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Abstract An analytical model has been developed for the flow along a street canyon (of
height H and width W ), generated by an external wind blowing at any angle relative to the
axis of the street. Initially, we consider the special case of a wind blowing parallel to the
street. The interior of the street is decomposed into three regions, and the flow within each
region is assumed to depend only on the external wind and the distance to the closest solid
boundary. This decomposition leads to two different flow regimes: one for narrow streets
(H/W > 1/2) and one for wide streets (H/W < 1/2). The theoretical model agrees well
with results obtained from numerical simulations using a Reynolds-Averaged Navier–Stokes
model. We then generalize the model to the case of arbitrary wind direction. Numerical solu-
tions show that the streamlines of the mean flow in the street have a spiral form, and for most
angles of incidence, the mass flux along the street scales on the component of the external
wind resolved parallel to the street. We use this result to generalize the model derived for wind
blowing parallel to the street, and the results from this model agree well with the numerical
simulations. The model that has been developed can be evaluated rapidly using only very
modest computing power, so it is suitable for use as an operational tool.

Keywords Numerical modelling · Street canyon · Urban canopy flow

1 Introduction

There are many practical situations where it would be useful to be able to compute pol-
lutant concentrations in a network of streets within an urban area. Local authorities need
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such information, for example, for a better understanding of the impact of urban air quality
on health, and for the assessment of the likely impact of urban planning and traffic control
measures on population exposure and health.

As a general rule, urban air quality depends on the transport and dispersion of pollutants
in the atmospheric boundary layer, and involves motions on a wide range of length and time
scales, ranging from the scale of the continent to the scale of the street. But within individual
streets, the close proximity of emitters (vehicle exhausts, for example) and receptors means
that a significant proportion of the pollution comes from within the street, and depends on
very local characteristics. The flow within the street, which is generated by the wind blowing
at roof level, therefore plays an important role in determining pollutant concentrations within
the street, and it is reasonable to suppose that a model for pollutant concentrations in city
streets could be constructed by considering how the pollutants emitted from local sources
are transported and dispersed by the flow generated within the streets by an external wind
blowing at roof level.

For several years we have been developing an operational model—SIRANE—based on
this idea. Pollutant concentrations in a network of city streets are computed as a function of
the street geometry, the external meteorological conditions and the local emissions. Some
results of that model, applied to specific sites, can be found in Soulhac et al. (2003). There
are two essential components of this model: the first concerns the transport and dispersion of
pollutants within a city street, for any wind direction relative to the street axis, and the second
concerns the way in which mass transfer occurs at street intersections. The calculation of the
mass transfer at a street intersection requires a reliable estimate of the fluxes entering and
leaving the intersection from the different intersecting streets, so a major requirement for the
street model is that it should provide a good estimate of the mass flux along the street.

There have been numerous studies over the last 30 years aimed at studying the trans-
port and dispersion of pollutants in individual streets. In most of these studies it has been
assumed that the street is long compared with its width, so that the flow can be considered
two-dimensional. Most of the studies have been devoted to the particular case of a wind blow-
ing perpendicular to the street, probably because it is widely believed that this configuration
maximises the retention time of the pollutants in the street. In fact, several field experiments
have demonstrated that this is not necessarily correct. If the street is sufficiently long, the
wind blowing along the street causes an accumulation of pollutants, and the resulting con-
centration at the downwind end of the street can exceed that produced when a similar wind
blows across the street (Baranger 1986; Berkowicz et al. 1994, 1996).

When the wind blows perpendicular to the street, the flow within the street depends on the
external wind speed and the street geometry; for a street bounded by buildings of approxi-
mately equal height, the street geometry can be characterized by its width W and its height H .
Based on the wind-tunnel measurements of Hussain and Lee (1980), Oke (1988) proposed that
the flow could be classified into three regimes, depending on the aspect ratio H/W . For very
wide streets (H/W < 0.15) the buildings act as isolated roughness elements, and the flow
within the street is similar to that in the wake of an isolated obstacle: this regime is referred
to as the isolated roughness regime. At intermediate aspect ratios (0.15 < H/W < 0.65)
the street width is comparable to the size of the recirculating region behind the obstacle, and
there is therefore interaction between the two sides of the street: this regime is known as the
wake interference regime. For very narrow streets (H/W > 0.65) the external flow does not
penetrate into the street, but generates a recirculating cell: this is known as the skimming
flow regime (Albrecht 1933). If the buildings that define the street are not symmetrical, or if
the street is narrow (H/W ≥ 3/2), then two counter-rotating cells may form instead of one
(Hoydysh and Dabberdt 1988; Rafailidis 1997; Hassan and Crowther 1998; Soulhac 2000).
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The recirculating flow within the street determines how pollutants are mixed within the
street, and in particular the rate at which pollutants are transferred from street to roof level and
vice versa. The presence of two counter-rotating cells reduces this transfer rate dramatically,
e.g. (Soulhac 2000). The exchange between the air within the street and the overlying atmo-
sphere depends on the turbulent flux across the shear interface between the two regions, so the
average concentration within the cavity depends on the interaction between the recirculating
flow and the entrainment across the interface; see, for example, Salizzoni (2006).

There are only a few studies of the flow induced in a street by an external wind blowing at
an arbitrary angle, and the results are somewhat contradictory. If the angle between the wind
direction and the street axis is defined as θ∞ (so that θ∞ = 0 corresponds to a wind parallel to
the street), then for θ∞ > 20◦ the streamlines within the street form a helicoidal pattern (Ya-
martino and Wiegand 1986). Field experiments conducted by Takahashi et al. (1996) show
that the angular velocity of the spiral increases in proportion to sin(θ∞). Observations suggest
that the spiral is not regular, and that the orientation of the streamlines at ground level θground

differs from the orientation at roof height θH . On the basis of field measurements, Nakamura
and Oke (1988) concluded that | θground |<| θH | whereas the wind-tunnel measurements of
Dabberdt and Hoydysh (1991) suggest that | θground |>| θH |. Field measurements made by
Rotach (1995) showed that the turbulent intensities within a real street are fairly insensitive
to the direction of the external wind. More recently, in the DAPPLE project, Dobre et al.
(2005) measured the flow within a street in London, for arbitrary external wind direction,
and based on these measurements, they concluded that the flow in the street can be described
as a superposition of a transverse flow driven by the perpendicular wind component, and a
longitudinal flow driven by the along-street component.

