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Abstract Numerical simulations of scalar transport in neutral flow over forested ridges are
performed using both a 1.5-order mixing-length closure scheme and a large-eddy simulation.
Such scalar transport (particularly of CO2) has been a significant motivation for dynamical
studies of forest canopy–atmosphere interactions. Results from the 1.5-order mixing-length
simulations show that hills for which there is significant mean flow into and out of the
canopy are more efficient at transporting scalars from the canopy to the boundary layer
above. For the case with a source in the canopy this leads to lower mean concentrations of
tracer within the canopy, although they can be very large horizontal variations over the hill.
These variations are closed linked to flow separation and recirculation in the canopy and
can lead to maximum concentrations near the separation point that exceed those over flat
ground. Simple scaling arguments building on the analytical model of Finnigan and Belcher
(Q J Roy Meteorol Soc 130:1–29, 2004) successfully predict the variations in scalar con-
centration near the canopy top over a range of hills. Interestingly this analysis suggests that
variations in the components of the turbulent transport term, rather than advection, give
rise to the leading order variations in scalar concentration. The scaling arguments provide a
quantitative measure of the role of advection, and suggest that for smaller/steeper hills and
deeper/sparser canopies advection will be more important. This agrees well with results from
the numerical simulations. A large-eddy simulation is used to support the results from the
mixing-length closure model and to allow more detailed investigation of the turbulent trans-
port of scalars within and above the canopy. Scalar concentration profiles are very similar in
both models, despite the fact that there are significant differences in the turbulent transport,
highlighted by the strong variations in the turbulent Schmidt number both in the vertical
and across the hill in the large-eddy simulation that are not represented in the mixing-length
model.
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1 Introduction

In recent years there has been significant interest in the dynamics of forest-canopy–bound-
ary-layer interactions over complex terrain. A significant motivation for this work has been
the understanding of advective effects in flux measurements (notably CO2) over forest can-
opies and to improve the flux estimates as a result (see Finnigan 2008 and other papers in
the same invited feature). The analytical work of Finnigan and Belcher (2004) has been an
important step in understanding these dynamics. Finnigan and Belcher (2004) extended the
linear theory of Hunt et al. (1988) for neutral flow over a hill to include the effects of a forest
canopy, and demonstrated the ubiquity of flow separation in deep canopies. The analytical
solutions break down for small hills when advection at the canopy top becomes comparable to
the perturbation shear-stress divergence at leading order. Subsequent numerical simulations
by Ross and Vosper (2005) using a 1.5-order turbulence closure scheme demonstrated that
in these cases vertical advection at the canopy top is important at leading order. Streamlines
show flow into the canopy over the upwind slope and out of the canopy just downwind of
the hill crest. This leads to a feedback between the canopy flow and the larger scale pressure
field over the hill, with a subsequent downwind shift in the surface pressure field, an increase
in pressure drag and a downwind shift in the maximum near-surface speed-up over the hill.
Similar conclusions were drawn from large-eddy simulations (LES) of flow over a small hill
(Ross 2008) using the same model and from the LES of Patton and Katul (2009). Other LES
(Dupont et al. 2008) have reproduced the wind-tunnel experiments of Finnigan and Brunet
(1995). These LES do not rely on the use of a first-order canopy turbulence closure scheme,
which has been a topic of some debate in the literature (Finnigan 2000; Pinard and Wilson
2001; Katul et al. 2004).

Experimental observations are still relatively rare, with the only significant wind-tunnel
study both within and above a canopy over a hill being that of Finnigan and Brunet (1995).
Recent water flume experiments (Poggi and Katul 2007a,b,c) have provided more detailed
measurements and support many of the conclusions drawn from the modelling work. They
have also provided important measurements of the unsteady nature of the canopy flow, par-
ticularly in the recirculation region (Poggi and Katul 2007a).

The impact of this dynamical work for those measuring fluxes is summarized in Belcher
et al. (2008). From an analytical point of view, applying this theoretical work to study scalar
transport has been difficult since scalar profile observations above forest do not agree with
simple boundary-layer theory even over flat terrain, although some recent progress has been
made (Harman and Finnigan 2008). Katul et al. (2006) have attempted to consider the impact
of the dynamics on CO2 fluxes using an ecophysical canopy model driven by a simplified
analytical wind field based on Finnigan and Belcher (2004). This demonstrates the impact
that the dynamics have on scalar concentrations and fluxes, however unfortunately the small
hill and canopy they used to demonstrate the results (the same as that used in Finnigan and
Belcher 2004; Ross and Vosper 2005) violates the assumptions of the full analytical model,
let alone the simplified version adopted by them. Observational studies, notably the ADVEX
(ADVection EXperiment) project (Feigenwinter et al. 2008), have begun to investigate the
impact of advection for flux sites. Some of these studies, for example Zeri et al. (2010),
provide qualitative support for the theoretical predictions of Finnigan and Belcher (2004)
and Katul et al. (2006). With all this in mind, there is still a need for a systematic assessment
of the impact of canopy dynamics on scalar transport over hills, which we seek to address.

While there is debate in the literature about whether first-order turbulence closure schemes
should be used for canopy flows, from a practical point of view they are useful. They are
simple enough that they are amenable to analytical analysis (e.g. Finnigan and Belcher 2004)
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and computationally cheap enough to allow realistic simulations to be conducted. Studies
such as Pinard and Wilson (2001), Katul et al. (2004) and Ross (2008) have shown that
in terms of the mean flow they produce similar results to higher order closure schemes,
to LES and to experiments. This is principally because they correctly reproduce the can-
opy-top turbulence that dominates the canopy flow. They do less well in terms of rep-
resenting the turbulence deep in the canopy (e.g. Ross 2008), but this is not significant
for the mean flow since the mean velocity gradients are low in that region. In terms of
scalar transport the picture is less clear. There may be significant gradients in the scalar
concentration deep in the canopy depending on the sources and sinks, and hence there may
be more significant errors in the turbulent scalar fluxes. There are also questions about
the behaviour of the turbulent Schmidt number (the ratio of the turbulent diffusivities for
momentum and scalars) within and just above the canopy (see e.g. Harman and Finnigan
2008). Nonetheless the fact that first-order closure schemes are amenable to analytical study
allows a more complete analysis of the role of advection in scalar transport. While the results
of such models may not exactly represent reality they offer a useful guide to likely different
flow regimes and scalings that can be tested against observations or limited numerical results
from models with more complex turbulence schemes. Finally, since such simple models are
being used practically through computational necessity, it is valuable to understand their
behaviour and possible limitations and to seek ways of improving them. For these reasons
our study primarily concentrates on first-order closure schemes of scalar transport, although
comparison will be made with a LES in Sect. 5.

