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Abstract Recently, several attempts have been made to model the wind velocity in an urban
canopy in order to accurately predict the mixing and transport of momentum, heat, and pollu-
tants within and above the canopy on an urban scale. For this purpose, unverified assumptions
made by Macdonald (Boundary-Layer Meteorol 97:25–45, 2000) to develop a model for the
profile of the mean wind velocity within an urban canopy have been used. In the present study,
in order to provide foundations for improving the urban canopy models, the properties of the
spatially-averaged mean quantities used to make these assumptions have been investigated by
performing large-eddy simulations (LES) of the airflow around square and staggered arrays
of cubical blocks with the following plan area densities: λp = 0.05, 0.11, 0.16, 0.20, 0.25,
and 0.33. The LES results confirm that the discrepancy between the spatial average of wind
velocity and Macdonald’s five-point average of wind velocity can be large in both types of
arrays for large λp . It is also confirmed that Prandtl’s mixing length varies significantly with
height within the canopy, contrary to Macdonald’s assumption for both types of arrays and
for both small and large λp . On the other hand, in accordance with Macdonald’s assumption,
the sectional drag coefficient is found to be almost constant with height except in the case of
staggered arrays with high λp .
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132 T. Kono et al.

1 Introduction

When studying the mixing and transport of momentum, heat, and pollutants within and
above an urban canopy on an urban scale, it is useful to deal with spatially-averaged physical
quantities of a mesh in which buildings are resolved vertically and not horizontally. Recently,
Macdonald (2000) modelled the vertical profiles of the spatially-averaged time-mean stream-
wise wind velocity within homogeneous urban canopies as

〈u〉 (z) = 〈u〉 (h) exp(a {z/h − 1}), (1)

where the angle brackets denote a spatially-averaged value, the overbar denotes a time-mean
value, z is the coordinate in the vertical direction, h is the canopy height, u is the stream-
wise wind velocity, and a is called the “attenuation coefficient.” In Macdonald’s model
formulation, buildings were represented as arrays of cubical blocks. Further, the following
assumptions were made:

(I) The spatially-averaged wind velocity used for determining the parameter a is approx-
imated by a weighted average of the wind velocities obtained from wind-tunnel mea-
surements at five positions lined up between the centre of the wake and that of the gap
(see Fig. 1).

(II) Prandtl’s mixing length is constant with height within the urban canopy.
(III) The sectional drag coefficient, i.e., the drag coefficient normalized by the spatially-

averaged mean wind velocity at each height, is constant with height within the urban
canopy.

From the results obtained by fitting the profiles of the wind velocity calculated by Mac-
donald’s model to those of the five-point average of the measured wind velocity, Macdonald
(2000) found that the model worked well for most cases except for arrays with high plan
area densities (λp) where recirculation vortices behind the rows of cubes produced negative
mean velocities at small heights.

Recently, by performing direct numerical simulations (DNS) of the airflow around square
and staggered arrays of cubical blocks with λp = 0.25, Coceal et al. (2006) showed that the
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Fig. 1 Schematic plan view of computational domains for a a square array and b a staggered array of cubical
blocks. Here, h is the height of the cubical blocks and the values of Sx (= Sy) are listed in Table 1 with the
packing densities of arrays, λp . The five-point average of wind velocity (Macdonald 2000) is obtained for
points sp1, sp2, sp3, sp4, and sp5 (indicated by black circles). Velocity measurements were performed by
Cheng and Castro (2002) and Castro et al. (2006) at points p0–p3 (indicated by blue circles)
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Numerical Investigations of Mean Winds 133

sectional drag coefficient changed drastically at heights below two-fifths of the cube height
in the staggered array, and at heights below one-tenth of the cube height in the square array.
In addition, they showed that in the former case, Prandtl’s mixing length varied significantly
inside the canopy as compared to above the canopy; the mixing length increased from the
ground to around half the canopy height, and then decreased to the canopy height, having
a very small value. Subsequently, it increased with height. Further, by performing DNS for
the same arrays, Coceal et al. (2007) showed that the line average of the wind velocity at
four positions, which is similar to the five-point average described in assumption I, differed
significantly from the spatial average of the wind velocity excluding the space occupied by
the blocks (i.e.,

∫
V f

udV /V f , where V f is the volume of fluid in an averaging cell) in the
square array, while the discrepancy was very small at heights above two-fifths of the cube
height in the staggered array. From these results, it can be considered that assumptions II and
III do not hold well for the staggered array of cubes with λp = 0.25 and that assumption I
might not hold well for the square array of cubes with λp = 0.25. However, as mentioned
above, it has been confirmed that Macdonald’s model does not work well for a large λp value
of 0.25. Although many numerical investigations of the flow field within arrays of cubical
blocks with low λp have been conducted, for which Macdonald’s model has been considered
to work well (e.g., Hanna et al. 2002; Kanda et al. 2004; Hamlyn and Britter 2005; Kanda
2006), the validity of assumptions I, II, and III has not yet been investigated. Nevertheless,
these assumptions have been used in some recent attempts to model the wind velocity in urban
canopies. For example, Sabatino et al. (2008) used assumptions II and III in their model. In
the validation of their model, they noted that a better choice of mixing length might possibly
have provided better results. In addition, Coceal and Belcher (2004) used assumption III in
their model formulation. Moreover, they used the empirical relation between a, which was
obtained based on assumption I, and λp of cube arrays in the validation of their model. With
regard to the mixing length in urban canopies, they modelled this as a harmonic mean of
κz and lc, considering that, unlike vegetation canopies with a constant mixing length, urban
canopies were not “deep” but “shallow,” and the mixing length was affected by the ground.
Here, κ is the von Karman constant and lc is a constant mixing length. Further, showing the
variation of wind profiles in canopies with λp , which were calculated by their model, they
concluded that the fact that the mixing lengths were not constant with height in the canopy
had the effect that the vertical profiles of wind velocity were not exponential in urban can-
opies. However, the mixing length calculated by the harmonic mean of κz and lc increases
with height and differs from that obtained by the DNS performed by Coceal et al. (2006) for
a staggered array of cubes with λp = 0.25. In addition, as mentioned above, Macdonald’s
(2000) model has been considered to work well for cube arrays with small λp .