Various models for flow and dispersion in urban streets have been proposed, based essen-
tially on two different approaches, and with two different objectives. There have been several
simulations of flow in street cavities, using numerical models based either on the Reynolds-
Averaged Navier–Stokes equations (Johnson and Hunter 1995; Hassan and Crowther 1998)
or on large-eddy simulation, e.g. Ca et al. (1995); Walton et al. (2002). In this approach the
whole of the street is discretised, and the velocity and concentration fields are calculated
at every node of the grid. Such calculations require large amounts of computing resources,
and are not feasible for operational calculations, which have to be performed for a wide
range of conditions and street geometries, using more modest computing power. So simpler
operational models have been developed, which seek to compute a more limited number of
relevant variables, more rapidly. Typical examples include APRAC/STREET (Johnson et al.
1973), CPBM (Yamartino and Wiegand 1986), CAR (Eerens et al. 1993) and OSPM (Hertel
and Berkowicz 1989). These models are essentially based on a combination of analytical and
empirical formulations for the flow field within the street, for the two asymptotic conditions
of wind perpendicular to the street and wind parallel to the street. For the wind blowing
parallel to the street it is generally assumed that the wind profile has a logarithmic form,
although this has still to be verified. The general case of an arbitrary wind direction is then
computed by considering linear superposition of the two asymptotic solutions. It has yet to be
shown that this superposition is justified, and that there is no non-linear interaction between
the two components of the velocity field.

In Sect. 2, we present a new model for flow in a street generated by a wind blowing parallel
to the street axis. The results are compared with the results from a numerical simulation of the
flow, computed using a Reynolds-Averaged Navier–Stokes model. In Sect. 3 the numerical
simulations are used to investigate the influence of wind direction on the flow in the street.
The flow pattern generated by the wind has a spiral form, and the non-linear interaction of
the cross-street component with the component along the street modifies the profile of the
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Fig. 1 Street geometry and co-ordinate system

longitudinal velocity considerably. Nevertheless the spatially-averaged longitudinal velocity
is relatively unchanged, and scales on the component of the external wind resolved parallel
to the street. This allows us to generalize the model derived in Sect. 2 for the case of a wind
blowing at an arbitrary orientation to the street axis. The results from this generalized model
again agree well with the results from numerical simulations.

2 External Wind Parallel to the Street Axis

2.1 Theoretical Model

We consider here an infinitely long two-dimensional symmetrical street, characterized by its
height H and width W (see Fig. 1). The coordinate system is defined in Fig. 1; the origin is
located at the street level, at one side of the street, and the x-axis is oriented parallel to the
street. Then the inside of the street corresponds to the origin 0 ≤ y ≤ W, 0 ≤ z ≤ H .

The mean velocity components in the directions x, y and z are denoted by u, v and w,
respectively. The aerodynamic roughness of the side walls and floor of the canyon will be
characterized by a roughness length zi . The main assumption of the model is that the mean
velocity field within the street (for z < H ) is induced by a momentum transfer from the
external flow; the incoming momentum is due only to turbulent entrainment, and this can be
expressed by the shear stress τH , exerted by the external flow at roof level.

It is assumed that the street under consideration is placed within an urban canopy made
up of a group of buildings. The surface layer (SL) developing above the urban canopy is
made up of two different regions: the roughness sub-layer (RSL) and the inertial region (IR).
The flow within the RSL is influenced by the wakes of individual buildings, so it will not
be homogeneous in the horizontal plane (Raupach et al. 1980; Rotach 1993). On the other
hand, the flow within the IR is homogeneous in the horizontal plane and the mean velocity
profile can be described by means of the classical logarithmic law:

u = u∗
κ

ln

(
z − d

z0

)
, (1)

where u∗ is the friction velocity, which is a measure of the shear stress magnitude τ0 within
the inertial region (τ0 = ρu2∗, where ρ is the air density), d is the displacement height, z0

is the aerodynamic roughness of the surface of the urban canopy and κ is the von Kármán
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Fig. 2 Flow regimes in a street parallel to the wind direction: influence regions and mean velocity profiles.
(a) Narrow street: H/W > 0.5, (b) Wide street: H/W < 0.5

constant. The parameters d and z0 depend on the geometrical characteristics of the surface
considered at a scale that is large compared with that of the street (the district or urban scales,
for example). These two parameters can then be treated as constant values and estimated
as a function of the geometrical characteristics of the size and orientation of the buildings
(Bottema 1997; MacDonald et al. 1998; Grimmond and Oke 1999). Once d and z0 have been
evaluated and once the mean wind speed Uext at a given height zext (within the IR) has been
estimated, u∗ (and hence τ0) can be determined using Eq. 1.

The relation between τH and τ0 within the RSL is more difficult to obtain. Results of a field
measurement campaign by Rotach (1993) revealed that the Reynolds stress decreased within
the RSL with decreasing distance from the ground. Results obtained by Rafailidis (1997)
and MacDonald et al. (2000) suggest that the stress decrease mainly takes place below the
roof level. Other experimental results obtained by Cheng and Castro (2002) showed that the
spatially-averaged stress within the RSL is constant with height right down to the top of
a cubical building array. In order to model the mean flow within the canopy, MacDonald
(2000) assumed a constant value of the Reynolds stress, which makes it possible to match
the velocity profile at the top of the canopy with the mean profile in the IR. We will adopt
the same assumption, so that τH = τ0.