Section 2 describes the numerical model used here and the simulations of passive scalar
transport. Section 3 presents some simple scaling arguments based on the analytical model of
Finnigan and Belcher (2004) for flow over a canopy-covered hill. This provides insight into
the dominant processes controlling variations in scalar concentration and flux in the upper
canopy and in the boundary layer above. Results of the first-order simulations are presented
and discussed in Section 4 and compared with the scaling arguments developed. Limitations
of first-order closure schemes are discussed, and to partly address this results from a LES are
presented in Section 5 for comparison. Section 6 discusses the implications of this work for
flux measurements and finally Section 7 offers conclusions and topics for further study.

2 Simulations of Passive Scalar Transport

2.1 Model Description

Simulations were carried out using the BLASIUS model from the UK Met Office (Wood
and Mason 1993), which can be operated with a first-order or a 1.5-order mixing-length
turbulence closure scheme. It can also be used for LES. It has previously been used in both
modes for studying the dynamics of flow over canopy-covered hills (Brown et al. 2001; Ross
and Vosper 2005; Ross 2008).

For all the simulations presented here an idealized two-dimensional, sinusoidal, periodic
hill is used with the hill surface, zs, given by

zs = H

2
cos(kx) (1)

where H is the height of the hill, k = π/(2L) is the hill wavenumber and L is the half width
of the hill at half height. The length of the domain is always 4L, i.e. the domain contains
exactly one hill. Neutral flow is assumed in all cases and periodic boundary conditions are
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used meaning that the simulations actually represent neutral flow over an infinite series of
sinusoidal ridges. In all the simulations presented here the domain has 128 grid points in the
horizontal. For the majority of simulations the domain depth is fixed at 1,500 m. A stretched
grid with 80 grid points is used in the vertical with a resolution of 0.5 m near the surface
increasing gradually to 33.5 m at domain top.

A uniform canopy density, a = 0.2−0.6 m−1 and a fixed canopy drag coefficient (Cd =
0.25 or Cd = 0.15) were used for all simulations, giving values for the canopy adjustment
length, Lc = 1/(Cda) of 6.67−26.7 m. Unless otherwise stated the canopy height h = 10 m,
although some simulations are conducted with h = 5 m or h = 20 m. These canopy param-
eters are all representative of observations in real forests and correspond to values used in
previous theoretical work, allowing direct comparison. The flow is driven by a horizontal
pressure gradient corresponding to a geostrophic wind speed of 10 m s−1. Full details of the
parameter values used in the simulations are given in Sect. 4. The simulations are consistent
with those presented in Ross and Vosper (2005) and Ross (2008) allowing direct comparison
of the results.

The mixing-length closure simulations presented in the first part of the study were all
conducted with the 1.5-order closure scheme with a prognostic equation for turbulent kinetic
energy. Full details of the scheme are given in Ross and Vosper (2005). The 1.5-order closure
scheme requires an additional empirical parameter, β, which measures the ratio of friction
velocity to mean wind at canopy top, to be specified. For most simulations this is taken as
0.3, as in Ross and Vosper (2005) and consistent with observations over real forests. This
parameter controls the relationship between Lc, the canopy mixing length, l, and displace-
ment height, d , as described in Finnigan and Belcher (2004) and Ross and Vosper (2005).
The effect of modifying β is studied in Sect. 5 and compared to results using large-eddy
simulation.

In Sect. 5 the model is used to conduct LES. The model set-up is identical to that described
in Ross (2008), to which the reader is referred for a full discussion of the requirements for
a successful LES and the model set-up. The requirements to adequately resolve the larger
eddies in the canopy places a strong limitation on the number of cases, the canopy and the size
of hills that can be modelled. For these reasons the hill is taken as H = 10 m and L = 100 m.
The canopy has Cd = 0.15, a = 0.25 m−1 and h = 20 m, the domain height is limited to
132 m, and the domain has 288 × 192 × 96 grid points, giving a horizontal and vertical grid
spacing of 1.39 m. This differs from the majority of the mixing-length simulations described
herein, and is a result of the computational limitations imposed by the LES. Where direct
comparison is made between the LES and mixing-length closure results, the mixing-length
closure simulations have been performed with an identical model set-up in terms of domain
size, hill size and canopy parameters, although the horizontal resolution is slightly lower.

2.2 Scalar Releases

The majority of the simulations presented involve a constant uniform release rate for a pas-
sive scalar tracer within the canopy. In order to allow a steady-state solution a sink of equal
magnitude is distributed over the top 500 m of the domain to balance the source. For the
simulations using the shallow LES domain, the sink is over the top 20 m of the domain.
Zero-flux boundary conditions are used at the ground and at the top of the domain so the total
tracer in the domain is conserved. In this case the units of the tracer are arbitrary, however a
canopy release rate of 10−2 m−3 s−1 is used. A one-dimensional simulation is run with the
tracer concentration initially set to unity throughout the domain. Once this simulation has
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reached a near-equilibrium state then the profiles are used to initialize the two-dimensional
simulations. The same tracer set-up is used for the LES described in Sect. 5.

3 Scaling Arguments for the Importance of Advection

There are four independent length scales in the problem (H,L, h and Lc); the canopy mixing
length, l, is proportional to the canopy adjustment length, Lc, so is not independent. These
length scales give three non-dimensional parameters controlling the dynamics of flow over a
forested hill, namely the hill slope, H/L, the ratio of the hill width to the canopy adjustment
length scale, L/Lc, and β times the canopy depth non-dimensionalized on the canopy mixing
length, βh/l. Note that the inclusion of the non-dimensional empirical parameter, β, is for
convenience since it is this group that appears in the analytical solution for the background
flow and for the perturbations over the hill in Finnigan and Belcher (2004).