On this basis, it can be considered that, over a wide range of λp of cube arrays,
information on the properties of the spatially-averaged time-mean quantities used to
make Macdonald’s assumptions I–III will be very useful for the further development of
urban canopy models. In this study, we perform large-eddy simulations (LES) of air-
flow around square and staggered arrays of cubical blocks with λp = 0.05, 0.11, 0.16,

0.20, 0.25, and 0.33, and present a dataset of spatially-averaged time-mean quantities used
to make Macdonald’s assumptions I–III. In addition, we investigate the extent to which
assumptions I–III are accurate, and also discuss explanations for the properties of these
spatially-averaged time-mean quantities.
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134 T. Kono et al.

2 Definitions of Spatial Averaging, Mixing Length, and Sectional Drag Coefficient

2.1 Review of Macdonald’s (2000) Model

In this study, we use a right-handed rectangular Cartesian coordinate system xi (x, y, z) with
streamwise x1(x), spanwise x2(y), and vertical x3(z) directions. The velocity components
are denoted by ui and they possess streamwise u1(u), spanwise u2(v), and vertical u3(w)

components. Vector quantities are indicated by a boldface type, i.e., (x, y, z) ≡ x, and
spatially-averaged values are denoted by angular brackets.

Macdonald (2000) extended Cionco’s (1965) model for mean wind-speed profiles in veg-
etative canopies to urban canopies. In Macdonald’s approach, buildings in urban canopies
were treated as two-dimensional cylinders with a sectional drag coefficient CD(z). Moreover,
it was assumed that at each cross-section, there existed a balance between the building’s drag
force and the local shear stress at each height. The differential drag per unit area is expressed as

d 〈τ 〉 (z) = 0.5ρCD(z) 〈u〉2 (z)d A f /Ad , (2)

where d 〈τ 〉 is the change in shear stress, d A f is the portion of the frontal area of the buildings
between levels z and z +dz in an averaging cell, Ad is the plan area of an averaging cell, and
ρ is the density of air. Since the cross-section of these buildings is uniform, the following
relation holds:

d A f = A f dz/h, (3)

where h is the height of the buildings. Then, Macdonald (2000) approximated the spatially-
averaged shear stress by applying Prandtl’s mixing-length hypothesis

〈τ 〉 (z) = ρ {lm(z)d 〈u〉 (z)/dz}2 , (4)

where lm is Prandtl’s mixing length. Using Eq. 4, Eq. 2 is re-written as

d

dz

{{lm(z)d 〈u〉 (z)/dz}2} = σ f (z) 〈u〉2 (z). (5)

Here, σ f is the friction coefficient defined as

σ f (z) = 0.5CD(z)λ f /h, (6)

where λ f is the frontal area density defined as

λ f = A f /Ad . (7)

Further, Macdonald (2000) assumed that lm and CD were constant with height. Under these
conditions, a solution that satisfies Eq. 5 is Eq. 1, where

a3 = h3σ f

2l2
m

. (8)

By conducting wind-tunnel measurements of the wind velocity profile at five points in
square and staggered arrays of cubical blocks (shown in Fig. 1) with λp = 0.05, 0.11, 0.16,

0.20, and 0.33, Macdonald (2000) calculated the five-point average of the wind velocity at
each height using

〈u〉5m (z) = {
0.5usp1(z) + usp2(z) + usp3(z) + usp4(z) + 0.5usp5(z)

}
/4, (9)
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Numerical Investigations of Mean Winds 135

where the subscripted numbers on the right-hand side denote the sampling points indicated in
Fig. 1. Then, assuming the five-point average of the wind velocity to be the spatially-averaged
wind velocity of a unit area, Macdonald (2000) fitted Eq. 1 to these profiles and found the
following empirical relation:

a = 9.6λ f . (10)

In arrays of cubical blocks, λp = λ f .

2.2 Definition of Spatial Averaging

The mathematical definitions proposed thus far for the spatial average of a flow variable φ in
canopies or permeable media are divided into two typical types based on the definitions of
the domain of integration. The first type excludes the total volume of solids in an averaging
cell, Vs , from the domain of integration (hereafter referred to as “solid-exclusive averaging”),
and it is expressed as

〈φ〉exc1 (x) = 1

V f

∫

V f

φ(x + x′)d3x′, (11)

(e.g., Finnigan 2000) or

〈φ〉exc2 (x) = 1

V f + Vs

∫

V f

φ(x + x′)d3x′, (12)

(e.g., Miguel et al. 2001). The second type includes Vs in the domain of integration (hereafter
referred to as “solid-inclusive averaging”) and is expressed as

〈φ〉inc (x) = 1

V f + Vs

∫

V f +Vs

φ(x + x′)d3x′, (13)

(e.g., Lien et al. 2005). In general, the averaging volume is horizontally extended to a degree
sufficient to eliminate variations in canopy structure but made sufficiently thin vertically to
preserve the characteristic variation in properties. Above a canopy, there are no differences
among 〈φ〉exc1 , 〈φ〉exc2, and 〈φ〉inc because Vs = 0. Within a canopy, the following relation
holds between 〈φ〉exc1 and 〈φ〉exc2:

〈φ〉exc1 = V f + Vs

V f
〈φ〉exc2 . (14)

If φ is assumed to be zero in the space occupied by solid bodies, the values of 〈φ〉inc and
〈φ〉exc2 become identical.

As mentioned in the Sect. 1, Coceal et al. (2007) compared a line average of u with 〈u〉exc1.
However, considering the volume of space that is represented by each point of a line average,
it might have been appropriate to compare a line average of u with 〈u〉inc. In this study,
we mainly use solid-inclusive averaging, except when we focus on the differences among
〈u〉5m , 〈u〉inc, and 〈u〉exc1.
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136 T. Kono et al.