2.1.1 Flow Regimes for an External Wind Aligned with the Street Axis

The flow within the street is driven by the external flow and is determined by the incoming
momentum at the roof height, due to turbulent entrainment. The no-slip condition is imposed
on the internal faces of the canyon and this generates boundary layers along the walls and
the floor. In order to simplify the problem, we shall not consider the interaction between the
different boundary layers and we shall assume simply that each surface influences the flow
in part of the canyon. This is shown schematically in Fig. 2, for a narrow street (Fig. 2a)
and a wide street (Fig. 2b). The region of the flow influenced by the side walls is denoted
Region I and the region influenced by the ground, Region II. The boundaries between the
regions are defined geometrically, such that any point on a boundary between two regions
is equidistant from the two surfaces that generate the two regions. Then it follows that for
both regime types the boundary-layer thickness is given by δi = min(H, W/2). It is worth
noting that the relative importance of Regions I and II depends on the street geometry, in
particular on the street aspect ratio H/W . It follows from this that there are two basic flow
regimes:
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– Narrow street regime: H/W > 0.5 and δi = W/2
For a narrow street, the vertical walls contribute more than the half of the total street
perimeter and most of the flow within the street is therefore controlled by the side walls.
The influence of the ground is confined to the lower part of the flow field. The mean
velocity profile in the street centre can be considered as composed of two different regions
(Fig. 2a), and it will be shown that, in Region I, the mean velocity profile can be modelled
by means of an exponential law, whilst in Region II, a logarithmic law needs to be adopted.

– Wide street regime: H/W < 0.5 and δi = H
For a wide street, the length of the lower boundary exceeds the half of the street perimeter;
the influence of the lateral walls is weaker and the flow dynamics are dominated by the
influence of the lower boundary.

In order to model the flow within the street, the dynamics of each region will be considered
as independent from the others.

2.1.2 Region I: Region of Influence of the Side Walls

We first consider the region within which the velocity field is mainly influenced by the side
walls, in the narrow street regime (z > δi ). As already mentioned, the dynamics of this region
are assumed to be independent of the rest of the velocity field, i.e., we neglect the influence
of the ground on this region. So the configuration that is actually modelled here is that of flow
between two parallel vertical planes (separated by a horizontal distance W ), and driven by an
external wind at roof level, parallel to the planes. The momentum transfer from this external
flow takes place through turbulent entrainment across a shear layer at the interface, and this
is resisted by the drag on the vertical walls, which are assumed to be aerodynamically rough.

No transverse component of the flow within the street is considered (v = 0 and w = 0)
and the longitudinal component is assumed to be uniform (∂u/∂x = 0) and stationary
(∂u/∂t = 0). Given these conditions, the Navier-Stokes equations can be reduced to the
component parallel to the x direction:

∂u′v′
∂y

+ ∂u′w′
∂z

= 0. (2)

The Reynolds stress in Eq. 2 is modelled by using a gradient diffusion law with a turbulent
diffusivity, K , and the momentum balance then becomes:

∂

∂y

(
K

∂u

∂y

)
+ ∂

∂z

(
K

∂u

∂z

)
= 0. (3)

This equation can be written in dimensionless form:

∂

∂y+

(
K + ∂u+

∂y+

)
+ ∂

∂z+

(
K + ∂u+

∂z+

)
= 0, with

⎧⎪⎪⎨
⎪⎪⎩

y = δi y+
z = δi z+
u = Umu+
K = Km K +

(4)

where δi represents the thickness of the boundary layer developing on the side walls and
Um and Km are the velocity magnitude and the turbulent diffusivity on the centreline at the
interface, i.e., at y = δi and z = H . To solve Eq. 4, we use the method of the separation of
variables, and we assume that u+ and K + can be expressed as follows:

u+ = f (y+)g(z+), (5)

K + = y+g(z+). (6)
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Fig. 3 Form function for the
horizontal profile of the mean
velocity in Region I

y+

f
(y

+
)

Exact solution (equation 9)

Approx. solution (equation 11)

The functions f and g represent the horizontal and vertical variations of u+. We have
assumed that the vertical variation of K + is similar to that of u+, defined by g (hypothesis
derived from the similarity of the two profiles). The horizontal variation is considered as pro-
portional to the distance from the wall y+, as is generally assumed for a turbulent boundary
layer. Substituting Eqs. 5 and 6 into (4), we obtain a differential equation in f and g:

f ′g2 + y+ f ′′g2 + y+ f gg′′ + y+ f g′2 = 0. (7)

This equation can be split into two parts, each of which is a function of only one of the
independent variables. Those two terms are necessarily equal to a constant, written here as
−C2:

f ′′

f
+ 1

y+
f ′

f
= −

(
g′′

g
+ g′2

g2

)
= −C2. (8)

In order to solve the differential equation in f , we have to fix the value of the function and
of its derivative at one point. As long as all terms are expressed in dimensionless form, the
function has to be 1 on the street centreline. The symmetry condition on this axis imposes
a null derivative of the function at that point. Given those conditions, the solution of the
equation is a linear combination of Bessel functions J0 and Y0:⎧⎨

⎩
f ′′ + 1

y+ f ′ + C2 f = 0
f (1) = 1
f ′(1) = 0

�⇒ f (y+) = J1(C)Y0(Cy+) − J0(Cy+)Y1(C)

J1(C)Y0(C) − J0(C)Y1(C)
, (9)

and is represented in Fig. 3. In order to interpret this solution physically, we can express it
as a series expansion of Bessel functions, which provides an approximate solution close to
the rigid boundaries:

for y+ 	 1

⎧⎨
⎩

J0(y+) 
 1 + O
(

y+2
)

Y0(y+) 
 2
π

[
ln

(
y+
2

)
+ γ

]
J0(y+) + O

(
y+2

)
,

(10)

where γ is the Euler constant, equal to 0.577.
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If we then replace the Bessel functions in the equation for f (Eq. 9) by the first term in
their series expansion, the velocity u+ can be expressed as:

u+(y+, z+) = u+∗ (z+)

κ
ln

(
y+

y+
i

)
, (11a)

with,

u+∗ (z+) = 2

π

g(z+)κ J1(C)

J1(C)Y0(C) − J0(C)Y1(C)
, (11b)

y+
i = 2

C
exp

[
π

2

Y1(C)

