity, z
is the height above the ground, and the aerodynamic parameters z0 and d are the aerody-
namic roughness length and zero-plane displacement (sometimes referred to as displacement
height), respectively. Below the ISL lies the RSL, where the highly heterogeneous flow is
predominantly controlled by the local surface geometry (Britter and Hanna 2003). This layer
normally extends up to a height of about 2–5hm (Raupach et al. 1991), where hm is the
mean building height. Studies of airflow in the RSL above rough, vegetated surfaces have
shown that the wind profile in this layer differs significantly from the logarithmic profile of
the ISL (Garratt 1980; Raupach et al. 1980). Above these types of surfaces, the RSL profile
can be modelled by extrapolating the ISL profile downwards with the addition of a particu-
lar correction factor (Harman and Finnigan 2007). However, for urban-like surfaces, it has
been suggested that U throughout both the RSL and the ISL can be estimated using a single
logarithmic profile (down to a height hm), provided the profile in the RSL has been spatially
averaged (Cheng and Castro 2002). Other investigators have also suggested that, in order to
describe the spatial average of U (i.e. Û ), the logarithmic law can be extended some way
into the urban RSL (Rooney 2001; Britter and Hanna 2003). However, care must be taken
when choosing the parameters so that they are suitable for describing both the RSL and ISL
profiles, and not just the ISL profile alone (Millward-Hopkins et al. 2011).

A number of models (e.g. Raupach 1992, 1994, 1995; MacDonald et al. 1998; Jia et al.
1998; Kastner-Klein and Rotach 2004; Shao and Yang 2005) have been developed that attempt
to relate z0/hm and d/hm to the simplified geometrical parameters of the underlying surface;
the plan and frontal area densities (λp and λf , respectively). Specifically, λp is defined to be
the ratio of building plan area to ground surface area, or λp = Ap/AT, and λf is defined
to be the ratio of building frontal area to ground surface area, or λf = Af/AT (see Fig. 1).
Few models use more detailed surface geometry descriptors than these as an input, one

Fig. 1 Illustration of the basic geometric measures: Ap, Af and AT
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example being that of Bottema (1996, 1997) that uses more complex building layout param-
eters. However, an issue with using the parameters predicted by the simpler kinds of models
in real urban environments is that they are derived for idealized uniform arrays, with blocks
equally spaced, aligned normally with the flow, and of uniform height. Another important
issue, with respect to model validation, is the difficulty of accurately estimating z0 and d from
measurements, and the inconsistencies between experiments in the methodologies used to
estimate these parameters. Consequently, there is large scatter in reported values of z0 and d ,
even from wind-tunnel experiments over identical uniform arrays (Grimmond and Oke 1999).
As a consequence, a comprehensive review of many of these models (Grimmond and Oke
1999) concluded that, in real urban areas, estimates of both z0 and d can be highly uncertain.

Examples of geometrical factors that can significantly affect wind profiles above urban
surfaces include oblique approaching winds (Hagishima et al. 2009), the addition of pitched
roofs to buildings (Rafailidas 1997), and variations in building height (Cheng and Castro
2002; Kanda 2006; Xie et al. 2008; Jiang et al. 2008; Hagishima et al. 2009), all of which
have been observed to significantly alter the roughness of a surface. Of all of these geometri-
cal complications, it appears that height variability may be one of the most significant factors
influencing surface parameters. However, this factor is not commonly included in models
that aim to predict z0 and d .

As an alternative to using Eq. 1 to estimate Û profiles in urban areas with height variabil-
ity, Di Sabatino et al. (2008) developed a model based upon a horizontally-averaged balance
equation between the building drag force and the local shear stress. This balance is evaluated
from the ground up to a reference height in the ISL and the output is an estimate of the
Û profile throughout the height range. This is potentially more accurate than assuming that
the logarithmic profile of the ISL can be extrapolated downwards to estimate the RSL wind
profile. However, the model does not explicitly calculate surface aerodynamic parameters.
In fact, the input parameters include d and dÛ/dz, the latter of which can be estimated with
a knowledge of z0. Therefore, to implement this model it is useful to first estimate z0 and d
by another method that is dependent upon λp or λf (such as those described above).

The aim of our study is to use a simplified modelling approach to explore the simultaneous
effects of two highly important geometrical parameters upon z0 and d , namely building height
variability and surface density. The values of z0 and d output by the model can be used for
estimating above-roof Û profiles. Furthermore, the model can also be used to estimate z0

and d as an input into more complex models, such as that of Di Sabatino et al. (2008). The
structure of the paper is as follows: in Sect. 2, the dependence of aerodynamic parameters
upon surface obstacle density and the in-street flow regime is described, followed by a brief
description of the modelling approach. In Sect. 3.1, a model for uniform building arrays is
derived and validated that is strongly influenced by those of MacDonald et al. (1998), Bottema
(1996, 1997) and Raupach (1992, 1994, 1995) (now referred to in short as, Mac98, Bott9697
and R92-95, respectively). In Sect. 3.2, this model is extended to arrays of heterogeneous
heights and is validated against available wind-tunnel and numerical data. Finally, in Sect. 4,
the main conclusions are summarized.

2 Theory and Modelling Approach

2.1 Flow Regimes and Surface Parameters

It is possible to gain insight into the relationship between surface aerodynamic parameters and
the density of buildings covering the surface by considering the three flow regimes described

123



446 J. T. Millward-Hopkins et al.

Fig. 2 Curves illustrating, qualitatively, the dependence of the aerodynamic parameters of a surface (z0 and
d) upon λp and the three flow regimes described by Oke (1988)

by Oke (1988) after the work of Hussain and Lee (1980). For arrays of uniform height, these
relationships are estimated by the curves sketched in Fig. 2. Detailed heuristic arguments for
the curves are made by Grimmond and Oke (1999) and therefore only a brief discussion of
how these curves relate to the three distinct flow regimes is made.

The first of these regimes, ‘isolated roughness flow’, occurs at low area densities where
the wakes of the individual buildings have negligible interference with the buildings down-
stream. Associated with this regime are low magnitudes of z0 and d , which increase with
increasing density. Eventually, when the surface becomes sufficiently dense, the building
wakes begin to interfere with the downstream buildings, and the flow regime is now referred
to as ‘wake interference flow’. In this regime there is also an increase in z0 and d as the
density of the surface increases, until at a certain density, z0 reaches a characteristic peak.
As the surface density increases further the flow undergoes transition to the ‘skimming flow’
regime, in which the main flow effectively skims over the top of the surface elements. The
mutual sheltering of the obstacles that occurs under skimming flow increases with the surface
density, leading to a reduction in the drag and a decrease in z0. In this regime, d continues to
increase with density, but the rate of increase gradually slows. Eventually, at λp = 1, a new
surface is formed of height hm, hence it follows that d is now equal to hm.