2.3 Definitions of Mixing Length and Sectional Drag Coefficient

Solid-inclusive averaging can be considered as a filtering operation used for LES formula-
tions. Leonard’s (1974) spatial filtering of φ for a single phase flow in an unbounded domain,

〈φ〉 (x) =
+∞∫

−∞

+∞∫

−∞

+∞∫

−∞
G(x − ξ ,∆(x))φ(ξ)d3ξ , (15)

using the top-hat filter with a spatially homogeneous filter width �xi ,

G(x − ξ) =
{

1/�x�y�z, i f |xi − ξi | < �xi /2
0, otherwise

, (16)

is expressed as

〈φ〉 (x) = 1

�x�y�z

�x /2∫

−�x /2

�y/2∫

−�y/2

�z/2∫

−�z/2

φ(x + x′)d3x′. (17)

Equation 17 is mathematically identical to Eq. 13 with an averaging volume (V f + Vs) of
�x�y�z . Therefore, from the fundamental properties of a filtering operation with a homo-
geneous filter width, the following commutation relation holds (e.g., Sagaut 2005):

〈
∂φ

∂xi

〉

inc
− ∂ 〈φ〉inc

∂xi
= 0. (18)

By introducing the concept of the immersed boundary method (IBM) (e.g., Fadlun et al.
2000) and applying the solid-inclusive averaging (Eqs. 13 and 18) to the Navier-Stokes equa-
tions, we derived the spatially-averaged momentum equations for flow through an urban
canopy (Kono et al. 2009a,b). First, we assumed that (i) the entire space, including that occu-
pied by buildings, was filled with a fluid, and (ii) an external body force field existed that
always reduced the wind speed to zero at all positions coinciding with the space occupied by
the buildings. Under these assumptions, the Navier-Stokes equations are expressed as

∂ui

∂t
+ ∂ui u j

∂x j
= − 1

ρ

∂p

∂xi
+ ν

∂2ui

∂x2
j

+ fi , (19)

and, inside and on the surface of a building,

fi = 1

ρ

∂p

∂xi
− ν

∂2ui

∂x2
j

(20a)

otherwise,

fi = 0. (20b)

Then, by applying solid-inclusive averaging (Eqs. 13 and 18) to Eqs. 19 and 20, the following
spatially-averaged equations were derived:

∂ 〈ui 〉inc

∂t
+ ∂ 〈ui 〉inc

〈
u j

〉
inc

∂x j

= − 1

ρ

∂ 〈p〉inc

∂xi
− ∂

{〈
ui u j

〉
inc − 〈ui 〉inc

〈
u j

〉
inc

}

∂x j
+ ν

∂2 〈ui 〉inc

∂x2
j

+ 〈 fi 〉inc , (21)
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Numerical Investigations of Mean Winds 137

〈 fi 〉inc = 1

ρ{V f + Vs}
∫

Bsb

pni d S − 1

V f + Vs

∫

Bsb

ν
∂ui

∂n
d S, (22)

where Bsb is the boundary surface of a building and n is the outward pointing unit normal
field of Bsb (positive when directed from Vs into V f ). The first and second terms on the
right-hand side of Eq. 22 are the form drag and viscous drag, respectively, normalized by the
averaging volume.

If we apply solid-inclusive averaging (Eqs. 13 and 18) to the time-averaged Eqs. 19 and
20, the following equations are derived:

∂ 〈ui 〉inc

∂t
+ ∂ 〈ui 〉inc

〈
u j

〉
inc

∂x j

= − 1

ρ

∂ 〈p〉inc

∂xi
−

∂
{〈

u′
i u

′
j

〉

inc
+

〈
u′′

i u′′
j

〉

inc

}

∂x j
+ ν

∂2 〈ui 〉inc

∂x2
j

+ 〈
f i

〉
inc , (23)

and

〈
f i

〉
inc = 1

ρ{V f + Vs}
∫

Bsb

pni d S − 1

V f + Vs

∫

Bsb

ν
∂ui

∂n
d S, (24)

where

φ′ = φ − φ, (25)

and

φ′′ = φ − 〈φ〉inc . (26)

By spatially averaging the results of the large-eddy simulations of the flow around the
staggered array of cubes with λp = 0.25, we investigated the budget for the streamwise
component of time-averaged Eq. 21 (Kono et al. 2009b) and that of Eq. 23 (Kono et al. 2007).
We found that in the budget for the streamwise component of time-averaged Eq. 21, the con-
tributions of −∂ 〈uw〉inc (z)/∂z and 〈 f1〉inc (z) were dominant within the cube height and
balanced against each other, i.e.,

〈 f1〉inc (z) ≈ ∂ 〈uw〉inc (z)

∂z
. (27)

In addition, in the budget for the streamwise component of Eq. 23, the contributions of

−∂
〈
u′w′

〉

inc
(z)/∂z,−∂

〈
u′′w′′〉

inc (z)/∂z, and
〈
f 1

〉
inc (z) were dominant within the canopy

height and −∂
{〈

u′w′
〉

inc
(z) + 〈

u′′w′′〉
inc (z)

}
/∂z was balanced by

〈
f 1

〉
inc (z), i.e.,

〈
f 1

〉
inc (z) ≈

∂
{〈

u′w′
〉

inc
(z) + 〈

u′′w′′〉
inc (z)

}

∂z
. (28)

Therefore, it can be considered that 〈τ 〉 (z)/ρ in Eq. 2 is approximately equal to −〈uw〉inc (z)

or −
{〈

u′w′
〉

inc
(z) + 〈

u′′w′′〉
inc (z)

}
. In this study, we define 〈τ 〉 (z)/ρ as

〈τ 〉 (z)

ρ
= −〈uw〉inc (z) (29)
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138 T. Kono et al.

for the calculation of lm(z) in Eq. 4; thus,

lm(z) =
√

−〈uw〉inc(z)

d 〈u〉inc (z)/dz
. (30)

From Eqs. 2, 3, 7, 27, and 29, CD(z) is expressed as

CD(z) = −〈 f1〉inc (z)h

0.5 〈u〉2
inc (z)λ f

. (31)

3 Numerical Approach

3.1 Governing Equations

A filtered continuous equation and the Navier-Stokes equations are used as the governing
equations for LES:

∂ug
i

∂xi
= 0, (32)

∂ug
i

∂t
+ ug

j

∂ug
i

∂x j
= u2

τ

H
δi1 − 1

ρ

∂pg

∂xi
+ ν

∂ug
i

∂x j∂x j
− ∂τ

g
i j

∂x j
, (33)

where τi j is the subgrid-scale stress, uτ is the total wall friction velocity defined as {τ0/ρ}0.5,
τ0 is the wind stress on the ground and the blocks, δi j is the Kronecker delta, and H is
the computational domain height. The superscript g denotes the filtering operation at the
grid scale that resolves the cubical blocks. The first term on the right-hand side of Eq. 33
is the driving force of the flow. The subgrid-scale stress τi j is computed using the dynamic
Smagorinsky model of Germano et al. (1991) and Lilly (1992).