J1(C)
− γ

]
. (11c)

This result shows that the solution obtained corresponds to a classical logarithmic law for
a velocity field close to a wall, and is plotted in Fig. 3. The variable y+

i , which appears in
the velocity expression, plays the same role as the dimensionless roughness parameter of the
wall. By fixing the value of this roughness parameter (y+

i = zi/δi ), we can determine the
constant C by solving the following non-linear equation:

zi

δi
= 2

C
exp

[
π

2

Y1(C)

J1(C)
− γ

]
. (12)

Assuming Prandtl’s mixing length hypothesis, the turbulent diffusivity can be expressed
as the product of a length scale and a velocity scale:

K = u∗κy, (13a)

which gives

K + = Umδi

Km
u+∗ κy+. (13b)

By combining this with Eq. 6 and adopting the expression for u+∗ given in (11), we can
express the constant Km as a function of Um in the following way:

Km = 2

π

Umδiκ
2 J1(C)

J1(C)Y0(C) − J0(C)Y1(C)
. (14)

The form function g, which defines the vertical profiles, is the solution of a second-order
differential equation. The dimensionless form implies that the function g has to be equal to
1 at the interface, i.e., for z = H . The derivative g′ goes to zero for z+ → −∞, as long as
the turbulent entrainment reduces for increasing distances from the interface. The solution is
a decreasing exponential function:⎧⎪⎨

⎪⎩
gg′′ + g′2 − C2g2 = 0

g
(

H
δi

)
= 1

g′(−∞) = 0

�⇒ g(z+) = exp

[
C√

2

(
z+ − H

δi

)]
. (15)

Function g is plotted in Fig. 4 together with the full profile obtained by the matching of
Eq. 18 in Zone II, Eq. 15 in Zone I and a classical logarithmic law for the external flow. It
is interesting to note that similar exponential velocity profiles for the mean flow have been
found in urban (Belcher et al. 2003) and vegetation canopies (Inoue 1963; Cionco 1965;
Lettau 1972). The analogy between our results, obtained in the case of a localised force on
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Fig. 4 Vertical profile of the
dimensionless longitudinal
velocity on the street axis (Zone I
and Zone II are the same as in
Fig. 2)

g(z+)

z
H

Zone I

Zone II

Equation (15)

Full profile

the canyon walls, and those obtained in the case of a distributed drag force within the canopy
is due to the fact that these forces are both dependent on the square of the mean velocity.

Starting from the expression for g, we can determine the shear stress at the upper boundary
of the street. The forcing condition requires that the magnitude of this stress has to be equal
to the stress τH (= τ0 = ρu2∗) exerted by the overlying flow, which is given by:

ρKm
C√
2δi

Um = ρu2∗. (16)

By using Eq. 14 to express Km , this equality enables us to express Um in terms of the
friction velocity of the overlying flow:

Um = u∗

√
π√

2κ2C

[
Y0(C) − J0(C)Y1(C)

J1(C)

]
. (17)

2.1.3 Region II: Region of Influence of the Ground

We assume that the effect of the side walls has no influence on the lower part of the velocity
field, close to ground level. The flow developing above the ground can then be modelled
simply as a boundary layer over a rough wall, driven by an external flow:

u = us∗
κ

ln

(
z

zi

)
. (18)

The friction velocity us∗ is determined by means of matching with the profile in the Region I
at the interface between the two regions, i.e., for z = δi . We then obtain:

us∗ = Um
κ

ln
(

δi
zi

) exp

[
C√

2

(
1 − H

δi

)]
. (19)

The solution for the velocity field (given by Eqs. 5, 15, 9 and by Eq. 18) is illustrated
in Fig. 5, where velocity contours have been plotted for three different street aspect ratios
(H/W = 2 in Fig. 5a, H/W = 1 in Fig. 5b, H/W = 1/3 in Fig. 5c).
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a) b)

c)

Fig. 5 Contours of dimensionless longitudinal velocity u/Um for three different street aspect ratios:
(a) H/W = 1/2, (b) H/W = 1, (c) H/W = 3

2.1.4 Mean Flow within the Street

The theoretical model provides a description of the longitudinal component of the velocity
in a street whose axis is parallel to the external wind direction. The only input parameters
for this model are the vertical and lateral dimensions of the street, H and W , the roughness
length zi of the street walls and the external friction velocity u∗.

For some applications it is useful to be able to compute the mean longitudinal velocity
magnitude U// within the street, defined as

U// = 1

H W

∫ H

0

∫ W/2

−W/2
udydz. (20)

It can be shown that the mean velocity is given by

U// = Um
δ2

i

H W

[
2
√

2

C
(1−β)

(
1−π

2
H1(C)

)
+ β

2α − 3

α
+

(
W

δi
− 2

)
α − 1

α

]
, (21a)

with

α = ln

(
δi

zi

)
, (21b)

β = exp

[
C√

2

(
1 − H

δi

)]
, (21c)

where Um is defined by Eq. (17), C by Eq. (11) and H1 is a first-order Struve function.
A detailed derivation of Eq. (21) is provided in Appendix 1. The function H1(C) can be
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Fig. 6 Dimensionless
longitudinal mean velocity
plotted as a function of street
aspect ratio for zi = 0.01 m and
H = 20 m

0.01 0.1 1 100

U//

Um

← H/ W = 0.5

wide street

narrow street

H/W
10

approximated with an error that does not exceed 0.2 % by a polynomial expansion of the
form (Abramowitz and Stegun 1965):

π

2
H1(C) 
 C2

12 × 3
− C4

12 × 32 × 5
+ O(C6). (22)

For this expansion to be valid C must be positive and smaller than 1; in this particular case,
it is evident from Eq. 12 that C has to be positive. Equation 12 also enables us to provide a
numerical bound on the physical likely values of C : as long as the dimensionless roughness
length zi/δi cannot reasonably exceed a value of 0.01 (that means that, for a characteristic
length scale of the street δ ≈ 10 m, we obtain a maximum roughness length zi ≈ 0.1 m),
from Eq. 12 it can be inferred that C has to be smaller than 0.716.