In real urban arrays, where building height heterogeneity is almost guaranteed, two impor-
tant characteristics of these curves are no longer valid. Firstly, a variation of building heights
may prevent skimming flow from occurring (Di Sabatino et al. 2008). Hence, the characteris-
tic z0 peak found at the transition from wake interference flow to skimming flow may become
softer, and shifted towards higher densities (Hagishima et al. 2009). Secondly, the upper limit
for uniform arrays of d/hm = 1 is no longer valid, and for heterogeneous arrays d/hm has
often been found to exceed unity (Cheng and Castro 2002; Jiang et al. 2008; Hagishima et al.
2009). In Sect. 3.2 it will be shown that the model developed in this work is able to capture
these characteristics.
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2.2 Modelling Approach

Estimates of aerodynamic parameters, z0 and d , are achieved in this study via a quasi-empir-
ical modelling approach. A model is developed that is centred upon simplified drag balances
on the surfaces and physical flow properties that have previously been observed in experi-
ments. Specifically, by considering the balance between the drag force of a surface (FD) and
the shear stress in the ISL (τ = ρu2∗; where ρ is the air density), the dependence of roughness
length upon area density is estimated. Subsequently, to complete the model, the zero-plane
displacement is estimated by considering the vertical profile of the surface drag force. This is
first done for uniform arrays, and then similar ideas are extended to arrays of heterogeneous
building heights.

3 Results and Discussion

3.1 Modelling Arrays of Uniform Height

3.1.1 The Drag Balance

By considering idealized, uniform arrays of square based blocks (now referred to simply
as ‘uniform arrays’), it is possible to capture the effects illustrated in Fig. 2. The symmetry
of these types of arrays dictates that only one building need be considered, hence FD is
considered to be the drag on a single building. The balance (illustrated in Fig. 3a), simply
reads:

ρu2∗ = FD/AT. (2)

Bott9697 and Mac98 make two assumptions, firstly that the drag is dominated by the pressure
drag of the buildings, and secondly that the logarithmic profile of the ISL can be extended
down to the mean building height (hm). Therefore, any corrections to the RSL profile are
assumed to be small enough to neglect. The former assumption was shown by Raupach
(1992) to be true for surfaces denser than about λp = 0.05–0.1. Under these assumptions FD

can be written as follows:

FD = 0.5 ρÛ 2
hm CD A∗

f (3)

where Ûhm is obtained from Eq. 1 evaluated at hm, CD is the depth integrated drag coefficient,
and A∗

f is the unsheltered frontal area of the building that is illustrated on Fig. 3a–c. The
significance of A∗

f is that it is the area assumed to exert pressure drag on the flow. Clearly A∗
f

decreases as the surface density increases. Therefore, this parameter is a useful, simplistic
way in which to account for the mutual sheltering that occurs with increasing density that
avoids having to consider the complex flow patterns that occur within the obstacle arrays.
This area is calculated in Sect. 3.1.2.

Substituting Eqs. 1 and 3 into Eq. 2 and rearranging Eq. 2 we obtain:

z0

hm
=

(
1 − d

hm

)
exp

[
−

(
0.5CDκ−2 A∗

f

AT

)−0.5
]

, (4)

and to estimate z0 for a particular surface, and hence the curve of Fig. 2, we must first estimate
CD, d and A∗

f /AT.
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Fig. 3 Illustration of the drag balance calculation for uniform arrays, and the mutual sheltering from the
surrounding buildings. Blue areas indicate, approximately, the total sheltered region due to the combined
sheltering of all the buildings, and red areas indicate the unsheltered frontal area of a single building in the
array, A∗

f . a Side view; b top down view; c a single building from the array

Mac98 estimates CD from the values given by ESDU (1980) for different building shapes
and the same approach is followed here. Strictly, these drag coefficients are defined by the
height-averaged mean square velocity. However, Mac98 discusses in his work the reasons
for using these coefficients as nominal values with a reference velocity at roof level for
this type of modelling application. He also makes the assumption that CD is independent of
the surface density (i.e. the shape of A∗

f .) Under these assumptions he obtains satisfactory
results, and hence we use these same assumptions here. For cubes a value for CD of 1.2 is
used. To estimate A∗

f /AT, Mac98 assumes that the drag below a height d is negligible, hence
A∗

f /AT = λf (1 − d/hm). However, Bott9697 considers the mutual sheltering due to all the
buildings in an array, and this is the approach we take. The method used for estimating d is
described in Sect. 3.1.3.

3.1.2 Idealized Descriptions of Individual Building Wakes

In this section a method of approximating the ‘effective sheltered volume’ of an isolated sur-
face element is described. This volume is intended to enclose the separated regions of flow
behind, and on the sides of the building. In reality flow patterns around isolated buildings are
highly complex, and become even more so when a building is placed within an array. The
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Fig. 4 The shapes and dimensions of the idealized ‘effective sheltered volumes’ around isolated roughness
elements that are used in our study, sketched from a the side and b above

volume we use here attempts to greatly simplify these effects. Once the shape and size of
this volume has been estimated, it is assumed that a large number of surface elements and
their effective sheltered volumes are distributed over a surface, as in the work of Bott9697
and R92-95. For uniform arrays it is then simple to estimate the sheltering of a single surface
element in the array, and hence obtain an estimate of A∗

f (see Fig. 3).
The surface elements considered are square-based, sharp edged blocks, lying normal to

the flow, which are generally used in wind-tunnel simulations of idealized urban areas. Many
authors have described in detail the flow pattern that occurs around such an object (Castro
and Robins 1977; Hunt et al. 1978; Peterka et al. 1985). In Fig. 4 the idealized sheltered
volume used here to describe the sheltering due to this flow pattern is sketched. It can be
seen that two parameters govern its shape, namely the rear reattachment length (LR) and the
spanwise extent of sheltering (LW). Clearly, the most important of these parameters is LR

and, fortunately, established relations exist to describe this length in terms of the building
height, width, and depth (h, b and l, respectively). Fackrell (1984) proposed the following
empirical expression for LR, after measuring the parameter for a large variety of different
building shapes with b/h ranging from 0.5 to 5 and l/h ranging from 0.3 to 3:

LR

h
= 1.8 (b/h)

(l/h)0.3 (1 + 0.24 (b/h))
(5)

where l = b for the square-based blocks considered here. This curve is plotted in Fig. 5a.
Although increasing turbulence and shear in the incoming flow are known to decrease the
magnitude of LR (Castro and Robins 1977; Fackrell 1984; Zhang et al. 1993), Eq. 5 was
found by Fackrell (1984) to be accurate to within less than ±10% in simulated rural to urban-
like boundary layers. Therefore, here it is assumed that LR/h is dependent only upon the
building dimensions.

The assumption of square-based blocks has been made here since available data for arrays
of variable height was for this type of geometry. This assumption would not hold if the model
was applied to real urban areas, as typically these may have rows of elongated buildings
forming street canyons. Eq. 5 could be used to incorporate more complex building shapes
since it was found to be valid for a wide variety of building dimensions (Fackrell 1984).
However, the complex flow patterns found within urban street canyons such as helical flows
(Dobre et al. 2005) cannot be explicitly captured with a simple modelling approach such as
that used here. It may be interesting to assess the impact of street canyon type flows in future
work, and as new datasets become available. However, our main focus here is to quantify the
influence of height heterogeneity on aerodynamic parameters.