3.2 Simulation Set-up

The computational domain, total number of grid points, and uτ values in Eq. 33 for all run
cases are given in Table 1 and Fig. 1. Here, h = 20 mm is the height of the cubical block.
Cheng and Castro (2002) and Castro et al. (2006) conducted a wind-tunnel experiment for a
staggered array of cubes with λp = 0.25 (with a very large number of cubes) and obtained
detailed wind data at the four points indicated in Fig. 1b. The height of the computational
domain H(= 7.5h) is equivalent to the boundary-layer height of the measurement points.
In the wind-tunnel experiment, the free stream velocity Ur was 10 m s−1, and the Reynolds
number based on Ur , h, and a value of ν = 1.54 × 10−5 m2 s−1 (air, 25◦C) was approxi-
mately 1.3 × 104. The uτ value was estimated using two different methods by Cheng and
Castro (2002); one used a direct drag measurement in which the pressure drag on a cube was
measured; the estimated uτ value was 0.724 m s−1. The other used a turbulent shear stress
measurement in which the spatially-averaged turbulent shear stress in the inertial and rough-
ness sub-layers was measured; the estimated uτ value was 0.638 m s−1. In the simulation, we
use the same value of ν, as described above, in Eq. 33. For a staggered array with λp = 0.25,
we use the two different values of uτ mentioned above in Eq. 33 (these run cases are hereafter
referred to as ST25a and ST25b, respectively) to examine the effect of driving forces having
different magnitudes. In all run cases, the grid spacing in the x and y directions is h/32. The
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Numerical Investigations of Mean Winds 139

Table 1 Computational conditions

Array type Run case λp Sx (= Sy)

in Fig. 1.
Computational
domain size

Number of grid
points

uτ [m s−1]
in Eq. 33

Square SQ05 0.05 3.5h 9h × 9h × 7.5h 288 × 288 × 128 0.7

SQ11 0.11 2h 6h × 6h × 7.5h 192 × 192 × 128 0.7

SQ16 0.16 1.5h 5h × 5h × 7.5h 160 × 160 × 128 0.7

SQ20 0.20 1.25h 4.5h × 4.5h × 7.5h 144 × 144 × 128 0.7

SQ25 0.25 h 4h × 4h × 7.5h 128 × 128 × 128 0.7

SQ33 0.33 0.75h 3.5h × 3.5h × 7.5h 112 × 112 × 128 0.57

Staggered ST05 0.05 3.5h 9h × 9h × 7.5h 288 × 288 × 128 0.75

ST11 0.11 2h 6h × 6h × 7.5h 192 × 192 × 128 0.75

ST16 0.16 1.5h 5h × 5h × 7.5h 160 × 160 × 128 0.75

ST20 0.20 1.25h 4.5h × 4.5h × 7.5h 144 × 144 × 128 0.73

ST25a 0.25 h 4h × 4h × 7.5h 128 × 128 × 128 0.724

ST25b 0.25 h 4h × 4h × 7.5h 128 × 128 × 128 0.638

ST33 0.33 0.75h 3.5h × 3.5h × 7.5h 112 × 112 × 128 0.61

grid spacing in the z direction is h/32 from z = 0 to z = 1.5h, but increases to a maximum
of h/8 from z = 1.5h to z = 7.5h.

A periodic boundary condition is imposed in the x and y directions to simulate an infinite
array. At the top of the domain, a free slip condition is imposed for velocity and the Neu-
mann condition is imposed for pressure. At the bottom of the domain and on the surface of
the blocks, the conventional no-slip condition and the Neumann condition are imposed for
velocity and pressure, respectively.

The governing equations are discretized by the finite difference method on a Cartesian
staggered grid system. All spatial derivatives are discretized by the second-order central
difference scheme. Time integration is performed using the Adams-Bashforth scheme. The
simplified marker and cell (SMAC) method (Amsden and Harlow 1970) is used for veloc-
ity–pressure coupling. The Poisson equation for the pressure correction is solved by the
biconjugate gradient stabilized (Bi-CGSTAB) method (Van der Vorst 1992).

In all run cases, the initial durations of the runs are approximately 200T (T = h/uτ ) and
the subsequent durations for measuring statistics are approximately 350T . These durations
are similar to those used in the study of Coceal et al. (2006), in which the validity of these
durations was confirmed under a similar simulation setting.

4 Results and Discussion

4.1 Validation of Numerical Approach

In Fig. 2a–f, the vertical profiles of the mean streamwise velocities u and the Reynolds shear
stresses −u′w′ of ST25a and ST25b at the four points indicated in Fig. 1b are compared
with those of the wind-tunnel measurements of Castro et al. (2006). Further, in Fig. 2g, the
vertical profiles of the laterally integrated pressure difference between the front and back
faces of the cubical block calculated by ST25a and ST25b are compared with that obtained
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Fig. 2 Comparison of the LES results with the measurements obtained in the wind-tunnel experiment of
Cheng and Castro (2002) and Castro et al. (2006) for the staggered array of cubes with λp = 0.25: a u at p0

in Fig. 1b, b u at p1 in Fig. 1b, c u at p2 in Fig. 1b, d u at p3 in Fig. 1b, e −u′w′ at p1 in Fig. 1b, f −u′w′ at
p2 in Fig. 1b, and g laterally integrated time-mean pressure difference between the front and back faces of the
cube. Here, �pcenter,z=h/2 denotes the time-mean pressure difference between the centres of the front and
back faces of the cube
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Fig. 4 Vertical profiles of CD(z)
for the staggered array with
λp = 0.25
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in the wind-tunnel measurements of Cheng and Castro (2002). Here, the measurement data
shown are those of Cheng and Castro (2002) taken from Coceal et al. (2006). From Fig. 2, it
can be confirmed that all the profiles of ST25a are in good agreement with the wind-tunnel
measurements, while the discrepancies between the values calculated by ST25b and ST25a
are not always negligible, particularly in the profiles of −u′w′. Therefore, in order to simulate
the flows within and immediately above the arrays of blocks by this approach that uses a
driving force, as in Eq. 33, it is considered more appropriate to use the value of uτ obtained
using the direct drag measurement rather than that obtained using the turbulent shear stress
measurement. However, if u,−u′w′, and −〈 f1〉inc calculated by ST25a and ST25b are nor-
malized by the spatially-averaged wind velocity at the height of the blocks 〈u〉inc (h), or by
uτ , the profiles become almost identical to each other, especially within and immediately
above the block height, as shown in Fig. 3. In addition, as shown in Fig. 4, the vertical profiles
of CD(z) of ST25a and ST25b are almost identical to each other.