The dimensionless mean longitudinal velocity U///Um has been plotted in Fig. 6 as a func-
tion of H/W , and this clearly shows the transition from a wide street to a narrow street, for
H/W ≈ 0.5. The dimensionless mean velocity in a wide street is almost independent of the
aspect ratio, whereas the dimensionless mean velocity in a narrow street is strongly depen-
dent on the aspect ratio. So for wide streets, the cross-sectionally averaged velocity leads to
a constant value, and the mass flux in the street is simply proportional to the cross-sectional
area of the street.

2.2 Numerical Simulations

In order to verify the model, we have compared its results with numerical simulations per-
formed using the code MERCURE (Carissimo et al. 1995). MERCURE is a three-dimensional
numerical code that implements a finite difference method to solve the Reynolds-Averaged
Navier–Stokes equations. For this study, a standard k-ε turbulence model was used, with a
non-regular mesh and the size of the grid cell close to the rigid boundaries was set equal to
H/40. Seven street geometry configurations have been tested, corresponding to a different
street aspect ratio H/W : 1/4, 1/3, 1/2, 1, 2, 3 and 4, where H was taken constant and equal
to 20 m. The roughness lengths of the roof and of the side wall of the street have been set
equal to 50 mm. In order to define a solution independent of the initial conditions and of the
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Fig. 7 Evolution of the longitudinal mean velocity within the street for varying street aspect ratios H/W .
(a) Vertical mean velocity profiles at the street centre for different aspect ratios H/W ; (b) Flow regimes for
a wind parallel to the street axis: influence of the street aspect ratio on the longitudinal velocity on the street
axis (y = δi ), for different heights

longitudinal coordinate x , the flow was defined to be periodic in the x-direction (i.e., the flow
at the downstream end of the simulation was identical to the injected flow at the upstream
entry to the section).

The mean velocity profiles within the street for different street aspect ratios are presented
in Fig. 7a. The different profiles are bounded by the profiles corresponding to the limiting
cases H/W → 0 and H/W → ∞. In the case H/W → 0, the distance between the lateral
walls tends to infinity and the velocity field is that of a turbulent boundary layer developing
on a rough wall. In the case given by the limit H/W → ∞, the lateral walls are close together
and the resulting flow field is given by a turbulent boundary layer displaced above the building
roofs. Between these two limiting configurations, the flow within the street varies depending
on the resistance exerted by the side walls. As expected, the mean velocity within the street
is reduced for increasing values of the ratio H/W .

2.2.1 Flow Regimes

In order to verify the existence of two flow regimes, we plotted the dependence of the velocity
component on the street aspect ratio H/W (Fig. 7b). This confirms quite clearly that there
are two different flow regimes, depending on the street aspect ratio. For small values of H/W
(H/W ≤ 0.5), the velocity at the centre of the street is independent of H/W and equal to
the value for the limiting case H/W → 0. This means that the flow within the street is inde-
pendent of the side walls and behaves as a boundary layer developing above ground level.
However once H/W exceeds a critical value (H/W ≥ 0.5) the side walls begin to have a
significant influence on the flow, and the centreline velocity decreases as H/W increases,
because of the drag from the side walls.

2.2.2 Comparison with the Theoretical Model

In order to validate the theoretical model, we have compared the velocity profiles computed
by MERCURE with those given by the model. Here we will focus on two configurations in
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particular (H/W = 1 and H/W = 2), which are characteristic of many real street geome-
tries. Both of these correspond to the narrow street regime.

The vertical profiles on the street axis obtained from the numerical simulations are pre-
sented in Fig. 8a, b together with the theoretical profiles computed using Eqs. 15 and 18.
The parameter C was calculated from Eq. 12, using the values of H , W and z0 appropri-
ate for each configuration. The value of Um used to calculate the profiles was obtained by
matching the model velocity at height z = H to that computed by the numerical simulation
at that height. For both configurations presented here, there is good agreement between the
theoretical model and the numerical results. This agreement confirms the validity of the mod-
elling assumption that the domain can be divided into two regions, corresponding to regions
of influence of the floor and the side walls, and that the boundary between these regions
depends on the aspect ratio H/W .

In a similar way, the horizontal profile of the axial velocity component u have been plot-
ted in Fig. 8c, d, for the two configurations. The profiles have been normalized by means of
the velocity at the centre of the street for each level. Except for the profile at the interface
(z/H = 1), the different numerical profiles appear to be self-similar, which is a result that
justifies the use of the method of the separation of variables. The profiles are in good agree-
ment with the theoretical curve given by Eq. 9. This agreement fails close to the interface
between the street and the external flow because, at that level, the influence of the external
flow on flow dynamics has to be taken into account and cannot be considered only dependent
on the effect of the side walls.

In order to compare the turbulent characteristics of the flow in Region I, the turbulent diffu-
sivity profiles calculated using the numerical code MERCURE and the theoretical model for
Region I have been plotted in the Fig. 8e, f. The two sets of results agree well, but throughout
Region I and above it.

3 Wind with any Orientation

As already mentioned, several studies are available in the literature for flow within a street
whose axis is perpendicular to the wind direction, but there are relatively few that consider the
flow induced in a street by an external wind blowing at an arbitrary angle to the street axis. In
the previous section the specific case of a wind parallel to the street axis was discussed. In this
section we will now consider how that result can be generalized to the case of a wind blowing
at an arbitrary orientation relative to the street axis. In the introduction it was mentioned that
this configuration leads to a three-dimensional flow characterized by helicoidal streamlines.
Up until now, it has generally been assumed that this flow can be modelled by a superposition
of the two asymptotic solutions for flow parallel to the street and flow perpendicular to the
street. But this assumption neglects any possible non-linear interaction between the two flow
fields, which would invalidate their combination by superposition. As far as we are aware,
there is no previous study of the nature of such a non-linear interaction. The aim of this
section is therefore to investigate whether the flow generated in a street by wind at arbitrary
orientation can be modelled by linear superposition of the two asymptotic cases.