The second parameter governing the shape of the idealized shelter volume is LW, which
describes the lateral extent of the sheltering. As with LR, this parameter can be related to
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Fig. 5 a The relationship between LR/h and b/h for square-based buildings given by Eq. 5. b The relation-
ship between LW/b and h/b given by Eq. 6. Gn, Gm, and Gw refer to the narrow, medium, and wide curves,
respectively, that are used in the model of the current work (each given by Eq. 6, with differing constants).
The red bars are values estimated from experimental data. c Sketch of the sheltered volumes (in blue) behind
buildings of three different shapes

the building dimensions, however it does not have as clear a criterion as that of LR, and no
standard relation exists to calculate it. Therefore, published data are now used to produce an
empirical expression to estimate the dependence of LW upon the building dimensions.

Intuitively, we would expect LW to behave as sketched in Fig. 5c. For a very low, wide
building, most of the flow that impinges upon the upwind face will be forced over the roof
rather than around the sides of the building. Consequently, there will be little lateral displace-
ment of flow relative to the building width, and LW/b ≈ 0. As the building becomes taller
and narrower, more of the flow becomes displaced around the sides, increasing the magnitude
of LW/b, until it asymptotes to a maximum value and increases no further with increasing
building height. Therefore, the relationship between LW/b and h/b is qualitatively the same
as that between LR/h and b/h, hence a simple empirical relation similar to Eq. 5 is used to
describe the dependence of LW/b upon h/b:

LW

b
= G1 (h/b)

1 + G2 (h/b)
(6)
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where the constants, G1 and G2, are chosen to fit published experimental data, which are
now described.

Visualization of the flow pattern around a cube in experiments such as that of Rodi (1997)
show significant velocity deficits laterally either side of the object to about 15–30% of its
width. This suggests that values of LW/b ≈0.15–0.3 are appropriate for cubes. Similar esti-
mates can be made for taller buildings from other results. These suggest that for buildings
with h/b of 2 (Tominag et al. 2008) and 5 (Song and He 1993; Huang et al. 2007), reasonable
values for LW/b are about 0.25–0.4 and 0.4–0.5, respectively. These estimates are shown in
Fig. 5b, along with curves fitted centrally, and through the upper and lower limits of these
estimates. All three curves use Eq. 6 with differing constants. They are referred to as Gn, Gm,
and Gw, which describe narrow, medium, and wide sheltered volumes, respectively. In our
study the central curve of Gm is used, where G1 = 0.36 and G2 = 0.6, and the crude choice
and construction of this curve is justified by the fact that the model has little sensitivity to the
magnitude of LW/b, provided it is a reasonable value. This is demonstrated in Sect. 3.1.4
using the alternative curves, Gn and Gw.

Using this method of describing the effective shelter volume behind a surface element,
an estimate of A∗

f for use in Eq. 4 can be made. Specifically, this estimate is made by first
assuming that a particular density of surface elements and their effective sheltered volumes
are distributed over a surface as in Fig. 3a and b, then calculating the sheltering of a single
surface element in the array to obtain an estimate of A∗

f .

3.1.3 Estimating the Zero-plane Displacement

3.1.3.1 Existing Methods The zero-plane displacement is the final parameter required to
estimate z0 from Eq. 4. To estimate this parameter, each of the models developed by Mac98,
Bott9697 and R92-95, use different methods:

(i) Bott9697 estimates d from the ratio V/S, where V is the total volume of buildings and
their front and rear recirculation zones, and S is the ground area associated with the
buildings. We attempted this method using the current parametrization of sheltered vol-
umes shown in Fig. 4 and the inclusion of front recirculation zones following the method
of Bottema. For densities below around λp ≈ 0.25 the resulting values of d were found
to be significantly lower than those reported from a number of relatively recent wind-
tunnel experiments and numerical studies (which are discussed below in due course),
and consequently predicted values for z0 were significantly higher. Increasing the size
of the buildings sheltered volumes to the upper limit of what could be considered rea-
sonable did not change the agreement between predicted and experimental vales of z0

and d significantly.
(ii) Mac98 used an empirical expression for d that was fitted to the experimental data of

Hall et al. (1996):

d

hm
= 1 + A−λp

(
λp − 1

)
. (7)

For staggered and square arrays, values for the empirical constant, A, of 3.59 and 4.43,
respectively, were suggested. However, concerns have been raised regarding the accu-
racy of the experimental data, primarily due to the relatively short fetch that was used
in the wind tunnel and the lack of accurate shear stress measurements (Cheng et al.
2007). Consequently, when compared to more recent experimental data, obtained in
fully developed boundary layers using direct shear stress measurements, the equation
performs less well.
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(iii) Raupach (1992, 1994, 1995) estimates d as the mean height at which the total surface
drag force acts, or the drag profile centroid (dC), motivated by the theoretical arguments
of Jackson (1981). The values obtained by Raupach from this method were suggested by
Grimmond and Oke (1999) to be reasonable, although relatively low at higher surface
densities.

Overall, these different approaches highlight the uncertainty surrounding the physical mean-
ing and calculation of d . However, the theoretical arguments of Jackson (1981) offer an
intuitive explanation for d , giving a physical basis to the parameter. Although his theory has
not yet been tested over a wide variety of urban-like arrays, we continue under the assumption
that the theory is valid. Therefore, we now attempt to determine d by estimating the height
of the drag profile centroid.

3.1.3.2 Current Method For uniform surfaces, dC can be estimated from the following
equation:

VDchm +
hm∫
0

zdFD = dC

⎡
⎣VDc + VDg +

hm∫
0

dFD

⎤
⎦ (8)

where dFD is the differential pressure drag force on a surface element at height z, and VDc

and VDg are viscous drag terms due to the rooftop (i.e. crest) and ground friction, respec-
tively. Physically, the terms on the left-hand side of Eq. 8 represent the total moment of the
forces on the surface, and those on the right-hand side represent the total magnitude of forces
on the surface multiplied by dC. A very similar equation is given in Leonardi and Castro
(2010), the only difference being that, here, the friction on the building sides is not included.
This is because the experiments of Leonardi and Castro (2010) showed its contribution to be
relatively insignificant.

The calculation of dFD is similar to that of FD, hence Eq. 3 can be re-written in terms of
the ‘sectional drag coefficient’ (C ′

D), which is typically assumed constant with height in flow
models (MacDonald 2000; Coceal and Belcher 2004):

dFD = 0.5ρ Û (z)2 C ′
D (Af/hm) dz. (9)

To calculate dFD an estimate of the Û profile below the height of the surface elements must
be made. This layer is normally referred to as the canopy layer (CL). Here the profile can be
well approximated as exponential, although this may break down for surfaces above λp ≈ 0.3
(MacDonald 2000):

Û (z) = Ûhm exp [a (z/hm − 1)] (10)

where a is the attenuation coefficient, which MacDonald (2000) found empirically to be
≈9.6λp or 9.6λf .