From these results, we can understand that different values of the driving force in Eq. 33,
within the range of ST25a and ST25b, have a negligible effect on the profiles of CD(z) and

normalized 〈u〉inc and
〈
−u′w′

〉

inc
by 〈u〉inc (h) or uτ , all of which appear in the deriva-

tion of Macdonald’s model. Since there exist discrepancies between the actual conditions
of the wind-tunnel experiment and the simulation settings such as the upper boundary con-
ditions, u of ST25a and ST25b at the top of the computational domain (z/h = 7.5) have
values of 12.1 and 10.2 m s−1, respectively, and these are different from Ur (= 10 m s−1). The
Reynolds numbers of ST25a and ST25b based on these velocities and h are approximately
1.57 × 104 and 1.32 × 104, respectively. In addition, the Reynolds number of Macdonald’s
(2000) wind-tunnel measurements, approximately 1.46 × 104 based on an upper free stream
velocity of 2.25 m s−1 and a cube height of 0.1 m, falls in the range of ST25a to ST25b. The
uτ values shown in Table 1 were decided such that u at the top of the computational domain
was in the range of 10–12 m s−1. Therefore, it is possible to investigate the properties of
the spatially-averaged mean quantities used to make assumptions I–III by dealing with the
abovementioned normalized quantities with sufficient grid resolution, without considering
the effect of different Reynolds numbers. In addition, it is possible to compare the profiles
of 〈u〉5m obtained by LES and Macdonald’s (2000) wind-tunnel measurement for Reynolds
numbers of the same order.

Figure 5 shows comparisons of the LES results and Macdonald’s (2000) wind-tunnel
experimental results for 〈u〉5m (the five points that are indicated in Fig. 1) normalized by
〈u〉5m of the cube height for square and staggered arrays with λp = 0.05, 0.11, 0.16, 0.20,
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Fig. 5 Vertical profiles of simulated and observed (Macdonald’s (2000) wind-tunnel experiment) 〈u〉5m (z)/
〈u〉5m (h): a square arrays and b staggered arrays

and 0.33. Although there exist several large discrepancies between the LES results and the
wind-tunnel results, both results exhibit qualitatively similar features, namely, the value of
〈u〉5m/〈u〉5m(h) reduces with an increase in λp and a decrease in the distance between z and
the ground. The discrepancies may be attributable to the use of 〈u〉5m (h) for normalizing
〈u〉5m . Since any grid point for u does not coincide with z = h in this simulation setting, we
calculated 〈u〉5m (h) by interpolating 〈u〉5m (63h/64) and 〈u〉5m (65h/64). Considering the
fact that u changes drastically and measurements become difficult in the vicinity of z = h, it
can be considered that the use of the spatially-averaged u at z = h for normalization is not
appropriate. Therefore, in the following discussion, we use uτ for the normalization of the
spatially-averaged quantities.

4.2 Investigation of Spatially-Averaged Quantities used in Macdonald’s Assumptions

4.2.1 Five-Point Average and Spatial Average

Figure 6 shows comparisons among LES results for 〈u〉5m/uτ , 〈u〉inc/uτ , and 〈u〉exc/uτ for
square and staggered arrays with λp = 0.05, 0.11, 0.16, 0.20, 0.25, and 0.33. In arrays with
λp = 0.25, at heights above z/h = 0.3, the discrepancies between 〈u〉5m/uτ and 〈u〉exc/uτ

(hereafter referred to as “DIS_5m_exc”) are significantly large for the square array (SQ25)
and very small for the staggered array (ST25a); at heights below z/h = 0.3, DIS_5m_exc
values are significantly large in both arrays. As mentioned in Sect. 1, Coceal et al. (2007)
showed similar tendencies for their DNS results of a line average of u at four positions. On the
other hand, at heights above z/h = 0.3, the discrepancies between 〈u〉5m/uτ and 〈u〉inc/uτ

(hereafter referred to as “DIS_5m_inc”) are not significantly large for SQ25 (as compared
to DIS_5m_exc values) and are relatively large for ST25a (as compared to DIS_5m_exc val-
ues); at heights below z/h = 0.3, DIS_5m_inc values are significantly large in both arrays
as in the case of DIS_5m_exc values.
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In staggered arrays with λp ≤ 0.20 and in all square arrays, DIS_5m_exc values are
significantly large and greater than DIS_5m_inc values. From these results, together with the
volume of the space represented by each point of the five-point average, it is reasonable to
consider that 〈u〉5m is an approximation of 〈u〉inc rather than 〈u〉exc, and the larger values of
DIS_5m_inc values as compared to DIS_5m_exc values in ST25a and ST33 are due to other
factors.

The reason why 〈u〉5m/uτ is larger than 〈u〉inc/uτ in staggered arrays with high λp (e.g.,
ST25a) above z/h = 0.3 can be understood from Fig. 7a. Points sp1, sp2, and sp3 of the five-
point average can be considered to represent area 1 (0 ≤ x/h ≤ 2, 0.475 ≤ y/h ≤ 0.625),
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Fig. 7 Horizontal distributions of time-mean two-dimensional wind vectors (u, v): a ST25 at z/h = 0.8, b
ST25 at z/h = 0.06, c SQ25 at z/h = 0.8, d SQ25 at z/h = 0.06, e ST11 at z/h = 0.8, and f SQ11 at
z/h = 0.8. The prevailing flow is to the right. The wind vectors are plotted at quarter resolution for greater
clarity

area 2 (0 ≤ x/h ≤ 2, 0.625 ≤ y/h ≤ 0.875) and area 3 (0 ≤ x/h ≤ 2, 0.875 ≤ y/h ≤
1.125), respectively. Since points sp1–3 are in the area of forward flow, the three-point
average of u is larger than its solid-inclusive average in the combined area of areas 1–3 due
to zero speed in the space occupied by the block. This is the main reason why 〈u〉5m/uτ is
larger than 〈u〉inc/uτ in staggered arrays with high λp above z/h = 0.3. On the other hand,
below z/h = 0.3, all points of the five-point average are in the area of reverse flow due to the
vortices in the wake of the block and in front of the block, as shown in Fig. 7b. This results in
〈u〉5m/uτ having a strong negative value, while 〈u〉inc/uτ has a moderate negative value due
to u with positive values in the gap area (0 ≤ x/h ≤ 1, 1 ≤ y/h ≤ 2) and zero speed in the
space occupied by the block. For the square arrays with high λp , the reason why 〈u〉5m/uτ

is larger than 〈u〉inc/uτ around z/h = 0.8 and smaller than 〈u〉inc/uτ near the ground can
be explained in the same manner using points sp1–3 in Fig. 7c, d.