The turbulent transport equation for a scalar tracer, c, in a turbulent canopy flow can be
written as

Dc

Dt
= ∂

∂xi

(
Kc

∂c

∂xi

)
+ S (2)

using a first-order turbulence closure with Kc the eddy viscosity or turbulent diffusivity for
scalars; S is the source/sink term for the scalar tracer. Here molecular diffusion is neglected. In
a homogeneous, steady flow then the source/sink term is exactly balanced by the divergence
of the vertical scalar flux term and so

S = − ∂

∂z

(
Kc

∂c

∂z

)
. (3)

Following other recent theoretical and modelling studies (e.g. Finnigan and Belcher 2004;
Ross and Vosper 2005), consider two-dimensional flow over a series of sinusoidal ridges cov-
ered by a uniform canopy. The flow can be considered as a mean horizontal flow U(z) plus a
perturbation (u(x, z), w(x, z)). Finnigan and Belcher (2004) give an analytical solution for
this perturbed flow within and above the canopy. Similarly the scalar concentration may be
considered as a mean value, C(z) plus a perturbation, c(x, z). All perturbations are assumed
small, allowing the transport equation to be linearized.

For the homogeneous, flat ground case then, from Finnigan and Belcher (2004), we have

U(z) =
⎧⎨
⎩

Uheβz/l z < 0
u∗
κ

log

(
z + d

z0

)
z ≥ 0

(4)

and

Kc = l2
m

dU

dz
=

{
βlUheβz/l z < 0
u∗ κ(z + d) z ≥ 0

(5)

where lm is the mixing length, which is constant within the canopy and scales with height
above, u∗ is the friction velocity and Uh is the velocity at canopy top. The displacement
height d and the roughness length z0 are determined from β and l. Substituting this into Eq. 3
and integrating gives

dC

dz
=

⎧⎪⎨
⎪⎩

− Sh

βlUh

(
1 + z

h

)
e−βz/l z < 0

− c∗
κ(z + d)

z ≥ 0
(6)
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and

C =

⎧⎪⎪⎨
⎪⎪⎩

Sh

β2Uh

(
1 + z

h
+ l

βh

)
e−βz/l − Sh

β2Uh

(
2 + l

βh

)
+ c1 z < 0

−c∗
κ

log

(
z + d

z0

)
+ c1 z ≥ 0

(7)

for some constant c1, where Sh ≡ u∗c∗, assuming that ∂C/∂z = 0 at z = −h.
From Finnigan and Belcher (2004) we may take the analytical solution for the per-

turbed velocity and eddy viscosity, a solution that is valid when H/L � 1, βh/l � 1 and
kLc exp(βh/l) � 1. Assuming perturbations in the scalar are also small, we may linearize
about the perturbations in both the scalar and velocity fields to give

U
∂c

∂x
+ w

∂C

∂z
= ∂

∂x

(
Kc

∂c

∂x

)
+ ∂

∂z

(
Kc

∂c

∂z
+ K ′

c
∂C

∂z

)
. (8)

The linearized eddy viscosity terms can be written in terms of the velocity field (see Finnigan
and Belcher 2004) as

Kc = l2
m

dU

dz
, (9a)

K ′
c = l2

m
∂u

∂z
. (9b)

In the upper canopy and just above the canopy horizontal derivatives scale on the horizontal
length scale L while vertical derivatives scale on the mixing length, l. Using this we see that
the first term on the right-hand side of (8) is small (O(l2/L2)) compared to the second term.
Similarly, the first and second terms on the left-hand side are small (O(l/L)) compared to
the second and third terms respectively on the right-hand side, and so may be neglected. This
also makes use of the continuity equation to scale w ∼ ul/L, and leaves a balance between
the two components of the vertical turbulent transport perturbation term on the right-hand
side. Equating these two terms and integrating gives

∂c

∂z
=

(
c∗
u∗

)
∂u

∂z
(10)

and so

c = c∗
u∗

u + c0(x) (11)

for some function c0(x). Taking the expression for u from Finnigan and Belcher (2004) and
assuming that the contribution, c0(x) from the deep canopy is small, or at least scales in the
same way, gives

c ∼ Sh

Uh

H

L

Lc

L

U2
0

U2
h

(12)

near canopy top. Here U0 is the velocity at the middle layer height and gives a velocity scale
for the outer flow, see Finnigan and Belcher (2004) for details. Note that this scaling means
that the leading order (O(l/L)) correction to the tracer field resulting from the hill results
from a balance between the changes in the turbulent transport term due to changes in the
tracer profile and changes in the eddy viscosity. At leading order there is no net change in
the turbulent flux. Changes in the turbulent flux must come from a second-order balance
(O(l2/L2)) with the advection term.
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Table 1 Hill and canopy
parameters for the various
two-dimensional mixing-length
closure simulations performed

Parameter Values

L (m) 100–1600
a (m−1) 0.2–0.6

h (m) 5–20

H/L 0.00625–0.2

L/Lc 3.75–240

βh/l 1.39–8.33

Using this scaling the magnitude of the tracer advection term can be derived as

U
∂c

∂x
∼ S2β2 βh

l

H

L

L2
c

L2

U2
0

U2
h

(13)

near canopy top, allowing direct estimation of the importance of advection compared to the
canopy source term, S.

4 Tracer Concentrations and Fluxes over Complex Terrain

A large number of simulations with a constant tracer release were carried out over a range
of different parameter values, and are summarized in Table 1. In particular simulations cor-
responding to the narrow and wide hill examples discussed in Ross and Vosper (2005) were
performed. The tracer profiles for these simulations are shown below.