For surfaces denser than λp = 0.1, surface drag is dominated by the pressure drag of the
buildings, and the viscous terms, VDc and VDg, can be ignored. Therefore, on substituting
Eqs. 9 and 10 into Eq. 8 and solving, we obtain:

dC

hm
= 19.2λp − 1 + exp

(−19.2λp
)

19.2λp
[
1 − exp

(−19.2λp
)] . (11)

For λp ≥ 0.1, this equation offers an approximation for d that compares well with various
recent experimental datasets. This is demonstrated in Fig. 6a where predictions using Eq. 11
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are plotted in red alongside wind-tunnel (Cheng et al. 2007; Hagishima et al. 2009) and
numerical data (Jiang et al. 2008; Leonardi and Castro 2010) for uniform arrays. The exper-
imental data are for staggered, square and aligned arrays (st, sq and al, respectively), each of
which is illustrated in Fig. 6e. Also the curves from the model of MacDonald et al. (1998)
and the more recent model of Kastner-Klein and Rotach (2004) are shown in blue. It can be
seen that these model estimates of d are generally much lower than recent experimental data
suggests, although the predictions of Kastner-Klein and Rotach (2004) become increasingly
more consistent with these experimental data as the area density increases. It is also important
to comment on the large scatter that is present in these datasets, particularly at low densities.
This highlights the uncertainties in experimentally measured aerodynamic parameters even
over relatively simple arrays. In particular, for the experimental data included here, the major-
ity of the scatter appears to derive from the differing height intervals in which aerodynamic
parameters were obtained by Hagishima et al. (2009), i.e. they were not always obtained
from the ISL where they are theoretically valid. It is also clear from Fig. 6a that an issue with
Eq. 11 is that for λp < 0.1 this equation overestimates d and does not tend to the correct
limit of d = 0 at λp = 0. This is now corrected by estimating the viscous terms in Eq. 8, VDc

and VDg, for uniform cube arrays.
At low densities, within an isolated roughness flow regime, the drag force on each build-

ing is likely to remain approximately constant and VDg is expected to be proportional to the
unsheltered ground area. From Eqs. 5 and 6, the dimensionless, sheltered ground area, due to
both the sheltered volume and footprint of a single cube, is 3h2/AT or 3λp. Hence, if VDg is
proportional to the unsheltered ground area it follows that VDg/FD ∝ (1−3λp)/λp. Leonardi
and Castro (2010) found in their numerical experiments that at λp = 0.1, VDg ≈ 0.06FD,
and here this observation is used to calculate the constant of proportionality. Therefore, with
FD given by the integral of dFD over the height interval 0 < z < hm, we obtain:

VDg = ρC ′
D AfÛ 2

hm

[
1 − exp

(−19.2λp
)]

4480λp

(
1 − 3λp

λp

)
. (12)

Estimating VDc is less intuitive since it is strongly dependent upon the rooftop flow pattern
as well as the roof shape. However, the results of Leonardi and Castro (2010) show that
VDc/FD ∝ λ2

p is a good approximation for λp < 0.2. When fitting this relationship to their
dataset, a constant of proportionality of approximately 1.6 is obtained using the method of
least squares. Therefore, with FD again given by the integral of dFD over the building height,
we obtain:

VDc = ρC ′
D AfÛ 2

hm

[
1 − exp

(−19.2λp
)]

24
λp. (13)

On substituting Eqs. 9 and 10 along with the viscous drag terms of Eqs. 12 and 13 into Eq. 8
and solving we obtain:

dC

hm
=

117λp +
(

187.2λ3
p − 6.1

) [
1 − exp

(−19.2λp
)]

(
1 + 114λp + 187λ3

p

) [
1 − exp

(−19.2λp
)] . (14)

In Fig. 6a it can be seen that at low densities this equation predicts the expected behaviour
of d , and predictions also compare well with recent experimental data. At λp = 0.1, both
Eqs. 11 and 14 predict very similar zero-plane displacements, but the curves only intercept
at λp ≈ 0.19.
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Fig. 6 Estimates of a d given by Eqs. 11 and 14, and b z0 given by Eq. 4. The sensitivity of the z0 predictions
of Eq. 4 to c the width of the sheltered volume, and d the length of the sheltered volume. On a–d the models of
MacDonald et al. (1998) and Kastner-Klein and Rotach (2004) are also shown. e Sketches of square, staggered,
and inline arrays of cubes. Experimental data from Cheng et al. (2007), Jiang et al. (2008); Hagishima et al.
(2009) and Leonardi and Castro (2010), are referred to as CC, Jia, Hag and LC, respectively

Therefore, in the current work, d for uniform arrays is estimated as follows:

d

hm
= fd(λpi ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

19.2λp − 1 + exp
(−19.2λp

)
19.2λp

[
1 − exp

(−19.2λp
)] (

for λp ≥ 0.19
)

117λp +
(

187.2λ3
p − 6.1

) [
1 − exp

(−19.2λp
)]

(
1 + 114λp + 187λ3

p

) [
1 − exp

(−19.2λp
)] (

for λp < 0.19
) .

(15)

This equation is assumed to be independent of the different layouts of surface elements
sketched in Fig. 6d, as Cheng et al. (2007) found the centroid of the drag profile to be
independent of the building layout.
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It is important to comment on any limitations arising from the derivation of Eq. 15. Firstly,
it should be highlighted that in Fig. 6a the only experimental data for d derived specifically
from the drag centroid are those of Leonardi and Castro (2010). The rest were obtained by
traditional best fitting methods. For low densities the agreement between their experimental
data and the model predictions is good, but for medium densities their experimental data
lie around 20% below the current model predictions. The most likely reason for this is the
current model’s assumption that C ′

D is constant with height. It can be seen in the results of
Leonardi and Castro (2010) that this assumption becomes less accurate with increasing area
density. However, as yet there are no established methods of estimating the profile of C ′

D and
its dependence upon surface geometry. Furthermore, as mentioned previously, the current
model predictions of d agree well with the other sources of experimental data.

A second important discussion regarding the model’s derivation is the parametrization of
the attenuation coefficient. The value of a ≈ 9.6λp suggested by MacDonald (2000) was
based upon experiments over square and staggered cube arrays of various densities. However
it is possible that a is also influenced by building shape, and hence for arrays of non-cubical
buildings that are short and squat, or elongated, more complex parametrisations of a may
be required to model d more accurately. Currently however there are few data available
regarding the dependence of a upon surface geometry, although if these data were to become
available it could be incorporated into the current model with relative ease.

Finally, the method by which viscous forces are incorporated into the model deserves fur-
ther discussion. Clearly the modelling of these effects is relatively simple, and the empirical
observations are from a single experiment. However, overall the surface parameters predicted
by the model are only influenced by these simplifications for low densities. Furthermore, for
low densities of practical use (about 0.03 < λp < 0.1), the predictions are relatively insensi-
tive to the treatment of viscous drag. Taking all of these issues into account we proceed with
using Eq. 15 to estimate d , but the limitations and potential improvements to this method
should be kept in mind.