With a decrease in λp for both the staggered and square arrays, DIS_5m_inc values become
negligibly small, as shown in Fig. 6c; then 〈u〉5m/uτ becomes smaller than 〈u〉inc/uτ , as
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Fig. 8 Variation of attenuation
coefficient with λp of the cube
arrays. Here, a = 9.6λp is Eq. 10,
and a = 9.0λp and a = 8.7λp
are the least-squares lines for a5m
and ainc , respectively
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shown in Fig. 6b. This is caused by the development of a reverse flow region in the wake of
the block; as shown in Fig. 7e, f, point sp1 lies in the reverse flow region. On the other hand,
since the number of points of the five-point average in the wake of the block decreases with a
decrease in λp , the contribution of the points in the wake of the block becomes less significant.
As a result, DIS_5m_inc values become negligibly small again as shown in Fig. 6a.

From the discussions above, it can be understood that the five-point average is signifi-
cantly affected by the formation of the reverse flow region around the block, especially, in
cube arrays with high λp .

Figure 8 shows the variation of aMacdonald, a5m , and ainc, which are the attenuation coeffi-
cients in Table 1 of Macdonald (2000) and those obtained by the least-squares fit of Eq. 1 to the
profiles of 〈u〉5m and 〈u〉inc, respectively, with λp of arrays of cubical blocks. As mentioned
earlier, the use of the spatially-averaged u at z = h for normalization might not be appropri-
ate; however, at least the following tendencies have been confirmed. Overall, the values of
a5m are smaller than those of aMacdonald because the LES results for 〈u〉5m (z)/〈u〉5m (h) are
generally greater than the wind-tunnel experimental results for 〈u〉5m (z)/〈u〉5m (h), as shown
in Fig. 5. In addition, the values of ainc are generally smaller than those of a5m . However,
the discrepancies among aMacdonald, a5m , and ainc are not significant, especially for arrays
with low λp , and a5m and ainc can be approximated by straight lines with slopes similar to
that of aMacdonald. Therefore, it can be considered that the linear relationships between the
attenuation coefficients and λp of arrays of cubical blocks are not significantly affected by
the discrepancies between 〈u〉5m and 〈u〉inc.

Table 2 shows �Macdonald,�5m , and �inc, which are the maximum absolute resid-
uals between exp(aMacdonald {z/h − 1}) and the wind-tunnel experimental results of
〈u〉5m (z)/〈u〉5m (h), between exp(a5m {z/h − 1}) and the LES results of 〈u〉5m (z)/〈u〉5m (h),
and between exp(ainc {z/h − 1}) and 〈u〉inc (z)/〈u〉inc (h), respectively for z/h > 0.3;�5m

tends to be larger than �inc in cube arrays with low λp , and smaller than �inc in cube arrays
with high λp .
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Table 2 Values of the
maximum absolute residuals
for exp(aMacdonald {z/h − 1}),
exp(a5m {z/h − 1}), and
exp(ainc {z/h − 1}) for
z/h > 0.3

Array type λp �Macdonald �5m �inc

Square 0.05 0.08 0.06 0.03

0.11 0.11 0.10 0.07

0.16 0.13 0.11 0.10

0.20 0.08 0.11 0.12

0.25 – 0.13 0.18

0.33 0.15 0.20 0.25

Staggered 0.05 0.05 0.06 0.03

0.11 0.16 0.14 0.09

0.16 0.18 0.17 0.13

0.20 0.11 0.19 0.17

0.25 – 0.16 0.21

0.33 0.06 0.11 0.24

4.2.2 Mixing Length

Figure 9a, b show the vertical profiles of lm/h, which is calculated from Eq. 30, for square
and staggered arrays, respectively, for λp = 0.05, 0.11, 0.16, 0.20, 0.25, and 0.33. As seen
in the figures, the values of lm/h change significantly in the canopy even for arrays with
low λp . As compared to the magnitudes of lm/h at z/h = 2.0, it is difficult to consider the
degrees of these changes in the canopies to be constant with height.

Table 3 shows the maximum and height-averaged values of lm/h in the canopies, together
with the values of lm/h estimated by Macdonald (2000) using the following two different
relations derived based on several assumptions:

lm/h =
√

CDH λ f
{
1 − e−2a

}
/
{
4a3

}
, (34)

and

lm/h = a−1uτ /uh, (35)

where CDH is the height-mean drag coefficient and a value of 1.2 was used based on the typical
value for the height-mean drag coefficient of surface-mounted cubes in a shear flow (ESDU
1986). It should be noted that, while the values of lm/h, which are estimated from Eqs. 34
and 35, respectively, increase monotonically as λp decreases, the maximum and height-aver-
aged values of lm/h in the canopies obtained by the LES have a peak at λp = 0.11 for
square arrays and at λp = 0.20 for staggered arrays. Between this and a lower value of λp ,
the maximum and height-averaged values of lm/h decrease monotonically in both square
and staggered arrays. Since the discrepancies between the maximum value of lm/h and the
height-averaged value of lm/h also decrease monotonically as λp decreases from λp = 0.16
in square arrays and λp = 0.20 in staggered arrays, it can be considered that lm/h tends to
be less variable with height as λp decreases in cube arrays with low λp .