Figure 1 shows horizontally-averaged vertical profiles of relative tracer concentration
compared to the flat ground case for various experiments given in Table 1. In all simulations
the horizontally-averaged scalar flux is the same and constant with height since the sources
and sinks of the scalar are fixed and the simulations are run to a quasi-steady state, however
there are clear differences in the horizontally-averaged scalar concentrations. Figure 1a shows
results for four simulations with different slopes H/L and fixed hill width and canopy param-
eters (L/Lc = 10 and βh/l = 5.55). This corresponds to the small hill width case described
in Ross and Vosper (2005) where vertical advection at canopy top is important. Increasing the
slope leads to greater vertical velocities into and out of the canopy and so increases the tracer
transport by the mean flow. This gives significantly lower average concentrations of tracer
within the canopy compared to the flat ground case, and slightly higher concentrations above.
Figure 1b shows profiles for five simulations with fixed H/L = 0.1 and βh/l = 5.55 and
varying L/Lc, i.e. fixed slope and canopy parameters and varying hill width. Here decreasing
L/Lc (i.e. smaller hill widths compared to the canopy adjustment scale Lc) again leads to an
increase in vertical advection at canopy top, increased tracer transport and lower averaged
concentrations within the canopy. Finally Fig. 1c shows profiles for three simulations with
fixed H/L = 0.1, L/Lc = 5 and varying βh/l, i.e. fixed slope, hill width and canopy density
and varying canopy height. Increasing the canopy height leads to a deeper region of flow
convergence/divergence in the canopy and hence, by continuity, a greater vertical velocity
at canopy top. This is turn increases tracer transport and leads to a significant reduction in
tracer concentration within the canopy and a slight increase above. Note that only the simu-
lation with the deepest canopy demonstrates a strong increase in tracer concentration above
the canopy. In all other cases the additional tracer from within the canopy is redistributed
over a sufficient depth in the boundary layer that the increases in concentration are not large.
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Fig. 1 Horizontally-averaged
vertical profiles of tracer
concentration relative to the
equivalent profile over flat
ground. Height is
non-dimensionalized on the
canopy height, h. Canopy top is
at z/h = 0. a Shows profiles for
a fixed canopy and hill width, but
for different hill heights, i.e.
increasing slope, H/l. b Shows
profiles for a fixed slope and
canopy, but for different scale
hills. c Shows profiles for a fixed
hill and different canopy depths
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For the βh/l = 1.39 case the canopy is sufficiently shallow that no flow separation occurs.
These cases with L/Lc = 5 are an extreme example. For wider hills with larger values of
L/Lc (not shown) the relative changes in average concentration are smaller, but a broadly
similar effect is seen. Deep in the canopy the average tracer concentrations are reduced as a
result of the induced flow, and is more pronounced for deeper canopies where the induced
flow is larger. In the upper canopy the change in tracer concentration is less for most simu-
lations. For the deepest canopies, however, an increase in average concentration is observed
as in the small L/Lc case.

Overall these simulations demonstrate reductions in mean scalar concentration deep within
the canopy (for a canopy source of tracer) resulting from more efficient transport between the
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canopy and the boundary layer above for steep and/or narrower hills and for deeper/denser
canopies. For the cases with the deepest canopy there can actually be an increase in mean
scalar concentration near canopy top. These features can be attributed to an increase in the
average vertical transport by the mean flow between the canopy and the boundary layer
above and is entirely in accord with expectations based on the analytical work of Finnigan
and Belcher (2004) and numerical simulations of Ross and Vosper (2005). For the case of a
tracer sink within the canopy (as is the case for CO2) then the signs of the changes would be
expected to be reversed so higher concentrations would be observed deep within the canopy.

Figure 2a, b shows colour contour plots of the scalar concentration for two simulations—
a small (L/Lc = 10) and large (L/Lc = 160) hill, both with slope H/L = 0.1 and
βh/l = 5.55. Also plotted in Fig. 2c for comparison are the results over flat ground. The
figures are plotted in a terrain-following coordinate system so that the vertical axis is height
above the surface. This allows direct comparison of the two figures, despite the differences in
scale of the two hills. The figures also show the streamlines of the flow, and in both cases the
streamlines entering and leaving the canopy indicate significant vertical advection at canopy
top (z/h = 0). Note that the spacing of the streamfunction contours is different within (solid
lines) and above (dotted lines) the canopy. This reflects the fact that velocity magnitudes
within the canopy are much smaller than those above. The canopy-averaged results in Fig. 1
show that the mean concentration in the canopy is reduced in both cases compared to the
simulation over flat ground, particularly for the small hill case. Figure 2 shows that this
mean value disguises the significant horizontal variations in scalar concentration that occur
throughout the canopy. In both cases concentrations deep in the canopy over the upwind slope
are decreased as a result of advection of lower concentration air from above the canopy being
transported down into the canopy and the high concentration air within the canopy being
transported up out of the canopy both through advection and enhanced turbulent mixing. In
general the concentrations in the recirculation region over the lee slope are higher, particu-
larly near the separation and reattachment points. The precise location and magnitude of the
maximum concentration varies between the two simulations. For the small hill (a) there is a
tall thin band near the separation point at the front of the recirculation region with very high
concentrations. The high concentration is associated with the stagnation of the flow near the
separation point. Although the mean concentration in the canopy is lower than the case over
flat terrain, the maximum concentration near the stagnation point is higher than values in the
canopy over flat terrain. In contrast, over the large hill (b) the maximum concentration is a
much wider and shallow region located at the rear of the recirculation region near the reat-
tachment point. For intermediate hill widths (not shown) there are maxima in concentration
at both locations, with both maxima slightly weaker.

Deep in the canopy velocities and turbulent transport are small in the background state,
and the low mean velocity fields imply that there is little advection. Any induced background
flow will therefore have a significant impact on tracer concentrations through a combina-
tion of advection and changes in turbulent transport. The separation and reattachment points
are both stagnation points of the flow and these regions are therefore associated with low
flow velocities and with reduced eddy viscosities (and hence lower turbulent transport). This
would tend to suggest that concentrations would be highest in these regions, as observed.
Whether or not the maximum is at the separation or reattachment point seems to be rather
sensitive to the details of the flow and the turbulence scheme. Analysis of a number of sim-
ulations shows that the minima in eddy viscosity at these two stagnation points are always
quite similar in magnitude, but that the maximum concentration corresponds to the smallest
values of this eddy viscosity. In many cases the concentrations actually increase at the other
stagnation point.
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Fig. 2 Scalar concentration
(colours) and streamlines (lines)
over a a small hill (L = 100 m),
b a large hill (L = 1600 m) and
c flat ground. In both a and b the
hill slope is the same
(H/L = 0.1) and the canopy is
the same (Lc = 10 m−1 and
βh/l = 5.55). The scalars are
plotted in a terrain-following
coordinate system. Streamlines
are plotted as lines of constant
streamfunction with the solid
contours at intervals of
0.2 m2 s−1 (mostly within the
canopy) and the dotted contours
at intervals of 5 m2 s−1 (mostly
above the canopy). This reflects
the small velocities within the
canopy compared to above
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A more quantitative analysis of this across all the simulations supports this broad picture.
Scaling analysis using the solution of Finnigan and Belcher (2004) gives the ratio of vertical
advection to the pressure gradient term in the upper canopy as