As before, we consider an infinitely long, two-dimensional symmetrical street except that
it will now be more convenient to locate the origin of the y-axis at the centre of the street
(i.e., the street occupies now the region −W/2 ≤ y ≤ W/2, 0 ≤ z ≤ H ). The x , y and z
coordinate system is defined as in Fig. 1. The external mean flow is assumed to form an angle
θ∞ with respect to the street axis (so θ∞ = 0◦ for wind direction parallel to the street axis
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Fig. 8 Wind parallel to the street axis: comparison between theoretical model and MERCURE numerical
simulations. (a) Vertical profile of horizontal velocity on the street axis for an aspect ratio H/W = 2. (b)
Same as (a) for an aspect ratio H/W = 1. (c) Horizontal profile of horizontal velocity within a street for
an aspect ratio H/W = 2. (d) Same as (c) for an aspect ratio H/W = 1. (e) Vertical profile of turbulent
diffusivity vertical profile on a street axis for an aspect ratio H/W = 2. (f) Same as (e) for an aspect ratio
H/W = 1
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and θ∞ = 90◦ for a perpendicular direction). The longitudinal and the transverse velocity
components are referred to as U∞ and V∞, from which V∞/U∞ = tan(θ∞) (see Fig. 1).

3.1 Theoretical Analysis

Generally, the turbulent flow can be described by the averaged Navier–Stokes equations,
neglecting viscous effects:

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂ P

∂xi
− ∂u′

i u
′
j

∂x j
. (23)

We assume that the external flow is stationary and that the street has an infinite length in
the x direction, so that all variables (except for the pressure) do not vary in the x direction,
i.e. all terms containing ∂/∂x and ∂/∂t in Eq. 23 are equal to zero. As already assumed in the
case of a wind parallel to the street axis, the longitudinal pressure gradient can be neglected
compared with the Reynolds stress terms, because the flow is driven by wind shear, not by
the pressure gradient. Given these assumptions, the momentum equations can be written as:

v
∂u

∂y
+ w

∂u

∂z
= −∂u′v′

∂y
− ∂u′w′

∂z
, (24)

v
∂v

∂y
+ w

∂v

∂z
= − 1

ρ

∂ P

∂y
− ∂v′2

∂y
− ∂v′w′

∂z
, (25)

v
∂w

∂y
+ w

∂w

∂z
= − 1

ρ

∂ P

∂z
− ∂v′w′

∂y
− ∂w′2

∂z
. (26)

In the particular case of an external wind parallel to the street axis, these equations reduce
to Eq. 2. In the particular case of an external wind perpendicular to the street axis, the flow
dynamics are described by means of Eqs. 25 and 26. The analysis of these different equa-
tions yields a better understanding of the coupling between the longitudinal and transverse
components of the flow. It is worth noting that Eqs. 25 and 26 describe the flow as if it were
driven by an external velocity component V∞, oriented perpendicularly to the street axis.
This means that the transverse component (in the plane y–z) of the helicoidal flow is identical
to the mean flow induced by a perpendicular wind direction, as described in the literature.
That is, the transverse component of the flow is entirely independent of any longitudinal
component of the flow. On the other hand, Eq. 24, which describes the longitudinal compo-
nent of the helicoidal flow, differs from Eq. 2, which was derived in the case of an external
wind parallel to the street axis, because it contains two additional terms (the terms in the box)
which represent the transfer of momentum for the transverse flow to the longitudinal flow.
In this sense, the coupling between the two flows is therefore a one-way coupling.

The evolution of the transverse component can be considered to be independent of the
longitudinal one; on the other hand, compared with the asymptotic case of a parallel wind,
the presence of the transverse component modifies the longitudinal component of the flow.
The role of the terms in the box of Eq. 24 should be to homogenise the velocity distribution
on the cross-section of the street (Dobre et al. 2005). This means that the helicoidal flow
cannot be modelled as a superposition of the two components and that the analytical model
described in Sect. 2 cannot therefore be generalized. In principle, it will be necessary to
modify the model for the longitudinal component, to take account of the contribution from
the transverse velocity. Nevertheless, the integral form of Eq. 25 would not be different from
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Eq. 2, for the case of an external wind aligned with the street axis. In this case both equations
reduce to ∫ ∫

S

��τ · �nd S = 0,

where ��τ represents the Reynolds stress tensor, �n the normal to the wall and S the integration
surface. From a physical point of view this shows that the terms in the box in Eq. 25 do not
influence the spatially-averaged momentum flux along the street axis and that their effect
is related only to the velocity distribution within the street. Here, we propose a simplified
model for the spatially-averaged mean flow in the longitudinal direction

Ustreet(�∞) = 1

H W

∫ H

0

∫ W/2

−W/2
udydz, (27)

based on the assumption that the additional terms in Eq. 24 will modify the spatial distribution
of the longitudinal velocity in the street, but not the spatially-averaged value of that velocity.
In other words, the spatially-averaged longitudinal velocity Ustreet will still only depend on
the component of the external velocity parallel to the street axis (U∞). It then follows that
the model developed previously can be used to compute Ustreet:

Ustreet(�∞ = 0◦) = U//, (28)

where U// is defined by Eq. 21 and calculated from the velocity component U∞. It is worth
noting that Ustreet has to be proportional to cos(θ∞). The model has been tested by comparing
it with the results of numerical simulations; this is described in detail in Sect. 3.2.

The nature of the coupling between the two flow components provides a way of charac-
terizing the helicoidal flow within the street. If Eq. 28 is correct, it can be expected that δs,
the step of the helix, will be proportional to cot(θ∞): this implies that δs tends to zero as
the wind becomes perpendicular to the street axis and that it tends to infinity as the wind
becomes parallel to the street orientation. We also need to consider that, although the helix
is periodic along the street axis, the angle of the streamlines changes with height because the
velocity on the street centreline is different at the top and at the bottom of the street. Close
to the ground, the transverse component of the velocity v diminishes more rapidly than u,
the longitudinal component. A reduction in the absolute value of the angle θ should then be
observed close to the ground, and hence |θground| < θH < θ∞. This result confirms the field
observations of Nakamura and Oke (1988) in a street of Kyoto.