3.1.4 Validating the Roughness length Predictions of Uniform Arrays

In Fig. 6b model predictions for z0 from Eq. 4 are shown, where d has been estimated from
Eq. 15. Predictions for staggered, square and aligned arrays are shown, alongside wind-tunnel
(Hagishima et al. 2009; Cheng et al. 2007) and numerical data (Jiang et al. 2008). (Note: for
square and aligned arrays the predictions are identical). Predictions of z0 are slightly towards
the higher end of the experimental data, however considering the scatter it can be concluded
that the model performs well, and the peak roughness occurs at the density suggested by the
experiments. Compared to the model of MacDonald et al. (1998), present model predictions
for d and z0 are far more consistent with recent experimental data, most likely due to issues
with model calibration as mentioned in the previous section. Agreement between the model
of Kastner-Klein and Rotach (2004) and these experimental data is quite poor. However,
Kastner-Klein and Rotach (2004) calibrated their model using experimental data obtained
from a wind-tunnel study of a scale model of a single European city centre. The height var-
iation that was present may explain the shifted peak in z0 with respect to the experimental
data shown here. Due to this calibration, they specifically warn against applying the model
to other urban sites without further considerations.

In Fig. 6c, the model’s sensitivity to the width of the sheltered volume is shown using
values for LW of 0.15b, 0.225b and 0.3b, which correspond to the curves Gn, Gm, and Gw

shown in Fig. 5b, respectively. It is clear that the model has little sensitivity to this length
scale for staggered arrays, and is completely unaffected for square/aligned arrays. Similarly,
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to assess the sensitivity of the model to changes in the description of the length of the shel-
tered volume, in Fig. 6d model predictions are shown with LR varied by ±20%. A variation
of 20% represents about twice the uncertainty found by Fackrell (1984) when using Eq. 5
to estimate LR and should therefore be a conservative estimate. Clearly the model is more
sensitive to LR than it is to LW. However, the change in the predictions is still relatively
small considering the scatter in the experimental data in Fig. 6b.

3.2 Modelling Arrays of Heterogeneous Height

3.2.1 Modifying the Drag Balance

As the model described in Sect. 3.1 was found to give good predictions of d and z0 for
uniform arrays, similar techniques are now used to adapt it to consider arrays of heteroge-
neous heights. Again, the model is centred upon the balance between the drag force on a
surface and the shear stress in the ISL, however there are two important differences. Firstly,
clearly every building in the array must be involved in the calculation. Secondly, it is no
longer reasonable to assume that the logarithmic profile of the ISL can be extended into the
RSL to estimate the profile of Û down to a height hm. Therefore, an ‘effective mean building
height’ (hm-eff), which is greater than hm, is chosen to be the lower limit of the logarithmic
profile extension.

The calculation of hm-eff is detailed in Sect. 3.2.3, but an important point to make is that
it is such that the taller buildings in a heterogeneous array extend above this height (as illus-
trated in Fig. 7). Consequently, the surface drag force is comprised of a contribution below
hm-eff, and a contribution above, referred to as FD1 and FD2, respectively. The balance from
Eq. 2 now reads:

ρu2∗ = FD/AT = (FD1 + FD2) /AT. (16)

Below hm-eff, the drag contribution is estimated by the same method as was used for
uniform arrays:

FD1 = 0.5ρÛ 2
hm-eff CD A∗

f (17)

for (h < hm-eff), where Ûhm-eff is the reference wind speed at hm-eff from Eq. 1, and A∗
f (h <

hm-eff) the unsheltered frontal area of the blocks below hm-eff. Strictly, as the buildings below
hm-eff are of different heights, different drag coefficients should be used for each of them.

Fig. 7 Sketch of the drag balance for heterogeneous arrays and the mutual sheltering of the buildings. Blue
areas indicate, approximately, the sheltered regions behind the buildings, and red areas indicate the unsheltered
frontal area of the buildings, which when summed give A∗

f

123



Estimating Aerodynamic Parameters of Urban-Like Surfaces 457

However, for simplicity, in Eq. 17 a single value of CD is chosen that is appropriate for the
average building shape. Therefore, for heterogeneous geometries, where the average building
shape is a cuboid (i.e. λp = λf ), CD is chosen to be the same as that used for uniform cube
arrays, i.e. CD = 1.2.

Above hm-eff, the drag force can be evaluated by integrating the differential drag force
between hm-eff and the maximum building height (hmax):

FD2 =
hmax∫

hm-eff

0.5ρC ′
DÛ (z)2 dA∗

f (18)

where Û (z) is now logarithmic and given by Eq. 1, and again C ′
D is the ‘sectional drag

coefficient’. In the current work, a value for C ′
D of 2 is chosen which, for simplicity, remains

constant with surface density, as used by Coceal and Belcher (2004). It is well known that
C ′

D is a difficult parameter to estimate, however the model is not too sensitive to its value.
For example, for the arrays referred to below, predicted z0 values are still in good agreement
with the experimental data even when C ′

D is increased to 3 (typically z0 only changes by
about 5%).

To obtain an equation that can be used to estimate the roughness length of a heterogeneous
array, Eqs. 1, 17 and 18, can be substituted into the drag balance of Eq. 16 and rearranged
as follows:

2ATκ2 = CD

[
ln

(
hm-eff − d

z0

)]2

A∗
f (h < hm-eff) +

hmax∫
hm-eff

C ′
D

[
ln

(
h − d

z0

)]2

dA∗
f . (19)

As with Eq. 4, Eq. 19 can be used to estimate the roughness length of a heterogeneous array,
provided the parameters A∗

f (h < hm-eff), hm-eff and d , are estimated (although the integral
requires that the equation is solved iteratively). The geometric parameter, A∗

f (h < hm-eff), is
estimated by considering the mutual sheltering of the individual buildings sheltered volumes
(as sketched in Fig. 7), in exactly the same way in which Af * was previously calculated for
uniform arrays. Methods for estimating d and hm-eff are now described in Sects. 3.2.2 and
3.2.3, respectively.

3.2.2 The Zero-Plane Displacement of Heterogeneous Arrays

An estimate of the zero-plane displacement of heterogeneous arrays cannot easily be made
by estimating the drag profile centroid as before. This is due to the fact that the Û profile
from the ground up to the maximum building height is difficult to estimate. Therefore, a
different approach is taken, which is now described by considering the simple heterogeneous
array sketched in Fig. 8a. Primarily, the zero-plane displacement of a surface is dictated
by the flow pattern that occurs within the canopy layer, as different flow patterns raise the
height at which the mean drag acts. For the simple heterogeneous array sketched in Fig. 8a,
it would be reasonable to suggest that there are effectively two different flow patterns occur-
ring simultaneously. Isolated vortices, characteristic of a SF regime, may be present within
the dense lower canopy, while the flow pattern around the sparser tops of the larger blocks
may be better described as being in the WIF regime. Accordingly, the canopy may be split
into two distinct, uniform horizontal layers (as illustrated). Based upon the density of these
layers, Eq. 15 may be used to calculate the zero-plane displacement of each layer, d1 and
d2, were they to be in isolation. This is done by calculating the height normalized zero-plane
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Fig. 8 Illustration of the current method of calculating d for heterogeneous arrays by dividing the canopy
into horizontal slices for a a simple, repeating heterogeneous array, and b any complex heterogeneous array

displacement for each layer and multiplying each value by the thickness of the layer, i.e.
d1 = h1fd(λp1) and d2 = h2fd(λp2). Furthermore, it may be assumed that when these layers
are stacked vertically to obtain the original array, the zero-plane displacement is simply the
sum of the values calculated for each layer; d = d1 + d2.