123



Scalar Transport over Forested Hills 189

λ = π

4

Lc

L
exp

(
βh

l

)
, (14)

(Eq. 36 in Finnigan and Belcher 2004). The relationship between the location of the maximum
scalar concentration in the canopy and the role of vertical advection can be quantified through
the non-dimensional parameter that is required to be small in order that the vertical velocity
at canopy top is negligible in the analytical model (Finnigan and Belcher 2004; Ross and
Vosper 2005). Figure 2 suggests that the maximum tracer concentrations are closely linked
with the separation region in the lee of the hill crest. To explore this Fig. 3a shows the location
of the maximum tracer concentration relative to the separation point, ξ = (x − xs)(xr − xs),
plotted against λ. Here xs is the separation point and xr the reattachment point so a value of
zero for ξ means the maximum occurs at the separation point, while a value of 1 denotes the
reattachment point. The figure clearly delineates two regimes. For cases where λ > 5 the
maximum surface concentration occurs very close to the separation point, while for simula-
tions where λ � 5 then the maximum concentration occurs near (but usually just upwind
of) the reattachment point. In these cases the separation region is sufficiently weak that the
maximum in scalar concentration occurs near the bottom of the hill or at the trailing attach-
ment point of the separation region (xtrmax ≈ 2). Looking at individual cases it is clear that λ

is not the sole quantity determining the location of flow separation. For a given canopy and
hill width λ is fixed (e.g. simulations with λ ≈ 20). Varying the hill height (and hence slope)
still has an impact on the location of the flow separation, and hence the maximum in scalar
concentration (as shown, for example, in Ross and Vosper 2005). Increasing the hill slope
tends to shift the separation point closer to the hill summit as the greater adverse pressure
gradient promotes earlier flow separation. In each case the scalar maximum is very close to
the separation point as shown in Fig. 3a. For very sparse canopies increasing the hill height
controls whether or not separation occurs. This is seen in the simulations with βh/l = 1.39
here, and only the one with the steepest slope exhibits separation.

The effect of the advection on the maximum concentration of the tracer is shown in Fig. 3b,
which plots the maximum surface concentration normalized on the value in the equivalent
flat canopy simulation (cmax/cflat) plotted against λ. Although the data do not collapse as well
as Fig. 3a it is clear that for small values of λ where advection is small then (as expected)
cmax/cflat ∼ 1 and concentrations vary little from those over a flat canopy. In contrast,
for λ > 5 there is a larger spread in the values of cmax/cflat. Maximum concentrations are
increased, in this case by up to 50% in some simulations, although again the actual maximum
value is not solely determined by λ. For a fixed canopy and hill width, then increasing the hill
height (and hence the slope, H/L) leads to an increase in the maximum tracer concentration
as a result of more pronounced differences in the eddy viscosity between the separation and
reattachment points.

A number of simulations were conducted with twice the horizontal and vertical resolutions
to check the sensitivity of the results to model resolution. Doubling the resolution made no
qualitative difference to the results. From a quantitative point of view there was almost no
difference in the location of the separation region, or the maximum tracer concentrations deep
in the canopy, although there was a slight increase in the calculated depth of the separation
region with increased vertical resolution. Most sensitivity was observed at canopy top, where
the strong vertical shear in the wind speed makes a high vertical resolution most necessary.
Even here differences in canopy-top velocities and tracer concentrations were at most a few
percent.

The conclusion of this analysis is that maximum concentrations almost always occur
close to stagnation points. In the 1.5-order closure model the details of which separation
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Fig. 3 a The non-dimensional
location of the scalar maximum
relative to the separation region
ξ = (xtrmax − xs)/(xr − xs)
where xtrmax is the location of
the maximum surface tracer
concentration, xs is the location
of the separation point and xr is
the reattachment point plotted
against vertical velocity
parameter, λ for different
non-dimensional canopy depths
βh/l. b The maximum tracer
concentration normalized on the
value within the equivalent flat
canopy plotted against λ
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point exhibits the highest concentration appears to be linked to the scale of the hill and the
importance of vertical advection at canopy top. Smaller scale hills, where vertical advection is
significant at canopy top, tend to exhibit minima of turbulent kinetic energy and eddy viscos-
ity and maxima of tracer concentration at the separation point near the summit. Larger scale
hills where canopy-top vertical advection is smaller show the minima of turbulent kinetic
energy and eddy viscosity and the maxima of tracer concentration at the reattachment point
near the foot of the hill.

The details of which separation point exhibits the maximum tracer concentration are sen-
sitive to small differences in the induced flow, which lead to small differences in the turbulent
kinetic energy and calculated eddy viscosity. The concentrations are therefore also likely to
be sensitive to the details of the turbulence scheme. This is perhaps not surprising, but does
mean that conclusions on the tracer concentrations in the deep canopy should be treated with
some caution.