3.2 Numerical Model of an Infinite Two-dimensional Street

In order to verify the assumptions described in the previous paragraph, numerical simula-
tions were performed using the MERCURE code, for a symmetrical street with an aspect
ratio H/W = 1. Several values of θ∞ have been tested: 0, 15, 30, 45, 60, 75, and 90◦.

3.2.1 Flow Topology

Except for the case θ = 0◦ (wind parallel to the street axis), the flow topology within the
street is characterized by an irregular helix, as shown in Fig. 9—the wind direction is closer
to the axis of the street at the bottom of the street than it is at the top, and is due to the
channelling effect of the street, which increases close to the ground. This phenomenon is
confirmed by the analysis at different heights of the wind orientation on the horizontal plane
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x
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θ

Fig. 9 Flow topology simulated using the MERCURE code representing a three-dimensional view of the
helicoidal flow within the street in the case of θ = 60◦. The black stripes correspond to the streamlines in the
upper part of the flow and the white stripes to the streamlines close to the ground
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Fig. 10 Characteristics of the flow given by the numerical simulations using the MERCURE code. (a)
Flow deviation: wind orientation at roof level and at ground level for different angles of the external flow.
(b) Helicoid step δs as a function of wind orientation: evidence of the linear relation δs ∝ cot(θ∞)

(Fig. 10a): the angle between the mean velocity direction and the street axis becomes smaller
and smaller as the ground level is approached. This effect reaches a maximum for θ∞ = 45◦,
consistent with the field measurements obtained by Nakamura and Oke (1988).

In Fig. 10b, the helix step δs is plotted as a function of cot(θ∞): the relation between
the two is linear. Although the angle of the streamlines in the helix depends on the vertical
distance from the bottom of the street, the step length δs is constant through the street. It
is interesting to notice that, for an angle θ∞ < 45◦, δs is about 20 times the street height,
implying that the helicoidal flow appears only if the street is sufficiently long. There are many
practical situations where this condition is not satisfied—the ratio of the street length to the
street height is typically of the order of 5—and helicoidal flow may not appear.

3.2.2 Transversal Component

The velocity profiles in the y–z plane, normalized with V∞ as the reference velocity compo-
nent, are plotted in Fig. 11a. For any wind direction, the profiles collapse onto a single curve.
The transverse component w at mid-height exhibits the same behaviour. This confirms the
assumption that there is no coupling between the two components v and w and the component
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Fig. 11 Flow within the street for different external wind directions: mean velocity and velocity fluctua-
tions (numerical simulations performed with the MERCURE code). (a) Velocity on the horizontal plane y–z.
(b) Longitudinal velocity. (c) Velocity fluctuation
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θ∞

Ustreet

U∞ MERCURE

Parallel flow model
Equation (21)

Fig. 12 Mean longitudinal velocity component in a section of the street

u. Therefore, for any wind direction, the mean flow in the y–z plane is identical to that for a
flow driven by an external wind that is perpendicular to the street axis.

3.2.3 Longitudinal Component

The longitudinal velocity profiles on the street axis are shown in Fig. 11b. There is a clear
difference between the flow behaviour for a wind parallel to the street axis (θ∞ = 0◦) and
all other wind orientations θ∞ �= 0◦. In the first case, the profile corresponds to the model
described in Sect. 2. For all other angles, the mean velocity is much more uniform within the
street. This is caused by the coupling term in Eq. 24, which tends to homogenize the velocity
component u, as predicted. Furthermore, for 15◦ � θ∞ � 60◦, the velocity profiles u/U∞
can be superposed on each other (for θ∞ = 75◦, the velocity becomes weaker compared to
the other cases). Apart from these cases, then, the longitudinal velocities in the cavity u scale
on the parallel component of the external wind, U∞.

Based on the above hypothesis, the dependence of the spatially-averaged mean velocity
component Ustreet on U∞ can be evaluated for varying values of θ∞, in order to test whether
it can be modelled using the analytical model for the case of a parallel wind. In Fig. 12
the evolution of Ustreet is shown as a function of the wind direction, calculated by means
of numerical simulations. It can be observed that Ustreet/U∞ is almost independent of the
external wind direction. However, as θ∞ approaches 90◦, this is no longer true, which is cer-
tainly due to the fact that, for that angle, both Ustreet and U∞ go to zero. The relation between
these two velocities then becomes more difficult to predict, and the ratio between the two
differs from the predicted value. It can be seen that, for θ∞ = 0◦, the ratio Ustreet/U∞ is
close to the value obtained for all the other wind directions, even though the velocity profile
is really quite different. This justifies the assumption adopted in the proposed model and
allows us to use it to determine the mean velocity within the street for any orientation of
the external wind. To test this model, we have used Eq. 21 to evaluate the spatially-averaged
mean velocity on a section of the street. The constant value obtained by means of this method
shows good agreement with the values using numerical simulations based on the MERCURE
code.

3.2.4 Turbulence

The evolution of the velocity fluctuations (calculated from the kinetic energy k, using the
relation

√
2k/3 , assuming an isotropic turbulence) is shown in Fig. 11c. It can be observed
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that, for θ∞ � 30◦, the intensity of the turbulence does not depend on the external wind
direction and that the profiles superimpose relatively well. For smaller values of the angle θ ,
the turbulence intensity takes higher values. The greater turbulence intensity may be due to
the entrainment within the street of large-scale vortices from the external flow, as its mean
component is parallel to the street axis. Finally it is worth noting that, at the interface level,
the turbulence intensity is independent of the external wind direction, which is in agreement
with the experimental results of Rotach (1995).