The values of lm/h become very small at the height of the canopy (z/h = 1.0) because
the values of

{
d〈u〉inc/dz

}
h/uτ are significantly large at this height, as shown in Fig. 9c,

d, although the values of
√

−〈uw〉inc/uτ are maximum around this height, as shown in
Fig. 9e, f, and turbulent mixing is significantly active. These significantly large values of
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in staggered arrays, c d 〈u〉inc/dz · h/uτ in square arrays, d d 〈u〉inc/dz · h/uτ in staggered arrays, e√

−〈uw〉inc/uτ in square arrays, and f
√

−〈uw〉inc/uτ in staggered arrays

{
d〈u〉inc/dz

}
h/uτ occur due to the sharp decline in the wind speed above the cubical blocks

towards the blocks’ top surfaces. In Fig. 10, which shows the time-mean spanwise vorticity
contours in the vertical x–z planes for ST25a, SQ25, ST11, and SQ11, it is confirmed that
strong shear layers at around z/h = 1 exist only in the x–z planes that intersect the cubical
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Table 3 Values of the maximum and height-averaged mixing lengths in the canopies obtained by large-eddy
simulation and values of mixing-lengths estimated by Macdonald’s (2000) equations (Eqs. 34 and 35)

Array type λp lm/h (maximum) lm/h (height-average) lm/h (Eq. 34) lm/h (Eq. 35)

Square 0.05 0.33 0.20 0.21 0.23

0.11 0.38 0.23 0.15 0.18

0.16 0.37 0.21 0.14 0.17

0.20 0.33 0.18 0.10 0.13

0.25 0.29 0.15 – –

0.33 0.24 0.12 0.07 0.09

Staggered 0.05 0.33 0.21 0.18 0.26

0.11 0.51 0.30 0.13 0.24

0.16 0.63 0.35 0.10 0.19

0.20 0.65 0.36 0.07 0.15

0.25 0.50 0.28 – –

0.33 0.34 0.19 0.06 0.11

blocks, regardless of the array type or λp . Since momentum is transported into the canopy
space excluding the space occupied by the cubical blocks, the wind speed immediately above
the blocks’ top surfaces is much higher than that immediately above a flat surface, leading
to the formation of the strong shear layers above the blocks. The contribution of these shear
layers to

{
d〈u〉inc/dz

}
h/uτ decreases with a decrease in λp , i.e., a decrease in the ratio of

the blocks’ top surfaces in an averaging volume; as shown in Fig. 9c, d, the peak value of{
d〈u〉inc/dz

}
h/uτ at around z/h = 1 decreases monotonically with a decrease in λp . On

the other hand, as shown in Fig. 9e, f, the values of
√

−〈uw〉inc/uτ are almost independent
of λp above the canopy, and they increase monotonically within the canopy with a decrease
in λp . Here, it is important to note that the blocks’ top surfaces suppress the turbulent mixing,
and the strong shear layers above the blocks’ top surfaces do not contribute to the increase

in
√

−〈uw〉inc/uτ . Therefore, the value of lm/h at around z/h = 1 becomes very small and
increases monotonically with a decrease in λp .

For a staggered array with λp = 0.25, Coceal et al. (2006) computed the mixing length,
which was defined as

lm_coceal(z) =

√

−
〈
u′w′

〉

exc
(z)

d 〈u〉exc (z)/dz
, (36)

from their DNS data, and obtained a profile similar to lm in Fig. 9b. They considered that the
small value of lm_coceal at the canopy height indicated that, in an average sense, energetic
large eddies were blocked from penetrating the canopy by the strong shear layer over the
top of the blocks. This speculation is considered to be reasonable, since the shear layers
over the top of the blocks are formed as a result of the no-slip condition over the blocks’
surface. In addition, the shear layers separate from the blocks’ top surfaces and suppress the
momentum transport into the canopy; for instance, at x/h = 1.5 in Fig. 10a, u and −u′w′
decrease sharply in the −z direction immediately below the shear layer as shown in Fig. 2b,
e, respectively. On the other hand, at x/h = 3.5 in Fig. 10a where the separated shear layer
does not reach, u and −u′w′ decrease moderately along the −z direction as shown in Fig. 2c,
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Fig. 10 Spanwise vorticity contours in vertical x–z planes: a ST25a at y/h = 0.5 in Fig. 7a, b SQ25 at
y/h = 0.5 in Fig. 7c, c SQ25 at y/h = 1.5 in Fig. 7c, d ST11 at y/h = 0.5 in Fig. 7e, e ST11 at y/h = 1.25
in Fig. 7e, f SQ11 at y/h = 0.5 in Fig. 7f, and g SQ11 at y/h = 1.25 in Fig. 7f

f, respectively. Therefore, with a decrease in λp , the ratio of the space in which strong shear

layers exist to an averaging volume decreases, and
√

−〈uw〉inc/uτ increases monotonically
within the canopy.

Since
√

−〈uw〉inc/uτ increases monotonically with a decrease in λp , it is understood
(from Fig. 9) that the maximum and height-averaged values of lm/h in the canopies have
a peak at λp = 0.11 for square arrays and at λp = 0.20 for staggered arrays, because{
d〈u〉inc/dz

}
h/uτ increases monotonically with a decrease in λp from SQ11 and ST20.

4.2.3 Sectional Drag Coefficient

Figure 11a, b shows CD(z) for square and staggered arrays, respectively, with
λp = 0.05, 0.11, 0.16, 0.20, 0.25, and 0.33. In square arrays with λp ≤ 0.25, the values
of CD(z) are almost constant with height above z/h ≈ 0.1. In staggered arrays, the degrees
of change in the values of CD(z) decrease as λp becomes lower and the values of CD(z) can
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in staggered arrays

be considered to be almost constant with height above z/h ≈ 0.2 for λp ≤ 0.20. It can be
confirmed that the values of CD(z) in the square arrays are insensitive to λp , while those in
the staggered arrays are sensitive to λp .

The reason why the values of CD(z) in the staggered arrays are more sensitive to λp than
those in the square arrays is explained from the balance between the numerator and denom-
inator of the right-hand side of Eq. 31. In Fig. 11c, d, which shows −〈 f1〉inc/

{
u2

τ /h
}

for
square and staggered arrays, respectively, with λp = 0.05, 0.11, 0.16, 0.20, 0.25, and 0.33,
it is confirmed that, except for those values at around z/h ≈ 0.95 in arrays with λp ≥ 0.20,
the values of −〈 f1〉inc/

{
u2

τ /h
}

in the staggered arrays are larger than those in the square
arrays. In addition, from Fig. 6, it is confirmed that, at all λp and heights, the values of
〈u〉inc/uτ in the staggered arrays are smaller than those in the square arrays. Moreover, the
values of 〈u〉inc/uτ in the staggered arrays are more sensitive to λp than those in the square
arrays, and they become very small in the square arrays with λp ≥ 0.25. In other words, both
the numerator and denominator in the right-hand side of Eq. 31 contribute to the increase in
the sensitivity of CD(z) to λp in the staggered arrays.