There are only a couple of simulations where the canopy is so shallow and sparse that
no separation occurs at all. In these cases the maximum concentrations are observed near
the foot of the hill similar to that observed in Fig. 2b. At this location the adverse pressure
gradient over the lee slope generates the lowest wind speeds and hence the eddy viscosity
is smallest. Above the canopy both the simulations in Fig. 2 exhibit horizontal variations
in concentration. The scalar concentration isolines do not exactly coincide with the stream-
lines, suggesting that although advection plays an important role in modifying the scalar
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Fig. 4 The standard deviation of
the tracer concentration at canopy
top plotted against the scaling for
tracer concentration from Eq. 12.
Only experiments with
H/L < 0.1 and L/Lc ≥ 50 are
included
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concentrations over the hill, turbulent fluxes are also important. The horizontal variations are
larger over the small hill, as expected, since the vertical velocities are larger. These general
features are also reproduced in the other simulations (not shown). The analysis of Sect. 3
gives a scaling for canopy-top perturbations in tracer concentration. Here the magnitude of the
canopy-top perturbations is characterized by the standard deviation of the canopy-top scalar
concentration. Figure 4 shows the standard deviation of the canopy-top scalar concentration
plotted against the scaling for the canopy-top tracer perturbation, c. Results are plotted only
for simulations with H/L < 0.1 and L/Lc ≥ 50, and so excludes the narrowest hills and
steepest slopes where the Finnigan and Belcher (2004) model, and hence the tracer scaling,
is not valid. Despite the fact that the analysis excludes the contribution to the variability
from the deep canopy, the scaling is successful in collapsing the data from a wide range
of simulations with different canopies and hills. This suggests that canopy-top variations in
tracer concentrations may not be overly sensitive to the deep canopy solution, and hence
may well be successfully predicted by a mixing-length turbulence closure scheme, unlike the
deep canopy concentrations. For the narrower and steeper hills then vertical advection in the
upper canopy plays an increasingly important role and the scaling appears no longer to hold
(results not shown), with advection and the concentrations deeper in the canopy playing a
bigger role.

Figure 5 shows the canopy top advection term for a number of different simulations. In
Fig. 5a the advection is non-dimensionalized on the source term and results are shown for
a fixed canopy (βh/l = 5.56, Lc = 10 m) and slope (H/L = 0.02) and only the scale
of the hill is changed. For the widest hills advection is small compared to the source term,
while for the narrowest hill (L = 100 m) the advection term at canopy top is comparable
in magnitude with the scalar source term in the canopy and so advection plays an impor-
tant role, as might be expected. The other interesting feature is that advection is particularly
important over the lee slope in the recirculation region, which may be important for inter-
preting flux measurements over real forests. Figure 5b shows the advection over a range of
different canopies and slopes for the widest hills (L = 1600 m). In this case advection is
small compared to the source term and the scaling from (13) is expected to be valid. Results
are shown non-dimensionalized on this scaling, which is reasonably successful in collapsing
the results over the range of canopies and slopes. For a fixed canopy but different slopes the
collapse is excellent (βh/l = 5.56 and Lc = 10 m with H/L = 0.02 or H/L = 0.00625).
For different canopies the scaling broadly predicts the magnitude of the advection terms, but
there are some in magnitude and in the phase that reflect the fact that the scaling ignores
the contribution to the advection from flow deep in the canopy. Nonetheless the scaling is a
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Fig. 5 Plots of the canopy top advection term as a function of non-dimensional distance across the hill for a
number of different simulations. In a the slope and canopy are fixed (H/L = 0.02, βh/l = 5.56) and only
the scale of the hill is changed (L = 100−1600 m). In a the advection term is scaled on the source term, S. In
b a number of different simulations with fixed width L = 1600 m, but varying canopy and slope parameters
are shown. The advection term is non-dimensionalized using the scaling in (13)

useful means of predicting the importance of scalar advection in these wide hill cases where
advection is relatively weak. The scaling is less successful in the narrow hill regime where
advection becomes large (not shown).

These simulations using the 1.5-order turbulence closure scheme and a fixed source of
tracer within the canopy all demonstrate that advection can be important in modifying tracer
concentrations over canopy-covered hills. In particular, wherever there is significant vertical
advection at canopy top (small hills/dense canopies/deep canopies) transport is enhanced.
This transport leads to lower mean concentrations within the canopy and significant horizon-
tal variations in tracer concentration, which can actually lead to localized increases in tracer
concentration. The horizontal variations are closely linked to flow separation and recircula-
tion within the canopy and therefore scaling parameters that quantify these dynamical effects
are also useful in explaining different regimes of behaviour in tracer concentrations. A simple
scaling argument based on the analytical solution for flow over a forested hill successfully
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collapses the observed tracer perturbations and also the tracer advection terms at canopy top
over a wide range of simulations.

5 Large-Eddy Simulations

5.1 Large-Eddy Simulations over a Small Hill

Simulations with the 1.5-order closure scheme are useful because the scheme is simple and
therefore the simulations are readily performed. This allows a wide range of parameter space
to be investigated. Given the uncertainties over mixing-length closure schemes, and in par-
ticularly the sensitivity of tracer concentrations deep in the canopy to the turbulence scheme,
then some form of validation of the results is however desirable. One way to address this is
through the use of LES. Such simulations are significantly more computationally expensive
and therefore a limited number of simulations are possible; however they can help to validate
conclusions drawn from the simpler 1.5-order closure scheme results.

LES of flow over both a flat surface and a small hill (H = 10 m, L = 100 m) are pre-
sented. The model set-up is described in Sect. 2.1 and is identical to that used in Ross (2008)
with the addition of a passive tracer. Ross (2008) demonstrated that, although some of the
details of the flow, including the turbulence, were different between LES and mixing-length
simulations, the mean flow and broad dynamic features were in good agreement. This is
primarily because the flow is dominated by turbulence generated in the shear layer at canopy
top and this is well represented in the mixing-length scheme.