3.2.5 Influence of Street Aspect Ratio

The comparison between theoretical and analytical results presented here concerns only a
single street geometry, for which H/W = 1. It is likely that some of the results obtained here
would be different for other aspect ratios. In particular, we would expect a quite different
flow behaviour in the case of a wider street, passing from the skimming flow to the wake
interference flow regime. In this case the mixing properties of the flow change substantially
(Harman et al. 2004) and the velocity field within the street exhibits a stronger coupling with
the overlying boundary-layer flow (Salizzoni 2006). Conversely, as the street aspect ratio
H/W increases, the presence of a second counter-rotating cell in the lower part of the street
would radically alter the mean velocity profile. Further work is therefore required to fully
define the applicability of this simple model.

4 Conclusions

In this study, we have examined the flow within a street canyon driven by an external wind
with arbitrary direction relative to the street axis. We developed a theoretical model for the
flow in a street driven by an external wind parallel to the street axis. The domain within
the street was divided into two different regions, with dynamics influenced mainly by the
ground or by the side walls, and from this we derived two different flow regimes, generat-
ing two different velocity profiles. The model agrees well with the results obtained using
detailed numerical simulations obtained with the Reynolds-Averaged Navier–Stokes code
MERCURE.

We then considered the influence of wind direction. In particular, we have shown that cer-
tain aspects of the flow can be obtained from the linear superposition of two asymptotic cases:
flow parallel to the street and flow perpendicular to the street. This confirms an assumption
already made by other workers. However, not all features of the flow can be modelled by
such a linear superimposition of asymptotic cases. Using numerical simulations of the flow
generated by an external wind at different orientation, we showed that the flow within the
street is determined by a coupling between the longitudinal and the transverse components
of the flow. This is a one-way coupling—the longitudinal component is influenced by the
transverse component, whereas the transverse component is not affected by the longitudinal
component. It was also shown that the mean longitudinal velocity, averaged over a street sec-
tion, is directly proportional to the cosine of the angle of incidence, for any wind orientation.
This implies that the velocity component can be evaluated from the model for a wind parallel
to the street.

The results from this study will allow a more detailed and improved modelling of the
flow and dispersion of pollutants within street canyons. They also provide a useful basis for
the investigation and the modelling of flow and dispersion at street intersections, where the
transfer phenomena are determined by the flows entering and leaving different streets.
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Fig. 13 Definition of Region A, B and C for the spatial integration of the velocity profile

5 Appendix 1: Derivation of Eq. 21

We define δ = min(H, W/2). Regions A, B and C are defined in Fig. 13.

5.1 Region A

We assume a velocity profile of the form

u(z, y) = Um f
( y

δ

)
g

( z

δ

)
, (29)

with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (y+) = J1(C)Y0(Cy+) − J0(Cy+)Y1(C)

J1(C)Y0(C) − J0(C)Y1(C)

g(z+) = exp
(

Cz+√
2

)
.

C is obtained by the following equation (earlier Eq. 12)

zi

δi
= 2

C
exp

[
π

2

Y1(C)

J1(C)
− γ

]
,

where z0 is the roughness length of the wall.
The air flux in the Region A can be computed as

Q1 = 2
∫ δi

0

∫ 0

−H+δi

u(y, z)dzdy = 2Umδ2
i

∫ 1

0
f
(
y+)

dy+
∫ 0

1−H/δi

g
(
z+)

dz+,

and it can be shown that∫ 1

0
f (y+)dy+ =

∫ 1

0

J1(C)Y0(Cy+) − J0(Cy+)Y1(C)

J1(C)Y0(C) − J0(C)Y1(C)
dy+ = 1 − π

2
H1(C),

H1(C) being the first-order Struve function. In the case that C ≤ 1, we have (Abramowitz
and Stegun 1965):

π

2
H1(C) 
 C2

12 × 3
− C4

12 × 32 × 5
+ O(C6),

with an error of 0.2% (Eq. 22 earlier).
It can be also shown that∫ 1

0
g(z+)dz+ =

√
2

C

{
1 − exp

[
C√

2

(
1 − H

δi

)]}
,

then we obtain

⇒ Q1 = UH δ2
i

2
√

2

C
(1 − β)

(
1 − π

2
H1(C)

)
.
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It can be observed that, if W/2 > H ⇒ δ = H ⇒ β = 1 ⇒ Q1 = 0.

5.2 Region B

We assume a velocity profile of the form

u(y, z) = Uδi

ln
(

d
zi

)

ln
(

δi
zi

) , (30)

where d is the distance from the nearest wall and

Uδi = Um exp

(
C√

2

(
1 − H

δi

))
= βUm .

Equation 30 is an approximated form of the exact solution (Eq. 9), which is used to allow
an analytical integration of the velocity. From Fig. 3, we observe that this assumption does
not induce an error exceeding a few percent. Then, the air flux in the Region B can then be
computed as

Q2 = 4
∫ y=δi

y=0

∫ z=y

z=0
u(y, z)dydz = 4βUm

ln
(

δi
zi

)
∫ y=δi

y=0

∫ z=y

z=0
ln

(
z

zi

)
dydz,

Q2 = 4βUm

ln
(

δi
zi

)
∫ y=δi

y=0

[
y ln

(
y

zi

)
− y

]
dy,

Q2 = βUH δ2
i

2 ln
(

δi
zi

)
− 3

ln
(

δi
zi

) = Umδ2
i β

2α − 3

α
,

with α = ln
(

δi
zi

)
.

5.3 Region C

We assume a velocity profile of the form

u(y, z) = Um

ln
(

z
zi

)

ln
(

δi
zi

) . (31)

The air flux in the Region C can then be computed as

Q3 = (W − 2H)

∫ δ

0
u(y, z)dy = Umδ2

i

(
W

δi
− 2

)(
α − 1

α

)
.

We observe that, if W/2 < H ⇒ δ = W/2 and we have that Q3 = 0.

123



Flow in a Street Canyon 387

5.4 Spatially-averaged Velocity in the Cross-section of the Street

As long as

Urue = Q1 + Q2 + Q3

H W
,

we obtain finally Eq. 21

U// = Um
δ2

i

H W

[
2
√

2

C
(1 − β)

(
1 − π

2
H1(C)

)
+ β

2α − 3

α
+

(
W

δi
− 2

)
α − 1

α

]
.
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