It is simple to extend this approach to any heterogeneous array by dividing the canopy
into sufficiently many distinct, horizontal layers, n, so that each layer is of uniform height,
as in Fig. 8b. As these layers have now become quite thin, it is unreasonable to suggest that a
different flow pattern occurs within each layer as in Fig. 8a. However, it still seems reasonable
to assume that when these layers are stacked vertically to obtain the original heterogeneous
array, d can be approximated by taking the height normalized zero-plane displacement of each
layer multiplied by the layers thickness; di = dhi fd(λpi ), and summing over all the layers:

d =
n∑

i=1

dhi fd(λpi ). (20)

Figure 9a and b shows the zero-plane displacements calculated by this method for four het-
erogeneous surfaces, which are each illustrated in Fig. 9c. ST1.5-st is the two-height surface
from the wind-tunnel studies of Hagishima et al. (2009), of area densities: 0.077, 0.174, 0.309
and 0.391; R1.5 is the complex urban-like surface from the wind-tunnel experiments of Zaki
et al. (2011), of area densities: 0.077, 0.174, 0.309, 0.391 and 0.481; RM10s is the random
height surface of λp = 0.25 from the wind-tunnel studies of Cheng and Castro (2002). R1,
from the numerical studies of Jiang et al. (2008), is a two-height surface of λp = 0.11, with
the normalized standard deviation of the building heights (σh/hm) set to the following values:
0.17, 0.33, 0.5, 0.67 and 0.83, by making the high and low blocks in Fig. 9c gradually higher
and lower, respectively. Average height-to-width ratios of the blocks in arrays ST1.5-st, R1.5,
RM10s and R1, are 1.5, 1.5, 1 and 1, respectively.
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Fig. 9 a, b Estimates of d given by Eq. 20 and the corresponding experimental results for the arrays illustrated
in (c). In a and b the dashed lines indicate hm-eff for each array using appropriate colour coding. Experimental
data from Cheng and Castro (2002), Jiang et al. (2008), Hagishima et al. (2009) and Zaki et al. (2011), are
referred to as CC, Jia, Hag and Zaki, respectively. The illustration in (c) for array R1.5 is from Zaki et al.
(2011)

It is clear from Fig. 9a and b that zero-plane displacements predicted by Eq. 20 are in
very good agreement with the experimental data over the heterogeneous arrays ST1.5-st,
RM10s and R1, but over array R1.5 there are significant differences. However, considering
the uncertainties that can occur when obtaining z0 and d from experimental data using sta-
tistical best fitting methods, the latter disagreement is not unexpected for such a complex
array. Importantly, for all the arrays, Eq. 20 predicts the characteristic that for heterogeneous
arrays the magnitude of d can significantly exceed hm.

3.2.3 The Effective Mean Building Height

Within a complex heterogeneous array, it is inaccurate to assume that the Û profile can be
estimated as logarithmic down to hm. Therefore, hm-eff is chosen to be the lower limit of the
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Fig. 10 Examples of individual plan area contributions (A pi ) of two sheltered blocks to the ‘effective plan
area density’ (λp-eff) of a heterogeneous array. Blue areas indicate the sheltering of the block windward faces
by upstream blocks, and red areas indicate the plan area not contributing to λp-eff

logarithmic profile. To estimate this height, the concept of ‘effective plan area density’ (λp-eff)
is introduced, which is simply the plan area density of a heterogeneous surface discounting
the sheltered blocks in the array.

The justification for this parameter is that, if a particular heterogeneous array contains low
buildings that lie sheltered by larger, upstream buildings, then these have a negligible effect
on the above roof flow. Therefore, it may be more appropriate when modelling the above
roof profile to ignore any sheltered blocks when calculating the plan area density. Hence
we assign the surface a λp-eff value. Specifically, any block that has its windward face fully
sheltered by upstream blocks, as in Fig. 10a, contributes no area to the calculation of λp-eff,
and Api would be zero in Fig. 1. Any block that has its leading edge sheltered, as in Fig. 10b,
has its plan area contribution reduced in proportion to this sheltering, since it is the top of
the building upwind face that exerts the most drag and influences the above-roof flow most
strongly.

To obtain hm-eff for a particular heterogeneous surface, d and λp-eff are calculated first
via Eq. 20 and the method described in the previous paragraph, respectively. Subsequently,
hm-eff is defined to be the mean building height of the uniform surface of plan area density
λp-eff that would have a zero-plane displacement equal to that of the heterogeneous surface.
Hence, since for uniform arrays the logarithmic profile is assumed to be valid down to the
mean building height, it is reasonable to consider hm-eff to be the lowest possible height that
a logarithmic profile could be extended down to in a heterogeneous array. To obtain hm-eff,
therefore, d and λp-eff are substituted into a rearranged version of Eq. 15:

hm-eff =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d
19.2λp-eff

[
1 − exp

(−19.2λp-eff
)]

19.2λp-eff − 1+ exp
(−19.2λp-eff

) (
for λp-eff ≥ 0.19

)

d

(
1+114λp-eff+187λ3

p-eff

) [
1 − exp

(−19.2λp-eff
)]

117λp-eff+
(

187.2λ3
p-eff − 6.1

) [
1 − exp

(−19.2λp-eff
)]

(
for λp-eff < 0.19

) .

(21)

3.2.4 Validation of the Model for Heterogeneous Arrays

Methods of estimating all of the parameters required to estimate z0 from Eq. 19 have now
been discussed. Hence it is possible to follow these steps and assess the ability of the model
to predict z0 for the arrays sketched in Fig. 9c. A comparison of the model predictions and
experimental data for z0 is shown in Fig. 11a and b. Model predictions of z0 for staggered
cube arrays are also shown (using Eq. 4) to highlight the significantly larger roughness of
arrays of random heights compared to arrays of uniform height.