Figure 6 shows profiles of the scalar concentration across the hill. Results from the LES
over the hill (solid black line) are compared with results from simulations using the 1.5-order
closure scheme over the same hill and from the LES model over flat ground. The canopy, hill
and flow parameters are the same in both the LES and in the 1.5-order closure simulations.
The 1.5-order results are presented for two different values of the empirical parameter β. The
value β = 0.30 corresponds to the value assumed in Finnigan and Belcher (2004) and Ross
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Fig. 6 Profiles of tracer (in arbitrary units) across a small hill from a LES simulation (solid black line),
from a simulation using the 1.5-order closure scheme (red dashed line—β = 0.3 and blue dot-dashed line—
β = 0.35). Also shown for comparison are the results from the LES over flat ground (green dotted line)
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and Vosper (2005), while the value β = 0.35 was shown by Ross (2008) to better match the
LES results in terms of the surface pressure field and wind-speed and shear-stress profiles.
Here we see that all three simulations over the hill give very similar results in terms of scalar
concentration profiles, suggesting that the scalar transport is not too sensitive to details of
the turbulence scheme in this case. The results show small, but significant, differences from
the results over flat ground. These differences are most noticeable over the upwind slope
where mean-flow transport leads to lower concentrations deep in the canopy over the upwind
slope compared to the flat case. Over the lee slope the concentrations in the recirculation
region are slightly increased compared to the flat case, but the differences are smaller than
over the upwind slope. Differences in the tracer profiles over the hill appear principally in
the separation region over the lee slope. Again the value of β = 0.35 better reproduces the
LES results, particularly near canopy top over the lee slope. Note that both values of β lie
within the range of observed values from real forest canopies. These results are qualitatively
similar to those observed using the 1.5-order closure scheme in Sect. 2. A closer examination
of the tracer concentrations shows that the region of high tracer concentration over the lee
slope has a lower maximum and is more spread out in the LES simulation compared to the
mixing-length closure scheme. This is entirely consistent with Fig. 5b of Ross (2008), which
showed that the LES predicted higher values for the turbulent kinetic energy in this region,
and hence would be expected to exhibit more turbulent mixing. This probably reflects the
fact that, although there is little mean flow in the deep canopy, there is significant variability
in the flow and in the tracer concentrations resulting from the flow in the upper canopy and
above penetrating downwards.

5.2 The Turbulent Schmidt Number

The first-order mixing length closure scheme assumes that the Reynolds shear stress, τij =
−ρu′

iu
′
j , and Reynolds-averaged turbulent tracer mixing term, u′

ic
′ are given by

u′
iu

′
j = Km

(
∂ui

∂xj

+ ∂uj

∂xi

)
, (15a)

u′
ic

′ = Kc
∂c

∂xi

. (15b)

In the first-order turbulence scheme Km is determined using a mixing-length closure. Ross
(2008) examined the validity of this mixing-length approximation for Km using the LES
results. Implicit in the first-order mixing length closure is the assumption that the turbulent
Schmidt number (the ratio of the turbulent diffusivities for momentum and scalar),

Sc ≡ Km

Kc
(16)

is equal to 1, i.e. momentum and scalars are identically mixed by turbulence. Experimental
observations in the atmospheric boundary layer do not necessarily satisfy Eq. 15b for all
components, i. In general Km and Kc are defined to ensure that this is a reasonable approxi-
mation in the direction of the dominant turbulent flux. To calculate Km and Kc from the LES
data the vertical components are taken so

Km = u′w′
∂u/∂z + ∂w/∂x

, (17a)

Kc = w′c′
∂c/∂z

. (17b)
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Fig. 7 Profiles of the turbulent Schmidt number on flat ground and at four locations over the hill derived from
the LES. Canopy top is at z/h = 0

In the boundary layer the Schmidt number is generally close to 1, however observations in
forest canopies show that the Schmidt number decreases to about 0.5 in the reduced surface
layer that extends up to a few canopy heights above canopy top (Harman and Finnigan 2008).
This is also observed in the LES simulations over flat terrain (see Fig. 7). Within the can-
opy the LES then demonstrates a sharp increase in the Schmidt number up to a maximum
of about 2 at a height of 5m above the ground, before it then decreases again towards the
surface. Variations in the Schmidt number within the canopy are perhaps unsurprising as
mixing-length closure schemes are known not to perform particularly well there (see e.g.
Ross 2008). From a dynamical point of view this has a relatively small impact since turbulent
momentum fluxes are small deep within the canopy due to the small vertical wind shear. This
is not necessarily the case for tracer fluxes, where there may still be significant gradients in
tracer concentration.

Figure 7 also shows profiles of the Schmidt number derived from the LES at four differ-
ent locations across the hill. These are slightly noisier, since averaging is only done in the
lateral direction and over time on the hill, whereas streamwise averaging is also performed
for the simulation over flat ground. All four profiles show similar trends to the results over
flat ground with the Schmidt number decreasing from around 1 well above the canopy to a
minimum near canopy top, and then increasing within the canopy to a maximum at about 5
m above the ground. There are however significant quantitative differences between profiles.

Well above the forest canopy results are similar for all profiles. Closer examination of the
turbulent diffusivities in Fig. 8 shows that both Km and Kc are enhanced over the hill, but
by similar amounts. This is due to increases in both the horizontally averaged momentum
and scalar fluxes. This is perhaps slightly surprising and may be due in part to starting the
LES averaging before the simulation has settled to a statistically stationary state. What is
surprising is that despite these differences the calculated values of Sc above the canopy vary
little over the hill and compare very well with the results over flat ground. The values of Km

and Kc increase particularly above the recirculation region (x = 200 m) in what is likely
to be a real dynamic effect due to the hill. Just above canopy top the systematic variations
between Km and Kc compared to the flat case are smaller but there are much more significant
differences in the Schmidt number with lower values than over flat ground at the summit of
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Fig. 8 Profiles of the turbulent diffusivity for a momentum, Km and b tracer, Kc on flat ground and at four
locations over the hill derived from the LES. Canopy top is at z/h = 0

the hill and larger values elsewhere over the hill. The larger values of the Schmidt number
in this region, up to values of about 1, are principally due to enhanced values of Km in this
region compared to over flat ground. This suggests that increased shear and vertical advection
at canopy top are important in modifying turbulent transport just above the canopy, which is
entirely in accord with the scaling analysis of Sect. 3.

Within the canopy the Schmidt numbers over the hill exceed those over flat ground in
most locations, and in particular the maximum values at low level are significantly larger, up
to about 3. This is due to a combination of increased values of Km over the lee slope (100 m)
and in the valley (200 m) , and reduced values of Kc on the upwind slope (−100 m) and near
the summit (zero height). The only place within the canopy where the Schmidt number is
less over the hill than on flat ground is in the upper part of the canopy over the lee slope (100
m). This is in the recirculation region, and the low wind shear in this region leads to reduced
values of Km compared to other parts of the canopy, although the impact on Kc is less.