Figure 12 shows the time-mean two-dimensional wind vectors (u, w) in the vertical x − z
planes at y/h = 0.5 and 0.75 (indicated in Fig. 7) for SQ25, SQ11, ST25a, and ST11. From
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Figs. 7 and 12, it is confirmed that the three-dimensional flow structure differs significantly
in staggered arrays and in square arrays. With regard to the difference in the flow structures
and pressure drag between staggered arrays and square arrays, Coceal et al. (2006) provided
the following explanation for cube arrays with λp = 0.25 on the basis of their DNS results:
“The cubes in the staggered configuration are further apart streamwise, hence there is less
filtering. Moreover, the flow is diverted laterally because of staggered cubes in adjacent rows
and speeds up in the gap, leading to greater pressure on the front face of the cubes. This
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happens over most of the depth of the staggered array. In contrast, the close vicinity of cubes
in the square arrays and the absence of lateral flow diversion mean that most of the momen-
tum flux arises from the top. This has the consequence that the pressure drag profile for the
staggered array is fuller (as shown in Fig. 11c, d).” With regard to the profile of 〈u〉inc/uτ ,
the discrepancy between that of the staggered array and square array is large at all heights, as
shown in Fig. 6e; from Figs. 7a–d and 12a, b, e, f, it is understood that the smaller values of
〈u〉inc/uτ in the staggered array as compared to the square array are due to the lateral flow
diversion above z/h = 0.2, and the formation of recirculation vortices before and behind the
cubes below z/h = 0.2. With a decrease in λp , the discrepancies in the profiles between the
staggered arrays and square arrays become smaller for both −〈 f1〉inc/

{
u2

τ /h
}

and 〈u〉inc/uτ .
In the staggered array with λp = 0.11, due to the reduced area ratio of the blocks’ top sur-
faces and separated shear layers from them, the streamwise wind velocity becomes greater in
front of the blocks as shown in Figs. 7e and 12g, h; together with the effect of the weakened
recirculation vortices in front of the blocks, the profile of −〈 f1〉inc/

{
u2

τ /h
}

becomes fuller
as shown in Fig. 11d. In the square arrays with λp = 0.11, in addition to the reduced filtering
effects by the blocks’ top surfaces, the contribution of the momentum flux from the lateral
direction increases and the streamwise wind velocity becomes strong in front of the blocks
as shown in Figs. 7f and 12d, resulting in the fuller profile of −〈 f1〉inc/

{
u2

τ /h
}

as shown in
Fig. 11c.

5 Conclusions

In this study, we systematically investigated the properties of the spatially-averaged mean
quantities used to make Macdonald’s assumptions I–III by performing large-eddy simula-
tions (LES) of the airflow around square and staggered arrays of cubical blocks with λp =
0.05, 0.11, 0.16, 0.20, 0.25, and 0.33. The results are summarized as follows.

(i) Except for staggered arrays with λp = 0.25 and 0.33, the discrepancies between
Macdonald’s five-point average of wind velocity and the solid-inclusive average of
wind velocity are smaller than those between Macdonald’s five-point average of wind
velocity and the solid-exclusive average of wind velocity. The values of the five-point
average are significantly affected by the reverse flow region formed around blocks. In
particular, in the lower part of square and staggered arrays with λp ≥ 0.25, the values
become extremely small as compared to those of the solid-inclusive or solid-exclusive
averages. The attenuation coefficient obtained by fitting Macdonald’s model equation
to the wind profile of the five-point average and those of the solid-inclusive average
can be approximated as a linear function of λp with similar slopes.

(ii) In all arrays, the values of lm increase from the ground to around half the canopy height
and then decrease to the canopy height. Subsequently, the values of lm increase with
height. As compared to the magnitude of lm at twice the canopy height, the degrees of
change in the values of lm within the canopies are significantly large. The values of lm
become very small at around the height of the canopy because the values of d〈u〉inc/dz

are significantly large at this height, although those of
√

−〈uw〉inc are maximum at
around this height and turbulent transport is significant. With a decrease in λp, lm
decreases monotonically at around the height of the canopies. Within the canopies, the
maximum and height-averaged values of lm exhibit a peak at λp = 0.11 for square
arrays and at λp = 0.20 for staggered arrays; between this and a lower value of λp , the
maximum and height-averaged values of lm decrease monotonically in both arrays.
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(iii) The values of CD(z) are almost constant with height above z/h ≈ 0.1 in square arrays
with λp ≤ 0.25 and above z/h ≈ 0.2 in staggered arrays with λp ≤ 0.20. While the
values of CD(z) in the square arrays are insensitive to λp , those in the staggered arrays
are sensitive to λp and become significantly large in staggered arrays with λp ≥ 0.25.
In staggered arrays, the values of −〈 f1〉inc are generally larger as compared to those
in square arrays, and the values of 〈u〉inc are lower and more sensitive to λp; these
tendencies lead to the higher sensitivity of CD(z) to λp in the staggered arrays than
those in square arrays.

To develop a practical urban canopy model, it is necessary to understand the properties
of spatially-averaged flow quantities within and above various types of urban canopies. In
urban canopies with random building layouts and variable building heights, the five-point
average would not be applicable. When a limited number of sampling points are available, it
is important to evaluate the averaged value taking into account the volume of space occupied
by buildings and the effects of reverse flow. With regard to lm , the degrees of change in its
values with height within the canopies would be smaller than those within the regular arrays
of cubes, since the values of d〈u〉inc/dz at the canopy height (the height of the tallest building
or the average building height) would be smaller due to the shear layers over buildings having
various heights. With regard to CD(z), it is difficult to predict whether or not its values would
be constant with height, since it depends on the balance between −〈 f1〉inc and 〈u〉2

inc. For
instance, in addition to the lateral flow diversion, which would be increased by a random
arrangement of buildings, the reverse flow of the recirculation vortices around buildings can
make the values of 〈u〉2

inc very small; however, the relation between the formation of recir-
culation vortices and the urban canopies with random building layouts and variable building
heights are not well known. Further investigations on the properties of spatially-averaged
flow quantities within and above various types of urban canopies are required.
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