It can be seen that, for arrays ST1.5-st and RM10s, the model predictions are in very good
agreement with the experimental data. Compared to uniform arrays, a softer peak in rough-
ness with respect to plan area density is predicted for these heterogeneous arrays. The dip in
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Fig. 11 Estimates of z0 from Eq. 19 for the arrays illustrated in Fig. 9c and the corresponding experimental
results. Experimental data from Cheng and Castro (2002), Jiang et al. (2008), Hagishima et al. (2009) and
Zaki et al. (2011), are referred to as CC, Jia, Hag and Zaki, respectively

the z0 curve for array RM10s at λp ≈ 0.4 is simply due to the method of defining hm-eff, as
there is a small, but rapid increase in hm-eff at this density (see Fig. 9a). For the array R1, the
experimental data are significantly lower than the model z0 predictions. However, the numer-
ical data of Jiang et al. (2008) for uniform, square arrays are also significantly lower than
the wind-tunnel experiments (see Fig. 6b). Furthermore, the linear rate of increase ofz0 with
increasing building height variation predicted by the model is in very good agreement with
the experimental data. For the R1.5 array, the model predictions are significantly different to
the experimental data for z0. This could potentially be due to the uncertainties in obtaining
z0 and d from experimental profiles, as was previously suggested for the d predictions for
this array. Specifically, the method used by Zaki et al. (2011) allows for the height interval
within which the logarithmic profile is best fit to obtain z0 and d to vary with area density.
This means that, for higher area densities, z0 and d may have been obtained from the RSL
and ISL profiles, while for lower densities they may have been obtained, correctly, from the
ISL profile only. This may possibly explain the reduction in d with increasing λp found by
them, which contradicts the generally accepted view that d increases monotonically with λp.
Furthermore, these low d estimates at higher area densities would result in estimates of z0

being biased towards higher values.
It is useful to also compare the Û profiles measured in these experiments with the loga-

rithmic profiles predicted by the model, although it should be emphasized here that various
pairs of z0 and d can give quite similar wind profiles. A number of comparisons are shown
in Fig. 12, for arrays ST1.5-st, RM10s, R1 and R1.5. Profiles plotted using the parameters of
the model of MacDonald et al. (1998) are also shown for comparison as, although there were
potentially some issues with the models calibration, this model gives reasonably accurate
estimates of wind profiles above uniform cube arrays.

From Fig. 12a and b it is apparent that, down to a height of hm-eff as intended, the pre-
dicted logarithmic Û profiles and the measured Û profiles are in excellent agreement for array
ST1.5-st and RM10s. Furthermore, the inflection points in the profiles from the experimental
data are at almost the same height as the values of hm-eff predicted by the model, suggesting
that it is reasonable to consider hm-eff as the lower limit of the validity of the logarithmic
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Fig. 12 Logarithmic Û profiles predicted by the model (sold lines) over arrays a ST1.5-st, b RM10s, c R1
and d R1.5. Shown for comparison are the Û profiles (dotted lines) from the experiments, and the predictions
of the model of MacDonald et al. (1998) (blue lines). The solid horizontal lines indicate hm-eff. In a–c profiles
are normalized by Û at 4hm, and in (d) by Û at 5hm. Profiles are offset 1 unit for clarity of presentation

profile. In Fig. 12c it can be seen that for array R1, the predicted and measured Û profiles
diverge slightly as σh increases. However, the agreement is still good for σh/hm = 0.5,
which is the greatest magnitude of height variability found in many major cities (Ratti et al.
2002). Furthermore, again the inflection points in the profiles from the experimental data
are at a similar height as the values of hm-eff predicted by the model. Over array R1.5, the
predicted and measured Û profiles are in excellent agreement, down to a height just above
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hm-eff. This is despite the fact that the predictions of z0 and d differ significantly from the
experimental values. The exception is for the highest density surface, λp ≈ 0.48, where the
model predictions of the measured Û profile become less accurate. This perhaps highlights
a level of density and height heterogeneity at which it is no longer reasonable to describe
the Û profile in the RSL by a downwards extension of the ISL logarithmic law. It is likely
as well that at this point some model assumptions break down, such as the description of the
idealized shelter volumes and the chosen drag coefficients. It is also clear from Fig. 12 that
MacDonald’s model significantly overestimates wind profiles above these heterogeneous
arrays. This highlights the large inaccuracies that could occur when a model that does not
consider height variation is incorrectly used to estimate wind profiles above these types of
surfaces.

4 Conclusions

A model has been developed to produce a first estimate of the simultaneous effects of building
height variability and surface area density upon the aerodynamic parameters of surfaces (z0

and d), in order to estimate the profile of spatially-averaged, horizontal mean wind speed (Û )
throughout the RSL and ISL, using a logarithmic profile. The model is influenced strongly by
those of MacDonald et al. (1998); Raupach (1992, 1994, 1995) and Bottema (1996, 1997).
It has built upon their work to include the influences of building height variability, which is
one of the most significant geometric factors influencing surface parameters.

Firstly, a model was developed for uniform arrays that predicted the aerodynamic param-
eters suggested by recent experiments reasonably well, with the peak roughness occurring at
the correct density. Subsequently, the model was extended to arrays of heterogeneous building
heights and, over a number of heterogeneous arrays, the predicted aerodynamic parameters
compared well with wind-tunnel and numerical data. Specifically, two important character-
istics were captured. Firstly, the peak in z0 with respect to surface density for heterogeneous
arrays becomes softer when compared to uniform arrays. Secondly, d can exceed the mean
building height significantly for heterogeneous arrays. Furthermore, the logarithmic profiles
predicted by the model were generally in good agreement with the profiles of Û from the
experimental data down to the ‘effective mean building height’ (hm-eff), which is a model
output.

Overall, the current model offers good estimates of z0 and d , and hence Û profiles above
heterogeneous surfaces, particularly when compared to models that do not consider height
variability. However, the validation has also shown that the predicted Û profiles become
less accurate for surfaces that are either too highly heterogeneous, or too dense. There may
also be other limitations of the model that require consideration before it is used in real
urban areas due to some of the assumptions made in its derivation, as the current valida-
tion has been restricted to arrays of square-based blocks. It would be informative to extend
the model validation in the future to arrays with both variable height and building shape.
However, for practical use, in future work the model will be applied to various realistic
urban arrays in order to suggest simple morphological methods, relying on basic measures of
height variation, to estimate the effect of height variability on surface aerodynamic parame-
ters.

Acknowledgments The authors would like to thank Professor Castro, Dr Xie, Professor Hagishima, and
Sheikh Ahmad Zaki, for providing the datasets that have been valuable in the validation of our work. They

123



464 J. T. Millward-Hopkins et al.

would also like to thank Engineering and Physical Sciences Research Council for providing the Doctoral
Training Award that supported J. T. Millward-Hopkins during the research.

References

Bottema M (1996) Roughness parameters over regular rough surfaces: experimental requirements and model
validation. J Wind Eng Ind Aerodyn 64:249–265

Bottema M (1997) Urban roughness modelling in relation to pollutant dispersion. Atmos Environ 31:3059–
3075

Britter RE, Hanna SR (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35:469–496
Castro IP, Robins AG (1977) Flow around a surface-mounted cube in uniform and turbulent streams. J Fluid

Mech 79:307–335
Cheng H, Castro IP (2002) Near wall flow over urban-like roughness. Boundary-Layer Meteorol 104:229–259
Cheng H, Hayden P, Robins AG, Castro IP (2007) Flow over cube arrays of different packing densities.