What these LES results show is that the relationship between Km and Kc is not sim-
ple within and above forest canopies. This particular small hill, where vertical advection is
significant, is likely to be an extreme case, however this variability in the Schmidt number
potentially makes modelling of tracer transport using mixing-length closure schemes diffi-
cult. It would be possible to devise a scheme where Sc scaled with height to match results
over flat ground, as done in Harman and Finnigan (2008), however these results suggest
that even this approach might not be sufficient over hills. Having said this it is then perhaps
surprising that the tracer profiles from the 1.5-order model agree so well with those from
the LES in Fig. 1. Perhaps this suggests that tracer advection actually dominates in these
cases and so errors in turbulent tracer fluxes are less important. This does seem to agree with
the conclusions of the scaling analysis in Sect. 3 that the leading order perturbation in the
turbulent fluxes is zero. This is clearly a topic for further research in terms of modelling scalar
transport within and above forest canopies over complex terrain. In particular it would be
interesting to make LES for much wider hills where advection is smaller and hence turbulent
transport is more important.

6 Implications for Flux Measurements

Observations of carbon uptake by forests are frequently made using eddy-covariance flux
measurements on a large tower (e.g. the FLUXNET project Baldocchi et al. 2001) and
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Fig. 9 Canopy-top turbulent scalar flux (normalized on the depth-integrated canopy source term) plotted
against the position across the hill (non-dimensionalized on the hill width) for different hills (simulations 3,
5 and 7 in Sect. 2)

assuming that this is representative of a forest. Many forested sites are not truly flat though
and so the assumptions of horizontal homogeneity are not exactly met. The potential impact
of advection on the flux measurements has to be considered. Nighttime drainage flows on even
gentle slopes are an often-cited source of errors in flux measurements (e.g.
Wilson et al. 2002; Belcher et al. 2008), however this work shows that even under neu-
tral, strong wind conditions advection may be non-negligible. There is evidence of this from
the FLUXNET sites. The study of Wilson et al. (2002) demonstrated an average imbal-
ance of around 20% in the energy balance, even in daytime conditions. The imbalance
was observed even for well-mixed conditions (i.e. more neutral flow with stronger winds),
although it increased for lower wind speeds and was much larger in nocturnal conditions. The
advective effects demonstrated in our study, even for large hills with relatively small slopes,
are certainly consistent with these observations. Figure 9 shows the turbulent scalar flux
(non-dimensionalized on the depth integrated scalar source term) at canopy top and height
h above the canopy for three different hills with the same slope (H/L = 0.1), but different
scales (L = 100, 200, 400, 1600). In each case the canopy and the uniform scalar source
term are the same (βh/l = 5.55, Lc = 10 m, S = 10−2 m−3 s−1). For steady-state flow over
flat ground the non-dimensional scalar flux has a value of one since production in the canopy
is balanced by the turbulent transport at canopy top. For the widest hill, with relatively weak
canopy-top vertical velocities, the canopy-top scalar fluxes only vary a small amount across
the hill. Note that the total flux integrated across the hill is slightly less than the flat-ground
case, suggesting that advection is responsible for a small net transport of scalar out of the
canopy. As the scale of the hill decreases the variability in the canopy-top fluxes increases
significantly. At some points over the smallest hill point measurements of the canopy-top
turbulent flux vary by up to a factor of three compared to the source term. Variations at a
height h above the canopy are qualitatively similar, but smaller in magnitude than those at
canopy top. The increased height above the canopy smooths out some of the canopy-induced
variability. For the smallest hill there is still a difference of up to a factor of two compared
to the flat-ground case.

A further consideration when interpreting flux measurements is that the flow into and out
of the canopy implies that streamlines are not parallel to the terrain or to canopy top, and
therefore techniques that rotate sonic anemometer measurements into a mean flow coordinate
system, or use a planar fit to the flow data as a coordinate system (see e.g. Lee et al. 2004),
may not give the expected results. In particular, the lack of symmetry to a reversal of wind
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direction means that even for an ideal symmetrical hill and ideal conditions the averaged
wind data do not lie in a plane. For large-scale hills the effect is relatively small, but for
smaller scale hills it may be significant.

Modelling studies such as these are not yet practical for correcting or scaling observational
flux measurements for the effects of terrain, however they do provide important indications of
the type and magnitude of errors that may be introduced through neglecting such effects. They
may also provide guidance into the most suitable locations for making flux measurements
that are truly representative of a larger area.

7 Conclusion

Our study provides a systematic investigation of the impact of hills on scalar concentration
and transport within and above a forest canopy. With a fixed uniform source of scalar within
the canopy the dynamics of the canopy–boundary-layer interactions (previously studied by
e.g. Finnigan and Belcher 2004; Ross and Vosper 2005) dominate. Over hills the pressure
field resulting from the presence of the hill drives flow into and out of the canopy and this
dynamical process acts like a pump to remove scalars more efficiently from the canopy space;
this reduces the mean concentration of scalar within the canopy for a fixed source term. This
effect is particularly strong for small-scale hills where the canopy-atmosphere mean flow is
largest. Although the overall effect is to reduce mean scalar concentrations in the canopy,
there is a large spatial variability in concentrations in the canopy, with the maximum con-
centrations at a given canopy depth often exceeding those over flat ground. This is closely
linked to flow separation in the lee of the hill trapping scalars in the canopy. In cases where
there is moderately strong vertical advection at canopy top then the maximum concentrations
occur near the separation point. Low wind speeds and shear in this region result in weak tur-
bulent transport and long canopy residence times for the air, which both contribute to higher
scalar concentrations. While these broad features are relatively robust it is likely that the
details of tracer concentrations in the canopy are sensitive to the turbulence closure scheme.
Canopy-top tracer variations can be successfully predicted using a simple scaling argument
that neglects the deep canopy. This works well for relatively wide hills and suggests that in
these cases first-order closure schemes may be more successful than anticipated in predicting
tracer concentrations. Similar results for time-averaged scalar concentrations are seen for a
LES of flow over a small hill based on the simulations in Ross (2008). The LES does highlight
the unsteady and intermittent nature of the flow in the canopy. Calculations of the Schmidt
number in the LES also suggest that the common assumption that momentum and scalars are
transported in the same way is not valid within and just above the canopies, with significant
variations in the Schmidt number in the vertical and across the hill. In principle at least some
of this variability could be represented with a parametrization of the Schmidt number in
the canopy, but whether this is the most significant source of uncertainty in mixing-length
closure models for canopy flows remains to be studied.
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