J Wind Eng Ind Aerodyn 95:715–740
Coceal O, Belcher SE (2004) A canopy model of mean winds through urban areas. Q J Roy Meteorol Soc

130:1349–1372
Davidson PA (2004) Turbulence: an introduction for scientists and engineers. Oxford University Press, Oxford,

UK, 655 pp
Di Sabatino S, Solazzo E, Paradisi P, Britter R (2008) A simple model for spatially-averaged wind profiles

within and above an urban canopy. Boundary-Layer Meteorol 127:131–151
Dobre A., Arnold SJ, Smalley RJ, Boddy JWD, Barlow JF, Tomlin AS, Belcher SE (2005) Flow field mea-

surements in the proximity of an urban intersection in London, UK. Atmos Environ 39:4647–4657
ESDU (1980) Mean fluid forces and moments on rectangular prisms: surface-mounted structures in turbulent

shear flow. Engineering Sciences Data Unit Item Number 80003
Fackrell JE (1984) Parameters characterising dispersion in the near wake of buildings. J Wind Eng Ind Aerodyn

16:97–118
Garratt JR (1980) Surface influence upon vertical profiles in the atmospheric near-surface layer. Q J Roy

Meteorol Soc 106:803–819
Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived, from analysis of surface

form. J Appl Meteorol 38:1262–1292
Hagishima A, Tanimoto J, Nagayama K, Meno S (2009) Aerodynamic parameters of regular arrays of rect-

angular blocks with various geometries. Boundary-Layer Meteorol 132:315–337
Hall D, Macdonald JR, Walker S, Spanton AM (1996) Measurements of dispersion within simulated urban

arrays—a small scale wind tunnel study, BRE Client Report, CR178/96
Harman I, Finnigan J (2007) A simple unified theory for flow in the canopy and roughness sublayer. Bound-

ary-Layer Meteorol 123:339–363
Huang S, Li QS, Xu S (2007) Numerical evaluation of wind effects on a tall steel building by CFD. J Constr

Steel Res 63:612–627
Hunt JCR, Abell CJ, Peterka JA, Woo H (1978) Kinematical studies of the flows around free or surface-

mounted obstacles; applying topology to flow visualization. J Fluid Mech 86:179–200
Hussain M, Lee BE (1980) A wind-tunnel study of the mean pressure forces acting on large groups of low-rise

buildings. J Wind Eng Ind Aerodyn 6:207–225
Jackson PS (1981) On the Displacement Height in the Logarithmic Velocity Profile. J Fluid Mech

111(Oct):15–25
Jia YQ, Sill BL, Reinhold TA (1998) Effects of surface roughness element spacing on boundary-layer velocity

profile parameters. J Wind Eng Ind Aerodyn 73:215–230
Jiang DH, Jiang WM, Liu HN, Sun JN (2008) Systematic influence of different building spacing, height and

layout on mean wind and turbulent characteristics within and over urban building arrays. Wind Struct
11:275–289

Kanda M (2006) Large-eddy simulations on the effects of surface geometry of building arrays on turbulent
organized structures. Boundary-Layer Meteorol 118:151–168

Kastner-Klein P, Rotach MW (2004) Mean flow and turbulence characteristics in an urban roughness sublayer.
Boundary-Layer Meteorol 111:55–84

Leonardi S, Castro IP (2010) Channel flow over large cube roughness: a direct numerical simulation study.
J Fluid Mech 651:519–539

MacDonald RW (2000) Modelling the mean velocity profile in the urban canopy layer. Boundary-Layer Mete-
orol 97:25–45

123



Estimating Aerodynamic Parameters of Urban-Like Surfaces 465

MacDonald RW, Griffiths RF, Hall DJ (1998) An improved method for the estimation of surface roughness
of obstacle arrays. Atmos Environ 32:1857–1864

Millward-Hopkins JT, Tomlin AS, Ma L, Ingham D, Pourkashanian M (2011) The predictability of the above
roof wind resource in the urban roughness sublayer. Wind Energy. doi:10.1002/we.463

Oke TR (1988) Street Design and Urban Canopy Layer Climate. Energy Build 11:103–113
Peterka JA, Meroney RN, Kothari KM (1985) Wind flow patterns about buildings. J Wind Eng Ind Aerodyn

21:21–38
Rafailidas S (1997) Influence of building areal density and roof shape on the wind characteristics above a

town. Boundary-Layer Meteorol 85:255–271
Ratti C, Di Sabatino S, Britter R, Brown M, Caton F, Burian S (2002) Analysis of 3-D urban databases with

respect to pollution dispersion for a number of European and American cities. Water Soil Air Pollut
Focus 2:459–469

Raupach MR (1992) Drag and drag partition on rough surfaces. Boundary-Layer Meteorol 60:375–395
Raupach MR (1994) Simplified expressions for vegetation roughness length and zero-plane displacement as

functions of canopy height and area index. Boundary-Layer Meteorol 71:211–216
Raupach MR (1995) Corrigenda. Boundary-Layer Meteorology 76:303–304
Raupach MR, Thom AS, Edwards I (1980) A wind tunnel study of turbulent-flow close to regularly arrayed

rough surfaces. Boundary-Layer Meteorol 18:373–397
Raupach MR, Antonia RA, Rajagopalan S (1991) Rough-wall turbulent boundary layers. Appl Mech Rev

44:1–25
Rodi W (1997) Comparison of LES and RANS calculations of the flow around bluff bodies. J Wind Eng Ind

Aerodyn 71:55–75
Rooney GG (2001) Comparison of upwind land use and roughness length measured in the urban boundary

layer. Boundary-Layer Meteorol 100:469–486
Shao Y, Yang Y (2005) A scheme for drag partition over rough surfaces. Atmos Environ 39:7351–7361
Song CCS, He J (1993) Computation of wind flow around a tall building and the large-scale vortex structure.

J Wind Eng Ind Aerodyn 46(47):219–228
Tominag Y, Mochida A, Murakami S, Sawaki S (2008) Comparison of various revised k–e models and LES

applied to flow around a high-rise building model with 1:1:2 shape placed within the surface boundary
layer. J Wind Eng Ind Aerodyn 96:389–411

Xie ZT, Coceal O, Castro IP (2008) Large-eddy simulation of flows over random urban-like obstacles. Bound-
ary-Layer Meteorol 129:1–23

Zaki S, Hagishima A, Tanimoto J, Ikegaya N (2011) Aerodynamic parameters of urban building arrays with
random geometries. Boundary-Layer Meteorol 138:99–120

Zhang YQ, Huber AH, Arya SPS, Snyder WH (1993) Numerical simulation to determine the effects of incident
wind shear and turbulence level on the flow around a building. J Wind Eng Ind Aerodyn 46(47):129–134

123

http://dx.doi.org/10.1002/we.463

	Estimating Aerodynamic Parameters of Urban-Like Surfaces with Heterogeneous Building Heights
	Abstract
	1 Introduction
	2 Theory and Modelling Approach
	2.1 Flow Regimes and Surface Parameters
	2.2 Modelling Approach

	3 Results and Discussion
	3.1 Modelling Arrays of Uniform Height
	3.1.1 The Drag Balance
	3.1.2 Idealized Descriptions of Individual Building Wakes
	3.1.3 Estimating the Zero-plane Displacement
	3.1.4 Validating the Roughness length Predictions of Uniform Arrays

	3.2 Modelling Arrays of Heterogeneous Height
	3.2.1 Modifying the Drag Balance
	3.2.2 The Zero-Plane Displacement of Heterogeneous Arrays
	3.2.3 The Effective Mean Building Height
	3.2.4 Validation of the Model for Heterogeneous Arrays


	4 Conclusions
	Acknowledgments
	References


